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Bilinear Design Example

Problem: Design a 2nd order Butterworth
filter with cutoff w =628 rad/s,

sampling freq w ,=5024 rad/s

* The normalised Butterworth filter is:

|
H(s) =
(5) 1+\/§S+S2



» Calculate pre-warping frequency:

W, = = \Ttan 2190 \T= 663 rad/s
1/800 ) 2x800 )

* De-normalise using : s +— s/w, = 5/663

1

His =17 (\25/663) + (s /663)?

* Apply bilinear transform:

. 2(1-z7
At(1+z7")




* Applying bilinear transformation gives:

1

H(z)=
2 x800(1 - z'l)\ . J3( 2x80001 - 2_1)\

663(1+27) T 663(1+z7") /

» Algebraic simplification leads to:

0.098 + 0.195z~1 + 0.0982 2

H —
(2) 1 —0.942z=1 + 0.3332—2




Y(z) 0.098 4 0.195z71 + 0.098z 2
X(z)  1-0.942z"! 4 0.3332—2

H(z) =
* Multiplying out:
Y (2)(1 —0.942271 +0.333272) = X(2)(0.098 + 0.1952"1 + 0.098272)

* Finally can apply inverse z-transform to
yield the difference equation:

y(n) =0.098x(n)+0.195x(n -1) + 0.098x(n - 2)
+0.942y(n-1)-0.333y(n-2)



Filter Frequency Response

Fig5.12




Filter Phase Response
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IIR Filter Structure
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IIR Filtering

* In example, 2nd order IIR filter design
had 3 feedforward/2 feedback taps

 In general, N-th order |IR filter design
has N+1 feedforward/N feedback taps

* Must trade off:
—>Roll off rate of filter design

—>NpP° of taps in filter implementation
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Direct to Canonical Form

Fig5.5a
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- Redefine filter 1:  y'(z) - X(Z)/ =S

* So filter 2 is now: y(z)- ialz—iY'(z)




The Canonical Form

Fig5.5¢

* Minimum Storage Filter Implementation
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Worked Example:Canonical Form

Fig5.11

y(n)=0.098y"'(n)+0.195y'(n-1)+0.098y'(n - 2)
y'(n)=x(n)+0.942y'(n-1)-0.333y'(n-2)
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Serial and Parallel Cascades




Serial or Parallel?

» Build up filter from 1st/2nd order blocks

« Parallel cascades are less sensitive to
filter coefficient errors

» Serial cascade usually preferred:
—2nd order blocks have integer coefficients

—Many filter design packages assume this
configuration
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High Pass Filters

* To design a LP filter, we used the
analogue substitution s—s/w,

- Given a digital LP filter with cutoff w_, 5,
design HP filter with cutoff (v, /2- ®, p):

—3Swap signs of poles and zeros
—>3S0 Hyp(z) = H,p(-2)

21— 21 2 14271 4 1
— S p— —
At1+ 271 H7At] — 21 17At2 ST,
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Bandpass and Bandstop Filters

» Can create a bandpass filter from a
lowpass digital filter prototype:

—Low pass cutoff = w_,—w,,
—Substitution for H(z) is:

1 2l — ) Y cos(T(Wey + Wel) /Ws)
1 —az ! COS(T‘-(wcu — wcl)/ws)
1 X * * *
sp = —(ag + Bysc)(a] + SisL)
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* Transform doubles number of poles/
zeros and hence the filter order

 In an identical way, bandstop filters can
be created as follows:

1 — az! cos(T(Wey — Wer) /ws)

* Note the change in the sign!
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Bandpass/Highpass Example

Fig 5.16:
Low pass
prototype
with the
bandpass &
high-pass
designs
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Coefficient Quantisation Errors

* Quantising filter coefficients will move
locations of poles and zeros

—This will change the frequency response
of the filter

—Must ensure all poles stay INSIDE unit
circle to ensure stability
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Effect of Pole Quantisation
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Fig5.17: (a) z-plane, (b) Frequency response
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Stability Problems

 Poles near unit circle can move outside
causing instability

« Consider:

1
(1- 0.9012‘1)(1 — 0.9432‘1)
—>Poles at 0.901 and 0.943

—>Quantising to nearest 0.05, poles at 0.9
and 0.95

H(z) =
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* Multiplying out the denominator of H(z)
gives:

1
1-1.844z7" +0.8496z7°

H(z) =

* Quantise H(z) coeffs to nearest 0.05:
—>(Obtain poles at 0.85 and 1

—Hence the filter is now unstable!
—Problem gets worse for high order filters
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Limit Cycles

 Limit cycles give an oscillatory output
with zero input

 Consider the first order filter:

y(n)=-0.9y(n-1)+ x(n)

« With infinite precision, impulse
response decays to zero:
y(n)=1,-0.9,0.8,-0.7,0.6,-0.5,0.45...
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* Now assume rounding to nearest 0.1
—>The value 0.45 rounds up to 0.5

—The output cycles between +0.5

0.6 05 05 05

Fig
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LIMIT CYCLE

* Minimise effect with increased precision
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Minimising Finite Precision Effects

* A key result for cascade designs:

If each section is stable (poles inside

unit circle) and free from limit cycles,
then the cascaded higher order design
retains these properties

* A major motivation for cascade filters
built up from1st/2nd order sections
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How Many Bits?

* Formula for fixed precision processors:
bc = 10g2(1 /[61 _610]) + logz ((Ds /[szsin(znwcl /('OSI )])

 \Where:

d,, 94 = passband ripple before/after
guantisation

w,, Wy , 0= cutoff, bandstop and sampling
frequency

Aw = w

si~ Wgy
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IIR Filter Implementation

* Four key steps:
—Define storage of inputs, outputs & filter
taps
—>Function to get current input
—Evaluate filter and return the output

—>Apply unit delay to input and output
memories

29



Summary of Chapter 3

Prototype analogue filters
Bilinear transform filter design
Direct vs canonical form for IIR filter

Implementation issues
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