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Abstract
In this paper we are interested in the joint reconstruction
of geometry and photometry of scenes with multiple mov-
ing objects from a collection of motion-blurred images.
We make simplifying assumptions on the photometry of the
scene (we model each object in the scene as self-luminous)
and infer the motion field of the scene, its depth map, and
its radiance. In particular, we choose to partition the image
into regions where motion is well approximated by a sim-
ple planar translation. We model motion-blurred images as
the solution of an anisotropic diffusion equation, whose ini-
tial conditions depend on the radiance and whose diffusion
tensor encodes the depth map of the scene and the motion
field. We propose an algorithm to infer the unknowns of
the model. Inference is performed by minimizing the dis-
crepancy between the measured images and the ones syn-
thesized via diffusion. Since the problem is ill-posed, we
also introduce additional Tikhonov regularization terms.

1 Introduction
Motion-blur is a common distortion of images that becomes
perceivable when objects in the scene move at a speed
higher than the speed of the shutter of the camera [1]. Given
motion blurred images, one may be interested in recovering
a sharp or deblurred image of the scene. In order to do so,
one needs to recover both the deblurred image and some de-
scription of the motion of the scene. For example, one can
assume that the motion characterizing a motion-blurred im-
age can be represented by a two dimensional velocity vec-
tor. This assumption, however, is not realistic when multi-
ple objects are simultaneously moving with different speed
and/or along different directions. In this case, the complex-
ity of motion cannot be captured by a single two dimen-
sional vector. In order to model a complex motion one can
choose a very rich global model, that explains the motion
of the entire image, or a very simple model, selected from a
small parametric class, together with a segmentation of the
regions of the images where the model is satisfied within
a prescribed accuracy. In this paper we choose the latter
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approach. For simplicity, we adopt the simplest possible
model, i.e. that each region moves with constant, purely
translational motion. Notice that while this would be a se-
vere restriction for a global motion model, any motion field
can be approximated locally by a pure translation to an ar-
bitrary degree of accuracy. Naturally, the price we pay for
such a model is that the partitioning process may result in
very fine segments, hence over-segmenting the scene. Sub-
sequent aggregation can be performed based on richer mo-
tion models, but we do not address this issue in this paper.

1.1 Existing Work and Contributions of this
Paper

As we mentioned in the previous section, motion-blur is a
phenomenon that becomes perceivable whenever we cap-
ture images of an object that is moving faster than the shut-
ter of the camera. Given a description of the geometry and
the appearance of a scene, and its motion, one may be in-
terested in simulating (or rendering) images with motion-
blur [2, 3]. This problem is also called a direct problem
since it aims at mimicking the physical process as it hap-
pens in nature [4]. One may also be interested in the in-
verse problem, i.e. in the problem of inferring a description
of the scene (geometry and appearance) and of its motion,
given motion-blurred images [1, 5, 6, 7, 8, 9]. This prob-
lem is called motion deblurring, or motion smear [10, 11],
or super-resolution [12, 13] when the deblurred image is re-
constructed at a resolution higher than the resolution of the
input images.

Most of the approaches for motion deblurring are based
on using a single image in input [1, 5, 6, 7, 8, 14]. In
this case, one has to introduce strong assumptions on scene
and/or blur (see Remark 1). For example, in [14] the blur-
ring kernel support is assumed known. In [6], the motion
of the scene is known. In [8] the radiance is assumed to
be isotropic. These assumptions are unavoidable due to the
severe lack of data, and introduce constraints that are very
restrictive.

Some work has also been done when multiple images
are used [9, 15]. [9] uses images captured while the scene
is moving along different motion directions. They consider
blur is shift-invariant and that a single object is moving in
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the scene. In [15] deblurring is also performed by using
multiple images of the same scene captured for different
shutter intervals and pixel resolutions. They propose an in-
novative hybrid camera that can also estimate the path of
the moving scene, up to the resolution of the fastest camera.

We propose a novel approach to motion deblurring and
scene reconstruction when multiple objects are simultane-
ously moving in a scene. Some work has been done along
this direction [6, 7], although only one image is considered
as an input. In this paper, instead, we consider multiple
images so as to avoid introducing additional assumptions
on the unknowns. We assume we are made available im-
ages captured for different shutter intervals. In addition, we
model the motion of the objects on the images by consid-
ering their three dimensional geometry and their three di-
mensional motion, which has not been done in the context
of motion deblurring. Some work has been done towards
recovering depth information from motion-blurred images,
but restricted to the specific motion generated by lens zoom-
ing and for a single object in the scene [16]. Also, our ap-
proach differs from most of the previous approaches in that
we pose our inference problem as an optimization proce-
dure in a variational framework. To the best of our knowl-
edge, the only other work in this framework is the recent
paper in [6]. However, in [6] only a single image is used,
the motion on the image plane of the objects is assumed
known, and there is no geometric model of the scene.

2 Notation and Problem Formulation
We represent an image with a function I : Ω ⊂ R

2 �→
[0,∞), that assigns an energy value to each pixel on the
image plane. We assume that Ω is a bounded domain with
piecewise smooth boundary ∂Ω. The intensity of the mea-
sured energy depends on the reflectivity properties of the
surfaces of the objects in the scene, which we describe with
a function r : R

2 �→ [0,∞); r assigns an energy value at
each point on the surface of the objects and it is called, with
an abuse of terminology1, radiance of the scene.

We capture images from scenes where a number of ob-
jects are moving in different directions, possibly with dif-
ferent speed. For now, assume the scene is made of a single
object. If the camera shutter remains open while the object
is moving with velocity v for a time interval ∆T , then the
image I that we measure on the image plane can be modeled
by:

I(x) =
1

∆T

∫ ∆T
2

−∆T
2

r(x+vt)dt =
∫ 1

2

− 1
2

r(x+∆Tvt)dt (1)

1In the context of radiometry, the term radiance refers to a more com-
plex object that describes energy emitted along a certain direction, per solid
angle, per foreshortened area and per time instant. Here we are implicitly
assuming that scene radiance and image irradiance are the same, which is
an approximation that is only valid for Lambertian scenes under uniform
illumination.

which we approximate with the following

I(x) �
∫

1√
2π
e−

t2
2 r(x + ∆Tvt)dt. (2)

Now consider the scene is composed of M objects that are
moving simultaneously in front of the camera. Denote with
{Ωj}j=1...M the regions on the image plane occupied by
the projections of each of the moving objects. We assume
that {Ωj}j=1...M is a partition of Ω, i.e. that Ω =

⋃M
j=1 Ωj

and that Ωj

⋂
Ωi = ∅ for ∀i, j = 1 . . .M , i �= j. In this

case, the image model becomes

I(x) =
∫

1√
2π
e−

t2
2 r(x+ ∆Tvjt)dt ∀x ∈ Ωj . (3)

Consider that we are made available N images
{J1, . . . , JN} collected while the shutter remains open
for different spans of time {∆T1, . . . ,∆TN}. Then, one
can pose the problem of inferring velocities {vj}j=1...M ,
partitions {Ωj}j=1...M and radiance r of the scene as the
following minimization:

v̂j , Ω̂j, r̂ = arg min
vj ,Ωj ,r

N∑
i=1

∫
Ω

(Ji(x) − Ii(x))2dx (4)

where {Ji}i=1...N are images measured on the image plane,
while {Ii}i=1...N are images synthesized by using the im-
age model (3).

Remark 1. The problem in eq. (4) is an inverse problem
and it is known to be ill-posed. One of the main factors
that cause the ill-posedness of this problem is the lack of
data. For the sake of example, let us consider the simpler
case where a single object is moving in the scene. In this
case, the problem amounts to recovering the velocity v of
the scene and to restoring the radiance r. It is immediate to
see that there are infinite solutions to the problem when only
a single image J is used. For example, {r̂, v̂} = {J, 0} and
{r̂, v̂} = {r, v} are both valid solutions. More in general,
the following is also a valid (infinite) set of solutions:

r̂ =
∫

1√
2π
e−

t2
2 r

(
x+

√
1 − α2vt

)
dt

v̂ = αv
(5)

for all α ∈ [0, 1].

Remark 2. One may raise the concern that capturing im-
ages of the same scene but with different shutter intervals
might present some technical difficulties. Here we propose
two ways to perform this operation. The most straightfor-
ward method is to use different cameras that can capture si-
multaneously images with different shutter intervals. How-
ever, in this case one might encounter some difficulties in
registering the images with each other and in synchronizing
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the cameras. [15] describes hardware that can be used in
this modality. Another way to capture images with different
shutter intervals is to collect a sequence of images. Time
averaging the sequence simulates a long shutter interval.
For example, one could collect three motion-blurred images
[J̄1, J̄2, J̄3], and then consider J1 = J̄2 as one input image
and J2 = 1

3

∑3
i=1 J̄i as a second input image. The shutter

interval for the second image J2 is 3 times the shutter inter-
val of the first image J1. In this case, the data collection is
rather simple, since no alignment and no synchronization is
required, but it is based on the assumption that motion does
not change among the three frames. Due to its simplicity,
in this manuscript we choose this second modality for data
collection.

3 Modeling Motion-Blur of Multiple
Objects

In the previous section we briefly introduced a model for
motion-blurred images in eq. (3). The model was described
by a certain motion vj , a region Ωj corresponding to the
motion vj , and the radiance r of the scene. In the next sub-
section, we will specify more in detail how the motion vj

depends on the surfaces in the scene and the 3D motion of
the scene. Then, in subsection 3.2 we will introduce an al-
ternative model to eq. (3) based on anisotropic diffusion.

3.1 A Model for Motion of Multiple Objects
We denote the surfaces of the objects with a function s :
R

2 �→ [0,∞) that assigns a depth value to each pixel co-
ordinate and it is called depth map. A point on the depth
map s at time t can be written as X(t) = [x(t) 1]T s(x(t))
where x(t) ∈ R

2 are the 2D coordinates of a pixel. We
denote with V = [VX(t) VY (t) VZ(t)]T ∈ R

3 the transla-
tional velocity and with ω ∈ R

3 the rotational velocity of
one of the objects in the scene. Then, it is well known that
the time derivative of the coordinates x satisfies (see [17]
for more details):

ẋ(t) = 1
s(x(t))

[
F 0 −x1(t)
0 F −x2(t)

]
V+

+
[ −x1(t)x2(t) 1 + x2

1(t) −x2(t)
−1 − x2

2(t) x1(t)x2(t) x1(t)

]
ω.

(6)
We define v

.= ẋ(t) and call it the velocity field.
As we have anticipated, we restrict ourselves to a crude

motion model that only represents sideways translations
parallel to the image plane

v(t) = F
VX,Y (t)
s(x(t))

=
V̄X,Y (t)
s(x(t))

(7)

where V̄X,Y = FVX,Y is the velocity in focal length units.
From now on we will not make a distinction between V̄X,Y

and VX,Y , and use V to denote VX,Y for simplicity. Al-
though we derived the velocity field only for the case of
translational motion, it is straightforward, in principle, to

extend it to the general case of eq. (6). Conceptually, how-
ever, both cases correspond to a chosen motion model, and
given that the scene in general will violate it, we will have
to segment it into regions that satisfy the model. There-
fore, we concentrate on the simplest possible model, aware
of the fact that simpler models will generate finer partitions
and therefore more fragmentation of the image.

When we have M objects moving in the scene, or even
when we have a single object that is moving with a more
general motion, such as general rigid motion, or piecewise
rigid, or even non-rigid, we decompose the scene into seg-
ments each of which corresponds to a portion that is well-
modeled by pure translational motion. Now, assume we
have M objects moving in the scene with constant veloc-
ities V1 . . . VM , the velocity field v can be partitioned into a
number of regions {Ωj}j=1...M each corresponding to a dif-
ferent velocity Vj (see also section 2). Since there is a scale
ambiguity between the magnitude of the velocity Vj of a re-
gion Ωj and the magnitude of the corresponding depth map
s (see eq. (7)), objects that are moving along the same di-
rection are clustered together. In other words, we can only
partition the velocity field into regions with uniform motion
direction.

In our implementation, we represent the regions implic-
itly using signed distance functions [18, 19]. The regions
{Ωj}j=1...M are implicitly represented by levelset func-
tions. For simplicity, we consider the case of two regions,
so that a single levelset function suffices. However, the ex-
tension to more than two regions is straightforward and can
be achieved by considering more levelset functions. The
levelset function φ is a map φ : Ω �→ R, so that

Ω1 = {x ∈ Ω : φ(x) ≥ 0}
Ω2 = {x ∈ Ω : φ(x) < 0} = Ω\Ω1.

(8)

Using the Heaviside functionH

H(z) =
{

1, if z ≥ 0
0, if z < 0 (9)

we can equivalently write

Ω1 = {x ∈ Ω : H(φ(x)) = 1}
Ω2 = {x ∈ Ω : H(φ(x)) = 0}. (10)

This notation will be useful later when we will define more
explicitly the cost functional introduced in eq. (4).

3.2 A Model for Motion-Blurred Images
Under the assumption that the depth map s is smooth, we
can substitute the model in eq. (2) with a PDE whose so-
lution u : R

2 × [0,∞) �→ R, (x, t) �→ u(x, t), at each
time t represents an image with a certain amount of blur-
ring. In formulas, we have that J(y) = u(y, T ), where T is
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related to the amount of blurring of J . We use the following
anisotropic diffusion partial differential equation:

{
u̇(y, t) = ∇ · (D(y)∇u(y, t)) t > 0
u(y, 0) = r(y) ∀y ∈ Ω (11)

where D
.=

[
d11 d12

d21 d22

]
with dij : R

2 �→ R for

i, j = 1, 2 and d12 ≡ d21, is called diffusion tensor. We
assume that dij ∈ C1(R2) (i.e. the space of functions with
continuous partial derivatives in R

2) for i, j = 1, 2, and2

D(y) ≥ 0 ∀y ∈ R
2. The symbol ∇ is the gradient operator[

∂
∂y1

∂
∂y2

]T

with y = [y1 y2]T , and the symbol ∇· is the

divergence operator
∑2

i=1
∂

∂yi
. Notice that there is a scale

ambiguity between the time T and the diffusion tensor D.
We will set T = 1

2 to resolve this ambiguity.
When the motion field is constant, it is easy to show that

2tD = ∆T 2vvT . In particular, at time t = T = 1
2 we have

D = ∆T 2vvT . Now, in the space-varying case we let

D(y) = ∆T 2v(y)v(y)T . (12)

In particular, when eq. (7) is satisfied, we have

D(y) = ∆T 2V V
T

s2(y)
. (13)

Notice that the diffusion tensor just defined is guaranteed to
be always positive semi-definite.

Remark 3. The advantage of using the PDE-based model
just introduced in eq. (11) versus using the integral-based
model (3) becomes more evident at the algorithmic im-
plementation level. The two models yield (approximately)
the same solutions, but behave differently in the cases of
motion-blurring due to small velocities and motion-blurring
due to large velocities. The integral-based model is more ef-
ficient in the latter case, but less efficient in the former one.
Vice versa, the PDE-based model is more efficient for small
velocities, but more inefficient for large ones. The range of
velocities for which our problem yields a sensible solution
is more biased towards small velocities, thus favoring the
PDE-based model.

3.3 Motion-Blur Segmentation and Image
Restoration

We infer the radiance r, the depth map s, the veloci-
ties {V1, V2} and the partition {Ω1,Ω\Ω1} of the scene
by minimizing the following least-squares functional with
Tikhonov regularization (cf. [20])

2Since D is a tensor, the notation D(y) ≥ 0 means that D(y) is posi-
tive semi-definite.

E =
N∑

i=1

∫
Ω1

(ui(x, T, V1) − Ii(x))2 dx+

+
∫

Ω\Ω1

(ui(x, T, V2) − Ii(x))2 dx+
+α ‖r − r∗‖2 + β ‖∇s‖2 +

+γ
(∫

Ω

s(x)dx −M
)2

+ ν ‖∇H(φ)‖2
,

(14)
i.e. we seek for

Ω̂1, r̂, ŝ, V̂1, V̂2 = arg min
Ω1,r,s,V1,V2

E (15)

where α, β, γ and ν are positive regularization parameters,
r∗ is a prior3 for r and M is a suitable positive number4.
The last term imposes a length constraint on the boundary
of Ω1. One can choose the norm ‖ · ‖ depending on the
desired space of solutions. We choose the L2 norm for the
radiance and the components of the gradient of the depth
map.

In this functional, the first two terms take into account
the discrepancy between the model and the measurements;
the third and fourth term are classical regularization func-
tionals, penalizing large deviations of the radiance from the
prior and imposing some regularity on the estimated depth
map. The fifth term fixes the scale ambiguity between the
depth map s and the velocity field v. To fix the scale ambi-
guity we choose the mean of the depth map s to be equal to a
constantM , so that small changes of swill not result in sen-
sible variations of this term. Finally, the last term imposes
a length constraint on the boundary of Ω1 thus penalizing
boundaries that are too fragmented or irregular.

To minimize the cost functional (15) we employ a gradi-
ent descent flow. Let ξ̂(x, τ) represent one of the cost func-
tional unknowns {r̂(x, τ), ŝ(x, τ), V̂1(τ), V̂2(τ), φ̂(τ)}.
For each of these unknowns, we compute a sequence con-
verging to a local minimum of the cost functional, i.e.
ξ̂(x) = lim

τ �→∞ ξ̂(x, τ). At each iteration we update the un-

knowns by moving in the opposite direction of the gradient
of the cost functional with respect to the unknowns. In other
words, we let

∂ξ̂(x, τ)
∂τ

.= −∇ξ̂E(x) (16)

where ∇ξ̂E(x) is the gradient of the cost functional with

respect to ξ̂. It can be shown that the above iterations de-
crease the cost functional as τ increases. The computation
of the above gradients is rather involved due to the fact that

3We do not have a preferred prior for the radiance r. However, it is
necessary to introduce this term to guarantee that the estimated radiance
does not diverge. In practice, one can use as a prior r∗ one of the input
images, or a combination of them, and choose a very small α.

4As mentioned in subsection 3.1, there is a scale ambiguity between the
velocity field v and the depth map of the scene. We choose to fix a scale
quantity of the depth map rather than fixing the velocity field. We choose
the mean of the depth map s to be equal to the constant M .
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the explicit solution u of eq. (11) is not available, but yields
the following formulas that can be easily implemented:

∇rE(x) =
N∑

i=1

wi(x, T, V1)H(φ(x))+

+
N∑

i=1

wi(x, T, V2)(1 − H(φ(x)))+

+2α (r(x) − r∗(x))

∇sE(x) = 2
V T
1 e1(x)V1

s3(x)
H (φ(x)) +

+2
V T
2 e2(x)V2

s3(x)
(1 − H (φ(x)))+

+2γ

(∫
Ω

s(x)dx − M

)

∇V1E = −
∫
Ω1

[1 0]e1(x)V1 + V T
1 e1(x)

[
1
0

]

s2(x)
dx

∇V2E = −
∫
Ω\Ω1

[1 0]e2(x)V2 + V T
2 e2(x)

[
1
0

]

s2(x)
dx

∇φE(x) =

(
g1(x) − g2(x) −∇ · ∇φ(x)

|∇φ(x)|

)
δ(φ(x))

(17)

where for j = 1, 2 we define

ej(x) =
N∑

i=1

∫ T

0
∇ui(x, t, Vj)∇wi(x, T − t, Vj)

T dt

gj(x) =
N∑

i=1

(ui(x, T, Vj) − Ii(x))2
(18)

and wi(x, t, Vj) satisfies the following adjoint parabolic
equation 


ẇ(y, t) = ∇ · (D(y)∇w(y, t))
w(y, 0) = u(y, T ) − Ii(y)
(D(y)∇w(y, t)) · n = 0

(19)

with D(x) = ∆T 2
i

VjV T
j

s2(x) . Similarly, the notation
ui(x, t, Vj) denotes the solution of the PDE eq. (11) where

the diffusion tensor D(x) = ∆T 2
i

VjV T
j

s2(x) .

4 Experiments with Synthetic Data
In this set of experiments we synthetically generate a scene
whose depth map is a stair-shaped object (Figure 1). Two
disks at opposite corners (left image in Figure 1) move side-
ways (left to right) while the remaining part of the object
moves along the top-left to bottom-right diagonal. In the
center and right image of Figure 1 we also show the re-
constructed scene (center image) with the estimated depth
map (right image). The estimated depth map is shown as a
gray level image. Light intensities correspond to points that
are close to the viewer, while dark intensities correspond to
points that are far from the viewer. When the scene is static,
the image we capture coincides with the radiance of the ob-
ject (leftmost image in Figure 2). The second and third im-
age from the left of Figure 2 show the two input images
captured for different shutter intervals. The shutter interval
of the third image is three times the shutter interval of the
second image. Also notice that the amount of motion-blur

Figure 1: Left: setup of the scene with motion-blur. The
depth map is stair-shaped. The steps on the top are closer
to the camera than the steps on the bottom. Two disks on
the stair move from left to right, while the remaining part of
the stair moves along the top-left to bottom-right diagonal.
The texture of the two disks has been brightened to make
them more visible. Center: reconstruction of the setup of
the scene by using the recovered radiance and the recon-
structed depth map. Right: visualization of the estimated
depth map as a gray level image. Light intensities corre-
spond to points that are close to the camera, while dark in-
tensities correspond to points that are far from the camera.

is larger on the top of the image than on the bottom. This
effect is due to the depth map of the scene. The rightmost
image of Figure 2 is the resulting deblurred image that we
restored from the given input. Notice that the reconstruc-
tion is fairly close to the original radiance (leftmost image
in Figure 1), although there are artifacts at locations corre-
sponding to the boundary of the two disks. This is due to the
error between the correct segmentation of the scene and the
estimated segmentation (Figure 3). In Figure 3, top row, we
show a few snapshots of the segmentation evolution of the
two moving objects. The motion field direction is correctly
estimated. Also, notice that the levelset representation eas-
ily handles topological changes of the represented contour.
In Figure 3, bottom row, we show some snapshots of the de-
blurring evolution. More precisely, the first three snapshots
from the left correspond to the first three steps in the iter-
ative scheme, while the rightmost snapshot corresponds to
the last estimation step of the radiance. Although the radi-
ance is initialized with the most blurred image (third image
from the left in Figure 2), it converges rather quickly to the
deblurred image.

5 Experiments with Real Data
To capture real images with different shutter intervals we
use the modality described in section 2, i.e. we capture
three motion-blurred images [J̄1, J̄2, J̄3], and then consider
J1 = J̄2 as one input image and J2 = 1

3

∑3
i=1 J̄i as a

second input image. As in the previous section, the shutter
interval for the second image J2 is 3 times the shutter inter-
val of the first image J1. In Figure 4 on the top-left corner
we show an image of the scene when static. This image
coincides with the radiance of the scene. On the top-right
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Figure 2: First from the left: synthetically generated radi-
ance. Second and third from the left: motion-blurred im-
ages captured with different shutter intervals. The motion-
blur of the third image is three times the motion-blur of the
second image. Rightmost: estimated radiance from the two
input images. The reconstruction has artifacts at locations
corresponding to the boundaries of the disks.

corner we show the recovered image obtained by using our
algorithm. As in the experiments with synthetic data, the re-
construction resembles the radiance of the scene, although
there are artifacts at locations corresponding to the bound-
ary of the segmented regions. In input we use the image
on the bottom-left corner (which corresponds to J1) and the
image on the bottom-right corner (which corresponds to J2)
of Figure 4. The background is moving vertically, while the
foreground (the cup and the banana) are moving horizon-
tally. In Figure 5 we show a few snapshots of the segmen-
tation evolution. To make the contour more visible in the
illustrations, we changed the original brightness of the im-
age. Notice that the motion field direction of the scene is
correctly estimated. In Figure 6 we show some snapshots
of the deblurring evolution. We use as initial radiance the
most blurred image (left). The final estimate of the radi-
ance (right) is also shown in Figure 4 for comparison with
the original radiance. Finally, in Figure 7 we show the re-
constructed depth map of the scene. The first two images
from the left show both the estimated background and fore-
ground depth map. Notice that the relative position of the
two depth maps does not correspond to the depth map of the
original scene. This inconvenience is due to the scale ambi-
guity between the depth map and the velocity of the scene
(section 3.1). The right image shows a novel view of the
estimated depth map of the foreground.

6 Summary and Conclusions
We presented a solution to the problem of jointly recon-
structing scenes and restoring images from images affected
by motion-blur due to multiple moving objects. We inferred
motion field of a scene, depth map and radiance from a
collection of motion-blurred images obtained for different
shutter intervals. The presence of multiple objects in the
scene, that are moving along different directions, induces a
complex motion field on the blurred images. We found that

Figure 3: Top row: Snapshots of the evolution of segmen-
tation together with motion estimation on synthetic data.
Motion is initialized with vertical direction. Bottom row:
Snapshots of the evolution of the deblurring of the radiance.
The radiance is initialized with the most blurred image (left-
most image). At the second and third iteration, the radiance
sharpness improves dramatically (second and third image
from the left). The recovered radiance (rightmost image)
compares well with the original radiance (leftmost image in
Figure 2).

a good tradeoff between complexity of the model and accu-
racy of the representation is to segment the motion field into
regions with uniform translational motion. In addition, we
proposed to model motion-blurred images as the solution of
an anisotropic diffusion equation, whose initial conditions
depend on the radiance and whose diffusion tensor encodes
the depth map of the scene and the motion field. Finally, an
algorithm to infer the unknowns of the model in presented.
Inference is performed by minimizing the discrepancy be-
tween the measured images and the ones synthesized via
diffusion, which we regularize via additional Tikhonov reg-
ularization terms.
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