Optics and Heat Transfer for Asymmetric Compound Parabolic Photovoltaic Concentrators for Building Integrated Photovoltaics

Tapas K. Mallick

Thesis submitted for the degree of

Ph.D

Faculty of Engineering
University of Ulster, UK

July 2003
Abstract

Concentration of solar energy onto photovoltaic materials reduces overall system cost when concentrator cost is less than the displaced photovoltaic (PV) material. Concentration provides higher solar radiation intensity at the PV material increasing electrical power generation per unit PV area. Systems of asymmetric compound parabolic photovoltaic concentrators (ACPPVC) have been designed, fabricated and experimentally characterised for building façade integration in the UK. The ACPPVC system has an acceptance half-angle of 50° and 0° leading to a geometrical concentration ratio of 2.01. In house built Finite Element codes were used for Optics and heat transfer (CFD analysis) of the line-axis solar energy systems. Systems of air filled ACPPVC have been modelled for;

- single trough ACPPVC-50 with a range of solar radiation intensities incident at the aperture cover,
- three trough ACPPVC-50 with constant solar radiation intensities at the aperture, and
- five trough ACPPVC-50 incorporating a range of
 - solar radiation intensities incident at the aperture cover
 - open channel geometries adjacent to the aperture cover for different inlet air velocities including natural convection, and
 - open air channel geometries adjacent to the rear aluminium plate and adjacent to the aperture cover for different inlet air velocities.

Convective behaviour inside a single trough and between consecutive troughs together with the effect of solar cell operating temperature is presented. Predicted optical efficiency was 85% for a wide range of solar incidence angles. A 95°C solar cell surface temperature was predicted for incident radiation of 1000 Wm\(^{-2}\). Forced convection at the rear aluminium plate and at the glass aperture cover reduced the solar cell surface temperature by 35°C.

The three trough ACPPVC-50 system was studied experimentally using a continuous solar simulator. The three trough ACPPVC-50 achieved a fill factor of 65% for a range of solar radiation intensities incident at the aperture cover. Two five-trough ACPPVC-50s incorporating modified reflector troughs were characterised experimentally under outdoor environmental conditions. Electrical output and temperature effects were investigated for;

- A PV system using an asymmetric compound parabolic concentrator.
- A control PV system using the same cell spacing without a concentrator.
- An ACPPVC-50 system with and without concentrators in real time for
 - different PV series combination
 - different realistic conditions.

The maximum power available from the ACPPVC-50 increased by 65% (i.e. a power ratio of 1.65) compared to the theoretical power ratio of 2.01. A power loss analysis indicated that the ACPPVC-50 can achieve a power ratio of up to 1.94 when solar cell spacing is reduced from 52 mm to 2 mm.
Notes on Access to Contents

I hereby declare that with effect from the date on which the thesis is deposited in the Library of the University of Ulster, I permit the Librarian of the University to allow the thesis to be copied in whole or in part without reference to me on the understanding that such authority applies to the provision of single copies made for study purposes or for inclusion within the stock of another library. This restriction does not apply to the British Library Thesis Service (Which is permitted to copy the thesis on demand for loan or sale under the terms of a separate agreement) nor to the copying or publication of the title and abstract of the thesis. IT IS A CONDITION OF USE OF THIS THESIS THAT ANYONE WHO CONSULTS IT MUST RECOGNISE THAT THE COPYRIGHT RESTS WITH THE AUTHOR AND THAT NO QUOTATION FROM THE THESIS AND NO INFORMATION DERIVED FROM IT MAY BE PUBLISHED UNLESS THE SOURCE IS PROPERLY ACKNOWLEDGED.
Acknowledgement

This thesis is the result of three and half years of hard work whereby I have been accompanied and supported by many people in various ways. It is a great pleasure that I have now the opportunity to express my gratitude to all of them.

First and foremost, I am deeply indebted to my supervisors Prof. P. C. Eames and Prof. B. Norton without whom this thesis would have read like Edward Lear’s “Complete Nonsense”. Prof. Eames and Prof. Norton have devoted so much time and effort in teaching me; from the basics of CFD to writing a research work that my labour would never be able to match. I owe them a lot of gratitude. I just aspire to be like them if I ever become a teacher. I never will forget the days when I did simulations, every single day whenever I had any problem I went to meet Prof. Eames and received valuable comments, a special thanks to you! I have no words to express my sincere gratitude to my supervisors for their invaluable corrections. Prof. Eames and Prof. Norton have been outstanding supervisors, whom I would not have traded for anyone else.

It is my great pleasure to get an opportunity to undertake my PhD work at CST for which I am deeply grateful to Prof H P Garg, who insisted me to work in Photovoltaics.

In general the CST, Centre for Sustainable Technologies is full of nice people providing the important social environment needed to do a good job, far away from home, thank you all!! I would specially like to thank Dr. T. J. Hyde for helping me to design and fabricate my experimental system. I am also thankful to Frank Stewart for supporting me throughout construction and monitoring of my experimental system. Thanks to Dr. P. Griffiths for helping me with the UNIX system which I required for my simulations. Special thanks to Dr. N. Hewitt, Dr. M. Smyth, Dr. S. Lo, Dr. Ming and Dr. Fang for their encouragement and support throughout my whole research period. Good luck to all research students specially Sarah, Jayanta, Chris and Harjit without their company life would have been much more difficult, thank you all!

Dr. Adhikari is acknowledged for encouraging me to undertake PhD at UUJ while I was at IIT, Delhi. My special thanks to all my friends living at India and abroad for communicating and supporting me whenever I needed. Many more people participated in various ways to ensure my research succeeded and I am thankful to all of them.

This research was supported and funded by the Engineering and Physical Sciences Research Council, Swindon, UK. I would like to thank BP Solar, Madrid, Spain for supply the Photovoltaic cells and the EVA used in this work.

I cannot say enough about my father Satkari and mother Bharati for making me who I am today and for being supportive all the time in all that I have done and that I ever wanted to do, a sincere gratitude to them! My brother, Dr. Tapan, inspired me since I was a child. His guidance, care and direction to all my siblings never can be forgotten. A big thanks to my sister Priti, sister-in-law Prativa and brother-in-law Swapan without their love, care and support this work never could have been finished. My brother, Sudipta has been a driver of every sector of life. I used to have good fun whenever I am with Chinu, Papan and Tulu, love you all!!
CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note on access to contents</td>
<td></td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>i</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxv</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxvii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxxii</td>
</tr>
</tbody>
</table>
Chapter 1 Photovoltaic Concentrators and Building Integrated Photovoltaics

1.1 Introduction 2

1.2 Non-Imaging Optics 3

1.3 Compound Parabolic Concentrators 3
 1.3.1 The Equation of a CPC with a Flat Absorber 4
 1.3.2 Limits of CPC Concentration 5
 1.3.3 The Concentration Ratio of a CPC 6
 1.3.3.1 Area Concentration Ratio 6
 1.3.3.2 Optical Concentration Ratio 6
 1.3.4 Example of CPC Configurations for Selected Absorber Shapes 6
 1.3.5 Asymmetric Compound Parabolic Concentrator (ACPC) 9
 1.3.5.1 Different ACPC Configurations 11
 1.3.6 Photovoltaic Concentrators 13
 1.3.6.1 Luminescent and Quantum Dot Concentrators 15
 1.3.7 Heat Transfer in Compound Parabolic Concentrators 16
 1.3.8 Nusselt Number Correlation for a CPC 21

1.4 Photovoltaic Solar Energy Utilisation 22

1.5 Different Photovoltaic Solar Cell Technologies 23
 1.5.1 Silicon Solar Cells 24
 1.5.1.1 Single-Crystal Silicon Cells 24
 1.5.1.2 Polycrystalline, Multicrystalline and Thin Film-Silicon Cells 26
 1.5.2 Indium Tin Oxide Solar Cells 26
 1.5.3 Metal- Semiconductor Junctions Solar Cells 26
 1.5.4 Photoelectrochemical Solar Cells 26
 1.5.5 Cadmium Sulphide/ Cadmium Telluride Solar Cells 27
 1.5.6 III-V Semiconductor Solar Cells 27
 1.5.7 CIS Solar Cells 27
 1.5.8 Single-Junction Approaches 28
 1.5.9 Electroplated Solar Cells 28
 1.5.10 Organic Semiconductor Solar Cells 28
 1.5.11 Cascade Solar Cells 29

1.6 Photovoltaics Applications in Building Integration 29
 1.6.1 International Building Integrated Photovoltaics Market 29
 1.6.2 Different Building Integrated Photovoltaic Technology 31
 1.6.2.1 Building Rooftop Integrated Photovoltaic Systems 31
 1.6.2.2 Building wall and Façade Integrated Photovoltaics 32

1.7 Ventilated PV Panel Façade 36
 1.7.1 Pressure Drop Across a Ventilated PV Façade 37
 1.7.2 Flow Velocity Inside the Air Duct at the Back of a PV Panel 38
 1.7.3 Heat Transfer Inside an Air Duct at the Rear of a PV Panel 39
 1.7.3.1 Long Wave Radiation Heat Transfer 39
 1.7.4 Thermal Regulation of a PV Panel 40

1.8 Conclusions 41

Chapter 2 Optical Performance Predictions for Asymmetric Compound Parabolic Photovoltaic Concentrators: A Ray Trace Analysis

2.1 Introduction 44
2.2 Generalised Two-Dimensional Ray Trace Technique for Line-Axis Photovoltaic Concentrators
 2.2.1 Rays Intersection at the Aperture Cover 45
 2.2.2 Rays Intersecting with the Reflector 47
 2.2.3 Rays Intersecting with the PV Absorber 48
2.3 Influence of Angular Skyward Solar Radiation Distribution 48
2.4 Ray Trace Analysis Assumptions 49
2.5 Definition of Incidence Angle for the Ray Trace Analysis 49
2.6 Ray Trace Analysis for Selected of Asymmetric Compound Parabolic Photovoltaic Concentrators
 2.6.1 Comparative Ray Trace Diagram for an ACPPVC-50 and an ACPPVC-60 50
 2.6.2 Ray Trace Diagram for the Untruncated Systems 51
 2.6.3 Ray Trace Diagram for a Truncated ACPPVC-50 System 52
 2.6.4 Ray Trace Diagrams for Systems Using Different Numbers of Planer Elements to Form the Reflector Profile 53
 2.6.5 Ray Trace Diagram for an ACPPVC-50 with Different PV Inclination Angles 54
2.7 The Comparative Optical Performance of the Two Modelled Photovoltaic Concentrators
 2.7.1 Angular Acceptance Functions and Optical Efficiencies of the ACPPVC-50 and ACPPVC-60 55
2.8 Energy Distribution Across the Different Components of an ACPPVC-50
 2.8.1 Determination of Direct Solar Radiation Distributions onto System Components 62
 2.8.1.1 Reflection Losses and Absorbed Energy Distribution Across the Glass Aperture Cover 62
 2.8.1.2 Absorbed Energy Distribution Across the Reflectors 63
 2.8.1.3 Absorbed Energy Distribution at the PV Absorber 65
 2.8.2 Distribution of Diffuse Solar Radiation to Different Components of an ACPPVC-50 System 68
 2.8.2.1 Energy Distribution of Diffuse Solar Radiation Absorbed at the Aperture Cover of the ACPPVC-50 System 68
 2.8.2.2 Energy Distribution of Diffuse Solar Radiation Absorbed at the Reflectors of an ACPPVC-50 System 69
 2.8.2.3 Energy Distribution of Diffuse Solar Radiation Absorbed at the PV Absorber of an ACPPVC-50 System 70
2.9 Conclusions 71

Chapter 3 Prototype Design and Construction of an Asymmetric Compound Parabolic Photovoltaic Concentrator System

3.1 Introduction 73
3.2 An Asymmetric Compound Parabolic Concentrator for PV Application 73
3.3 System Truncation 73
3.4 Design and Construction of the Prototype ACPPVC-50 System 74
 3.4.1 Aperture Design and Construction 75
 3.4.2 Reflector Design 75
 3.4.2.1 Reflector Substrate 76
 3.4.2.2 Reflecting Material 77
 3.4.3 PV Absorber Design 78
 3.4.3.1 PV Solar Cell Absorber 78
 3.4.4 Back Plate Design and Construction 79
 3.4.5 Supporting PV Reflector System Enclosure and Frame 82
3.5 Assembly of Different Components and Fabrication of System
3.5.1 Fabrication of the Reflector Mould
3.5.2 Fabrication of Reflector Supports
3.5.3 Construction of the Rear Aluminium Back Plate and Placement of the Reflector Supports
3.5.4 Solar Cells Soldering and Interconnection
3.5.5 Attachment of Reflector onto the Reflector Supports
3.5.6 Encapsulation of Solar Cells
3.5.7 Reflector Placement on to the Encapsulated Solar Cells
3.5.8 PV Reflector System Frame

3.6 The Final Specification of the ACPPVC-50 Systems Fabricated
3.6.1 The Prototype ACPPVC-50 Used for Indoor Experiments
3.6.2 The Prototype ACPPVC-50 Used for Outdoor Experiments

3.7 Conclusions

Chapter 4 Thermofluid Behaviour of an Asymmetric Compound Parabolic Photovoltaic Concentrator: A Computational Fluid Dynamics Analysis

4.1 Introduction

4.2 Computational Fluid Dynamics Analysis
4.2.1 The Finite Element Model
4.2.1.1 The Applied Boundary Conditions and Thermophysical Properties of the Materials Used for the Simulations of the PV Concentrators
4.2.2 The Heat Transfer Coefficients at the External Boundaries
4.2.2.1 The Heat Loss Coefficient from the Aperture Cover
4.2.2.2 The Heat Loss Coefficient from the Back of the Mirror Reflector Exposed to the Ambient Surroundings
4.2.2.3 The Heat Loss from the Rear of the Aluminium Back Plate
4.2.3 Examples of Mesh Employed in the Simulation

4.3 Theoretical Predictions of the Thermofluid Behaviour of a Single Trough ACPPVC-50 for Solar Radiation Incident on the Aperture Cover with Intensities of 200, 400, 600, 800, 1000 and 1200 Wm\(^{-2}\)

4.4 Predicted Thermofluid Behaviour for the Three Trough ACPPVC-50 Used for Indoor Experimental Characterisation

4.5 The Theoretical Predictions of the Thermofluid Behaviour for a Five Trough ACPPVC-50
4.5.1 Predicted Thermofluid Behaviour for a Five Trough ACPPVC-50 for Solar Radiation Intensities of 200, 400, 600, 800 and 1000 Wm\(^{-2}\) Incident on the Aperture Cover at an Angle of 30° to the Vertical
4.5.2 Predicted Thermofluid Behaviour for a Five Trough ACPPVC-50 with Different Widths of Front air Channel Adjacent to the Aperture Cover and with Different Applied Inlet Air Velocities
4.5.3 Predicted Thermofluid Behaviour for a Five Trough ACPPVC-50 with 10 and 20-mm Wide Front and Rear Air Channels for Different Inlet Air Velocities

4.6 Photovoltaic Electrical Output Simulation
4.6.1 Electrical Output Model of ACPPVC-50
4.6.1.1 Model Assumptions
4.6.2 Output Electrical Current Voltage Analysis for the ACPPVC-50

4.7 Conclusions
Chapter 5 Indoor Experimental Characterisation of a Three Trough 50° Effective Acceptance Half-Angle Line-Axis Concentrating Asymmetric Compound Parabolic Photovoltaic Concentrator Using a Continuous Solar Simulator

5.1 Introduction
5.2 Pulsed or Continuous Solar Simulator?
 5.2.1 Continuous Solar Simulator Lamp Selection
 5.2.2 Spectral Characteristics of the Solar Simulator
5.3 Experimental Set up for the ACPPVC-50 System
5.4 Equipment Specification and Sensors Used in the Experiments
5.5 Indoor Experimental Characterisation of the ACPPVC-50 System
 5.5.1 I-V Characteristics of the ACPPVC-50 System with Different Incident Solar Radiation Intensities
 5.5.2 Effect of Incident Radiation Intensity on the Power Output
 5.5.3 Temperature Dependency of Fill Factor Response for the Three Trough ACPPVC-50 System
 5.5.4 Variation of Fill Factor with Incident Radiation Intensity and PV Cell Temperature
5.6 The Effect of Incident Radiation Intensity on Measured Efficiency
5.7 Variation of Maximum Power Point
5.8 Conclusions

Chapter 6 Outdoor Experimental Characterisation of an Asymmetric Compound Parabolic Photovoltaic Concentrator

6.1 Introduction
6.2 The ACPPVC-50 Systems Developed for Outdoor Experimental Characterisation
6.3 Experimental Set-up for Outdoor Experimental Characterisation
6.4 Experimental Measurements and Data Analysis for the Two Fabricated ACPPVC-50 Systems
 6.4.1 Electrical and Thermal Performance Analysis of System 1
 6.4.2 Electrical and Thermal Performance Analysis of System 1 with Seven PV Strings Connected in Series
 6.4.3 Electrical and Thermal Performance Analysis of System 1 with Six PV Strings Connected in Series
 6.4.4 Electrical and Thermal Performance Analysis of System 1 With Six PV Strings Connected in Series Without Concentrator Present
 6.4.5 Electrical and Thermal Performance Analysis of System 1 Without Concentrator For a Single PV String
 6.4.6 Electrical and Thermal Performance Analysis of a Flat Non-Concentrating PV Panel and an ACPPVC-50 Panel Mounted Vertically for Five PV Strings Connected in Series
 6.4.7 Electrical and Thermal Performance Analysis of a Flat non-concentrating PV Panel and an ACPPVC-50 Concentrating Panel Mounted at 18° to the Vertical for Four PV Strings Connected in Series
 6.4.8 Electrical and Thermal Performance Analysis of a Flat Non-Concentrating PV Panel and a Concentrating ACPPVC-50 Panel Mounted 18° to the Vertical for Five PV Strings Connected in Series
Chapter 6

6.4.9 Electrical and Thermal Performance Analysis of a Flat Non-Concentrating PV Panel and a Concentrating ACPPVC-50 Panel Mounted 18° to the Vertical With Six PV Strings Connected in Series

6.5 Conclusions

Chapter 7 Experimental Validation of the Finite Element Model and Investigation into Factors Causing the Observed Power Loss

7.1 Introduction

7.2 FE Model and Experimental Investigation of the ACPPVC-50 System

7.2.1 The External Conditions Applied for Experimental Characterisation of the ACPPVC-50 System

7.2.1.1 Solar Radiation Intensity Measurement

7.2.1.2 Ambient Temperature Measurements

7.2.1.3 Wind Speed Measurement

7.2.2 The Convective Heat Loss Coefficient Used for Validation of the ACPPVC-50 Finite Element Model

7.3 Parametric Analysis to Determine the Effect of Different Heat Transfer Coefficients on the Behaviour of an ACPPVC-50 System

7.4 Analysis of the Electrical Power Losses for the ACPPVC-50 System

7.4.1 Experimental Verification of Ohmic Loss For Two Non-Concentrating Flat Panels

7.4.2 Optical Losses at the Reflector

7.4.3 Temperature Coefficient and Hot Spot Effect

7.4.4 Mismatch Loss Between Inter Connected Solar Cells

7.5 Model Validation

7.5.1 Predicted and Experimentally Measured Temperatures

7.5.2 I-V Curves For Experiment and Simulation

7.6 Conclusions

Chapter 8 Conclusions and Recommendations for Further Work

8.1 Conclusions

8.1.1 Theoretical Investigation

8.1.1.1 Optical Simulations

8.1.1.2 Heat transfer Simulations

8.1.1.3 Electrical Simulations

8.1.2 Experimental Investigation

8.1.2.1 Indoor Experimental Investigation Using a Continuous Solar Simulator

8.1.2.2 Outdoor Experimental Investigations

8.2 Recommendations for Future Work

References

Appendix A

Appendix B
List of Figures

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Possible concentrating reflector configurations: (a) tubular absorbers with diffuse back reflectors; (b) tubular absorbers with specular cusp reflectors; (c) plane receiver with plane reflectors; (d) plane receiver with inverted absorber CPC (e) parabolic concentrator; (f) Fresnel reflector; (g) array of heliostats with a central receiver (h) asymmetric compound parabolic concentrator.</td>
<td>2</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Schematic diagram of a compound parabolic concentrator (Rabl, 1976a).</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>The angle θ used in the parametric equations of the CPC (Winston, 1978).</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>The half-angle subtended by the sun at a distance R from a concentrator with aperture area A_a and receiver area A_r (Rabl, 1985).</td>
<td>5</td>
</tr>
<tr>
<td>1.3.4.1</td>
<td>Different CPC configurations: (a) CPC with flat absorber, (b) CPC with fin, (c) CPC with “inverted vee” absorber, (d) CPC with tubular absorber (Gordon, 2001).</td>
<td>7</td>
</tr>
<tr>
<td>1.3.4.2</td>
<td>Non-imaging cusp concentrator with acceptance half angle θ_a (O’Gallagher et al., 1980).</td>
<td>8</td>
</tr>
<tr>
<td>1.3.4.3</td>
<td>Elements used to generate mirror co-ordinates for ideal non-imaging cusp concentrator (O’Gallagher and Winston, 1983).</td>
<td>8</td>
</tr>
<tr>
<td>1.3.4.4</td>
<td>Schematic detail of non-imaging cusp concentrator geometry (O’Gallagher et al., 1980).</td>
<td>9</td>
</tr>
<tr>
<td>1.3.4.1.1</td>
<td>Angular acceptaquence function of untruncated CPC, truncated CPC and CPC with mirror error δ (Rabl, 1976a).</td>
<td>9</td>
</tr>
<tr>
<td>1.3.5.1</td>
<td>Asymmetric CPC with half acceptance angle 2θ_a = φ_r + φ_l (Rabl, 1985).</td>
<td>10</td>
</tr>
<tr>
<td>1.3.5.1.1</td>
<td>Schematic cross section of full version RFPC (Kienzlen et al., 1988).</td>
<td>11</td>
</tr>
<tr>
<td>1.3.5.1.2</td>
<td>Schematic cross section of straightened version RFPC (Kienzlen et al., 1988).</td>
<td>11</td>
</tr>
<tr>
<td>1.3.5.1.3</td>
<td>An ideal extreme asymmetrical concentrator (EAC) (Smith, 1976).</td>
<td>12</td>
</tr>
<tr>
<td>1.3.5.1.4</td>
<td>A nearly ideal EAC having the receiving tube well exposed to directions within the acceptance angle (Mills & Giutronich, 1979).</td>
<td>12</td>
</tr>
<tr>
<td>1.3.5.1.5</td>
<td>Stationary ‘Sea Shell’ collector with variable concentrations, with maximum output in the summer (Rabl, 1976b).</td>
<td>12</td>
</tr>
<tr>
<td>1.3.5.1.6</td>
<td>Stationary ‘Sea Shell’ collector with variable concentrations, with maximum output in the winter (Rabl, 1976b).</td>
<td>12</td>
</tr>
<tr>
<td>1.3.5.1.7</td>
<td>Section of the stand-alone MaReCo for Stockholm conditions. Aperture tilt 30°. Optical axes 20 and 65° defined from the horizon (Adsten, 2002).</td>
<td>13</td>
</tr>
<tr>
<td>1.3.5.1.8</td>
<td>Section of a roof integrated MaReCo design for a roof angle of 30°. Optical axis perpendicular to the cover glass (Adsten, 2002).</td>
<td>13</td>
</tr>
</tbody>
</table>
1.3.6.1 Energy collected per month and m2 of the aperture surface for the symmetric concentrating (flood) and the flat (dashed line) covers against the tilt angle ψ from the horizontal. The covers are located in London, UK (52°N) and facing south ($\gamma=0^\circ$ and $\beta=0^\circ$) (Zacharopoulos et al., 2000).

1.3.6.2 Schematic diagram of a solar mini-dish photovoltaic concentrator (Feuermann and Gordon, 2001).

1.3.6.1.1 Transmission electron microscopy image of a single InAs quantum dot grown on GaAs. The dot’s height is 36Å and its width is 24.5 nm (Sarney et al., 2002).

1.3.7.1 Thermal network for asymmetric compound parabolic concentrator (Adapted from Rabl, 1985).

1.3.7.2 The theoretically calculated isothermal plots and velocity vector diagrams for a 60$^\circ$ acceptance half angle CPC inclined at 0, 15, and 30$^\circ$ to the horizontal (Eames and Norton, 1993b).

1.3.7.3 Schematic diagram of the 30$^\circ$ acceptance half-angle CPC augmented with a reverse flat plate absorber and the locations of thermocouples employed to verify the comprehensive unified model (Eames et al., 2001).

1.4.1 Direct and terrestrial component of solar energy spectrum at AM0 and standard AM 1.5 (Duffie and Beckman, 1991).

1.4.2 The spectral response characteristics of different types of solar cell (Field, 1997).

1.5.1.1.1 Cross section of a solar cell construction (Kazmerski, 1997).

1.5.1.1.2 Evolution of silicon solar cell designs, showing device cross-sections: (a) p-n junction; (b) metal-insulator, n-type cell (MINP); (c) passivated-emitter solar cell (PESC); (d) point-contact cell; (e) bifacial solar cell (Kazmerski, 1997).

1.6.1.1 Past and projected future development of the worldwide PV for the years 1980 to 2010 (cells and modules together; Butz, 1999).

1.6.1.2 Country wise total photovoltaic market capacity in the world (ETSU, 1998).

1.6.1.3 Cumulative total of UK installed power (kWp) in photovoltaic market applications (ETSU, 1999).

1.6.2.1.1 Building rooftop integrated photovoltaics: (a) frame mounted panel on a flat roof, (b) ballast mounted panels with clear glazed rear (Sick and Erge, 1996).

1.6.2.2.1 Applications of photovoltaics onto building walls: (a) vertical curtain wall i.e. PV systems are integrated into the vertical wall with opaque PVs and semitransparent PVs, (b) sawtooth vertical curtain wall i.e. vertical curtain wall with opaque PVs or semi transparent PVs (Sick and Erge, 1996).

1.6.2.2.2 Applications of photovoltaics onto building walls: (a) sawtooth curtain wall i.e. PV system are integrated into the vertical wall with opaque PVs (b) PV accordion curtain wall i.e. PV ‘accordion’ profiled curtain wall with opaque PVs (Sick and Erge, 1996).

1.6.2.2.3 Applications of Photovoltaics onto building walls: (a) PV slopping curtain wall i.e. PV system are integrated into the slopped wall with opaque PVs and semitransparent PVs, (b) PV slopping/stepped curtain wall i.e. slopping/stepped curtain wall contains opaque PVs or semi transparent PVs (Sick and Erge, 1996).
1.7.1 Model for PV panel integrated into a building façade (Moortz and Bezian, 1996).

1.7.1.1 Schematic cross section of PV cladding (Brinkworth et al., 2000).

1.7.4.1 Schematic diagram of a generic modelled for thermal regulation of PV wall and roof (Brinkworth et al., 1997).

2.1.1 A ray which enters an ACPC collector with a flat absorber (PV) either: (i) strikes the absorber (PV) with no reflections, (ii) strikes the absorber (PV) after a number of reflections (iii) leaves the collector without reaching the absorber (PV) after a number of reflections.

2.2.1.1 A solar ray incident on the glass aperture carries energy E_{in}. A part of the ray is reflected back from the glass surface, a part is absorbed and the rest is reflected from the outer surface.

2.2.2.1 Rays intersect at the reflector, (i) a part is absorbed and (ii) the rest is reflected, onto the absorber (PV) or re-emitted at the aperture.

2.3.1 Three alternative skyward angular distributions of diffuse solar radiation (Prapas et al., 1987a).

2.5.1 Incident angle definition used for the ACPPVC. The incidence angle is measured in a clock-wise direction from the vertical.

2.6.1.1 Ray trace diagrams for (a) untruncated ACPPVC-50, (b) truncated ACPPVC-50, (c) untruncated ACPPVC-60 and (d) truncated ACPPVC-60. No of incoming rays were 50 and the solar radiation intensity incident at an angle of 60°.

2.6.2.1 Ray trace diagram for untruncated ACPPVC-50 system for solar incidence angles of (a) 45° (b) 60° (c) 75° and (d) 89.5° (to the vertical) on the glass aperture cover. 50 rays are included for each ray trace diagram.

2.6.3.1 Examples of ray trace diagram for truncated ACPPVC-50 for solar incidence angles on the aperture cover glass of (a) 42°, (b) 60°, (c) 75° and (d) 89.5° to the vertical. 50 rays are included for each ray trace diagram.

2.6.4.1 Ray trace diagrams for an ACPPVC-50 with the reflector profile approximated by different numbers of planar reflector elements (a) 3 elements, (b) 5 element, (c) truncated 3 element, and (d) truncated 5 element system. For each illustrative ray trace diagram the solar incidence angle was 60° to the vertical.

2.6.5.1 Ray trace diagrams for (a) 0° (b) 5°, (c) 10° inclined untruncated ACPPVC-50 and (d) a 10° inclined truncated ACPPVC-50. 50 rays are included for each ray trace diagram.

2.7.1.1 Angular acceptance and optical efficiency for an untruncated ACPPVC-50.

2.7.1.2 Variation of angular acceptance and optical efficiency for an untruncated ACPPVC-60.

2.7.1.3 Variation of angular acceptance and optical efficiency for a truncated ACPPVC-50.

2.7.1.4 Variation of angular acceptance and optical efficiency of an untruncated ACPPVC-50 with reflectors comprised of 5-planar elements.
2.7.1.5 Variation of angular acceptance and optical efficiency of an untruncated ACPPVC-50 with reflectors comprised of 3-planar elements.

2.7.1.6 Variation of angular acceptance and optical efficiency of a truncated ACPPVC-50 with reflectors comprised of 5-planar elements.

2.7.1.7 Variation of angular acceptance and optical efficiency of a truncated ACPPVC-50 with reflectors comprised of 3-planar elements.

2.7.1.8 Variation of optical efficiency with solar incidence angle and number of planar elements used to comprise reflector profiles.

2.7.1.9 Variation of angular acceptance and optical efficiency for ten degree inclined untruncated ACPPVC-50 for different solar incidence angle.

2.7.1.10 Variation of angular acceptance and optical efficiency of a ten degree inclined truncated ACPPVC-50.

2.8.1.1.1 Energy distribution across the aperture of a truncated ACPPVC-50 for solar incidence angles of 42°, 60° and 89.5° to the vertical. The incident solar radiation intensity was 1000 Wm$^{-2}$.

2.8.1.2.1 Energy absorbed along the lower reflector of a truncated ACPPVC-50 for solar incidence angles of 42°, 60°, 75° and 89.5°. The incident solar radiation intensity was 1000 Wm$^{-2}$.

2.8.1.2.2 Energy absorbed along the upper reflector of a truncated ACPPVC-50 for solar incidence angles of 60°, 75° and 89.5°. The incident solar radiation intensity was 1000 Wm$^{-2}$.

2.8.1.2.3 Predicted energy absorbed at the reflectors of a truncated ACPPVC-50 inclined at 10° and 0° to the vertical. The incident solar radiation intensity was 1000 Wm$^{-2}$ incident at an angle of 60° to the vertical.

2.8.1.3.1 Energy distribution across the photovoltaic absorber of a truncated ACPPVC-50 for solar incidence angles of 42°, 60°, 75° and 89.5° to the vertical. The incident solar radiation intensity was 100 Wm$^{-2}$.

2.8.1.3.2 Absorbed energy at the PV absorber of a truncated ACPPVC-50 with reflectors comprised of three and five planar elements. The incident solar radiation intensity was 1000 Wm$^{-2}$ incident at an angle of 60° to the vertical.

2.8.1.3.3 Absorbed energy at the absorber of an untruncated ACPPVC-50 inclined at 10° and 0° to the vertical. The incident solar radiation intensity was 1000 Wm$^{-2}$ incident at an angle of 65° to the vertical.

2.8.1.3.4 Absorbed energy at the PV absorber of a truncated ACPPVC-50 inclined at 10° and 0° to the vertical. The incident solar radiation intensity was 1000 Wm$^{-2}$ incident at an angle of 65° to the vertical.

2.8.2.1.1 Energy distribution of the truncated ACPPVC-50 along the aperture cover for diffuse solar radiation. The incident diffuse solar radiation intensity was 100 Wm$^{-2}$.

2.8.2.2.1 Predicted energy absorbed at the lower reflector for three diffuse solar radiation distributions. The incident diffuse solar radiation intensity was 100 Wm$^{-2}$.

2.8.2.2.2 Predicted energy absorbed at the upper reflector for three diffuse solar radiation distributions. The incident diffuse solar radiation intensity was 100 Wm$^{-2}$.
2.8.2.3.1 Predicted energy absorbed at the photovoltaic absorber for three different diffuse solar radiation distributions. The incident diffuse solar radiation intensity was 100 Wm$^{-2}$.

3.3.1 Asymmetric compound parabolic concentrator for building integration in the UK with acceptance-half angles of 0° and 50°.

3.4.1.1 Aperture cover specification for the ACPPVC-50 system.

3.4.2.1 Computer generated asymmetric compound parabolic reflector profile (a) untruncated system (pointing out the truncation line) (b) truncated system.

3.4.2.1.1 Aluminium reflector support for the asymmetric compound parabolic photovoltaic concentrator.

3.4.2.1.2 Modified reflector support design for outdoor experimental characterisation of the ACPPVC-50.

3.4.4.1 Back plate design for indoor experimental characterisation of an ACPPVC-50 system.

3.4.4.2 Cross-sectional view of back plate and three trough reflector support.

3.4.4.3 Top view of rear aluminium plate of the ACPPVC-50 used for outdoor experimental characterisation.

3.4.4.4 Cross-sectional view of five trough reflector support.

3.4.5.1 Adjustable wooden supporting frame for the ACPPVC-50 system: (a) base frame (b) top frame with 10-mm gap between reflector end and glass cover (c) top frame with 20-mm gap between reflector end and glass (d) top frame with 30-mm gap between reflector end and glass cover.

3.5.1.1 Top and bottom reflector mould

3.5.2.1 A 6-mm thick aluminium reflector support.

3.5.3.1 Construction of the rear aluminium back plate. Four aluminium plates of 3mm thick were screwed to a single aluminium plate.

3.5.3.2 Locating reflector supports on to the rear aluminium back plate.

3.5.3.3 Reflector supports placed on the rear aluminium back plate.

3.5.4.1 Solar cell connections (a) series connection to increase voltage (b) parallel connection to increase current (c) combination of series and parallel connections to increase current and voltage.

3.5.4.2 Soldering of front connection of solar cells.

3.5.4.3 Alignment and interconnection of individual solar sells in series. The solar cells were located between two reflector supports during soldering to ensure their accurate positioning.

3.5.5.1 Attachment of mirror reflector to the reflector support. The mirror was attached to a 0.0003 m thick stainless steel back plate.
3.5.5.2 Asymmetric compound parabolic photovoltaic concentrator with mirror reflectors attached to the rear aluminium back plate.

3.5.6.1 Line up of solar cells on the aluminium back plate. Individual solar cells are connected in series.

3.5.6.2 Encapsulation of solar cells with EVA in a vacuum oven.

3.5.6.3 Solar cells encapsulated on to the aluminium back plate clearly showing the replaced solar cell.

3.5.7.1 Placement of detachable reflector troughs on the aluminium back plate with the encapsulated PV cells.

3.5.7.2 The ACPPVC-50 used for outdoor experimental characterisation without the wooden frame or cover glass.

3.5.8.1 Asymmetric compound parabolic photovoltaic concentrator with wooden frame.

3.5.8.2 Internal electrical connections of solar cells through the wooden frame. Each series of solar cells are connected individually to each electrical connector.

3.6.1.1 Fabricated asymmetric compound parabolic photovoltaic concentrator used for indoor experimental characterisation.

3.6.2.1 Top view of the ACPPVC-50 system used for outdoor experimental characterisation.

3.6.2.2 The full Asymmetric compound parabolic photovoltaic concentrator system.

3.6.2.3 Side view of the asymmetric compound parabolic photovoltaic concentrator used for outdoor experimental characterisation.

3.6.2.4 The plan view of the asymmetric compound parabolic photovoltaic concentrator used for outdoor experimental characterisation.

3.6.2.6 The plan view of the 2nd ACPPVC-50 with temperature sensors inside the system.

4.2.2.1 Schematic diagram of a three trough asymmetric compound parabolic photovoltaic concentrator showing energy transfer mechanisms.

4.2.3.1 Example of finite element mesh employed for the simulation of a single trough ACPPVC-50.

4.2.3.2 Example of finite element mesh employed for the simulations of a five trough ACPPVC-50 (a) enlargement of reflective fins, (b) enlargement of reflector back plate junction (c) enlargement of inter-reflector space.

4.3.1 The theoretically predicted isotherms and velocity vectors for a single trough ACPPVC-50 with boundary conditions given in figure 4.2.2.1. The isotherms are at 1°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.05 ms⁻¹. The solar radiation intensity was (a) 200, (b) 400, (c) 600, (d) 800, (e) 1000 and (f) 1200 Wm⁻² incident at an angle 60° to the aperture cover.

4.3.2 Predicted temperature and air velocity in the horizontal x-direction from the midpoint of the PV cell to the glass aperture cover: (a) temperature, (b) velocity.
4.4.1 The theoretically predicted isotherms and velocity vectors for a three trough ACPPVC-50 with boundary conditions given in figure 4.2.2.1. The space between the reflector and the aperture cover is 10-mm. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.1 ms\(^{-1}\). The solar radiation was 1000 Wm\(^{-2}\) incident at an angle 60° to the aperture cover.

4.4.2 Enlarged view of the predicted isotherms and velocity vectors for a three trough ACPPVC-50 shown in figure 4.4.1 with boundary conditions given in figure 4.2.2.1: (a) lower trough, (b) top trough.

4.4.3 Change of temperature and air velocity inside each individual trough of the three trough ACPPVC-50 from the mid point of the PV cell to the aperture cover: (a) temperature, (b) y-component velocity.

4.5.1.1 The predicted isotherms for a five trough ACPPVC-50 with the boundary conditions given in figure 4.2.2.1 for solar radiation intensities of (a) 200 Wm\(^{-2}\), (b) 400 Wm\(^{-2}\) (c) 600 Wm\(^{-2}\) (d) 800 Wm\(^{-2}\) (e) 1000 Wm\(^{-2}\). The air gap between the concentrator and aperture cover is 20-mm and isotherms are at 1°C intervals.

4.5.1.2 Enlarged views of the predicted isotherms and velocity vectors for a five trough ACPPVC-50 for (a) 1\(^{st}\) trough (b) 5\(^{th}\) trough, with boundary conditions given in figure 4.2.2.1. The incident solar radiation at an angle 60° to the aperture cover was 200 Wm\(^{-2}\). The isotherms are at 1°C intervals and velocity vectors are scaled to the reference vector of magnitude 0.1 ms\(^{-1}\).

4.5.1.3 Enlarged views of the predicted isotherms and velocity vectors for a five trough ACPPVC-50 for (a) 1\(^{st}\) trough (b) 3\(^{rd}\) trough, with boundary conditions given in figure 4.2.2.1. The incident solar radiation at an angle 60° to the aperture cover was 400 Wm\(^{-2}\). The isotherms are at 1°C intervals and velocity vectors are scaled to the reference vector of magnitude 0.1 ms\(^{-1}\).

4.5.1.4 Enlarged views of the predicted isotherms and velocity vectors for a five trough ACPPVC-50 for (a) 2\(^{nd}\) trough (b) 4\(^{th}\) trough, with boundary conditions given in figure 4.2.2.1. The incident solar radiation at an angle 60° to the aperture cover was 600 Wm\(^{-2}\). The isotherms are at 1°C intervals and velocity vectors are scaled to the reference vector of magnitude 0.1 ms\(^{-1}\).

4.5.1.5 Enlarged views of the predicted isotherms and velocity vectors for a five trough ACPPVC-50 for (a) 3\(^{rd}\) trough (b) 5\(^{th}\) trough, with boundary conditions given in figure 4.2.2.1. The incident solar radiation at an angle 60° to the aperture cover was 800 Wm\(^{-2}\). The isotherms are at 1°C intervals and velocity vectors are scaled to the reference vector of magnitude 0.1 ms\(^{-1}\).

4.5.1.6 Enlarged views of the predicted isotherms and velocity vectors for a five trough ACPPVC-50 for (a) 4\(^{th}\) trough (b) 5\(^{th}\) trough, with boundary conditions given in figure 4.2.2.1. The incident solar radiation at an angle 60° to the aperture cover was 1000 Wm\(^{-2}\). The isotherms are at 1°C intervals and velocity vectors are scaled to the reference vector of magnitude 0.1 ms\(^{-1}\).

4.5.1.7 Change of (a) temperature, (b) velocity inside ACPPVC-50 in the vertical direction for incident solar radiation intensities of 200, 400, 600, 800 and 1000 Wm\(^{-2}\). The distance is measured between the middle of the lower reflector of the lower most trough and the middle of the upper reflector of the uppermost trough.

4.5.1.8 The predicted average PV cell temperature and average aperture cover temperature for different solar radiation intensities incident at the aperture cover.
4.5.2.1 The predicted isotherms for a five trough ACPPVC-50 with a 10-mm wide front channel between the aperture cover and the reflectors with an inlet air velocity of (a) 0.0 ms\(^{-1}\), (b) 0.2 ms\(^{-1}\), (c) 0.4 ms\(^{-1}\), (d) 0.6 ms\(^{-1}\), (e) 0.8 ms\(^{-1}\), (f) 1.0 ms\(^{-1}\). The isotherms are at 2°C intervals and the incident solar radiation was 1000 Wm\(^{-2}\) at the aperture cover.

4.5.2.2 Enlarged view of predicted isotherms and velocity vectors for a 10-mm wide front air channel with no inlet velocity i.e. natural convection for (a) 1\(^{st}\) trough (b) near to outlet channel. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.2 ms\(^{-1}\).

4.5.2.3 Enlarged view of predicted isotherms and velocity vectors for a 10-mm wide front air channel with inlet velocity of 0.2 ms\(^{-1}\) for (a) 1\(^{st}\) trough (b) outlet channel. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.25 ms\(^{-1}\).

4.5.2.4 Enlarged view of predicted isotherms and velocity vectors for a 10-mm wide front air channel with inlet velocity of 0.4 ms\(^{-1}\) for (a) 2\(^{nd}\) trough (b) 4\(^{th}\) trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.5 ms\(^{-1}\).

4.5.2.5 Enlarged view of predicted isotherms and velocity vectors for a 10-mm wide front air channel with inlet velocity of 0.6 ms\(^{-1}\) for (a) 3\(^{rd}\) trough (b) 4\(^{th}\) trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.75 ms\(^{-1}\).

4.5.2.6 Enlarged view of predicted isotherms and velocity vectors for a 10-mm wide front air channel with inlet velocity of 0.8 ms\(^{-1}\) for (a) 1\(^{st}\) trough (b) 5\(^{th}\) trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 1.0 ms\(^{-1}\).

4.5.2.7 Enlarged view of predicted isotherms and velocity vectors for a 10-mm wide front air channel with inlet velocity of 1.0 ms\(^{-1}\) for (a) 1\(^{st}\) trough (b) 5\(^{th}\) trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 1.2 ms\(^{-1}\).

4.5.2.8 Change of (a) temperature, (b) velocity inside an ACPPVC-50 in the horizontal direction between middle point of 3\(^{rd}\) solar cell to the aperture cover for different inlet air velocities.

4.5.2.9 The predicted isotherms of five trough ACPPVC-50 with a 20-mm wide front channel adjacent to the aperture cover at inlet air velocity of (a) 0.0 ms\(^{-1}\), (b) 0.2 ms\(^{-1}\), (c) 0.4 ms\(^{-1}\), (d) 0.6 ms\(^{-1}\), (e) 0.8 ms\(^{-1}\), (f) 1.0 ms\(^{-1}\). The isotherms are at 2°C intervals and incident solar radiation was 1000 Wm\(^{-2}\) at the aperture cover.

4.5.2.10 Enlarged view of isotherms and velocity vectors for a 20-mm wide front air channel with no flow i.e. natural convection for (a) 1\(^{st}\) trough (b) near to outlet channel. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.2 ms\(^{-1}\).

4.5.2.11 Enlarged view of isotherms and velocity vectors for a 20-mm wide front air channel with inlet velocity of 0.2 ms\(^{-1}\) for (a) 1\(^{st}\) trough (b) outlet channel. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.25 ms\(^{-1}\).
4.5.2.12 Enlarged view of isotherms and velocity vectors for a 20-mm wide front air channel with inlet velocity of 0.4 m/s for (a) 1st trough (b) 5th trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.5 m/s.

4.5.2.13 Enlarged view of isotherms and velocity vectors for a 20-mm wide front air channel with inlet velocity of 0.6 m/s for (a) 1st trough (b) 4th trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.75 m/s.

4.5.2.14 Enlarged view of isotherms and velocity vectors for a 20-mm wide front air channel with inlet velocity of 0.8 m/s for (a) 2nd trough (b) 4th trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 1.0 m/s.

4.5.2.15 Enlarged view of isotherms and velocity vectors for a 20-mm wide front air channel with inlet velocity of 1.0 m/s for (a) 3rd trough (b) 5th trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 1.2 m/s.

4.5.2.16 Change of (a) temperature, (b) velocity inside ACPPVC-50 in the horizontal direction from the middle of the 3rd solar cell to the aperture cover for different inlet air velocities.

4.5.2.17 The predicted isotherms for a five trough ACPPVC-50 with a 30-mm wide front channel near to the aperture cover at inlet air velocity of (a) 0.0 m/s, (b) 0.2 m/s, (c) 0.4 m/s, (d) 0.6 m/s, (e) 0.8 m/s, (f) 1.0 m/s. The isotherms are at 2°C intervals and incident solar radiation was 1000 W/m² at the aperture cover.

4.5.2.18 Enlarged view of the isotherms and velocity vectors for a 30-mm wide front air channel with no inlet velocity i.e. natural convection for (a) inlet (b) near to outlet channel. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.2 m/s.

4.5.2.19 Enlarged view of the isotherms and velocity vectors for a 30-mm wide front air channel with inlet velocity of 0.2 m/s for (a) 2nd trough (b) outlet channel. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.4 m/s.

4.5.2.20 Enlarged view of the isotherms and velocity vectors for a 30-mm wide front air channel with inlet velocity of 0.4 m/s for (a) 3rd trough (b) 5th trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.5 m/s.

4.5.2.21 Enlarged view of the isotherms and velocity vectors for a 30-mm wide front air channel with inlet velocity of 0.6 m/s for (a) 2nd trough (b) 4th trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 0.75 m/s.

4.5.2.22 Enlarged view of the isotherms and velocity vectors for a 30-mm wide front air channel with inlet velocity of 0.8 m/s for (a) 2nd trough (b) 5th trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 1.0 m/s.

4.5.2.23 Enlarged view of the isotherms and velocity vectors for a 30-mm wide front air channel with inlet velocity of 1.0 m/s for (a) 1st trough (b) 5th trough. The isotherms are at 2°C intervals and the velocity vectors are scaled to the reference vector of magnitude 1.2 m/s.
4.5.2.24 Predicted (a) temperature, (b) velocity inside an ACPPVC-50 in the horizontal direction between the middle node of the 3rd solar cell to the aperture cover for different inlet air velocities.

4.5.2.25 Predicted average PV temperature with inlet air velocity for different front air gap adjacent to the aperture cover.

4.5.3.1 The isotherms of a five trough ACPPVC-50 with 10-mm front and rear channel open to the ambient for inlet air velocities of (a) 0.1 ms⁻¹, (b) 0.5 ms⁻¹, (c) 1.0 ms⁻¹. The isotherms are at 2°C intervals and incident solar radiation was 1000 Wm⁻² at the aperture cover glass.

4.5.3.2 The isotherms of a five trough ACPPVC-50 with 20-mm front and rear channel open to the ambient for inlet air velocities of (a) 0.1 ms⁻¹, (b) 0.5 ms⁻¹, (c) 1.0 ms⁻¹. The isotherms are at 2°C intervals and incident solar radiation was 1000 Wm⁻² at the aperture cover glass.

4.5.3.3 Enlarged view of isotherms and velocity vectors of the 5th trough for a five trough ACPPVC-50 with front and rear air channels of width (a) 10 mm (b) 20 mm. The isotherms are at 2°C intervals and velocity vectors are scaled to the reference vector of magnitude 0.25 ms⁻¹. The incident solar radiation intensity was 1000 W m⁻² at the aperture cover glass.

4.5.3.4 Predicted (a) temperature, (b) velocity inside the ACPPVC-50 in the horizontal direction through the middle of the 3rd solar cell to the aperture cover for different inlet air velocities with a 10-mm wide front and rear air channel.

4.5.3.5 Predicted (a) temperature, (b) velocity inside the ACPPVC-50 in the horizontal direction through the middle of the 3rd solar cell to the aperture cover for different inlet air velocities with a 20-mm wide front and rear air channel.

4.6.2.1 Predicted I-V characteristics of the ACPPVC-50 for incident solar radiation intensities of 200, 400, 600, 800 and 1000 Wm⁻² for a solar cell temperature of 25°C.

4.6.2.2 Predicted I-V characteristics of ACPPVC-50 for different solar cell temperature for the solar radiation intensity of 1000 Wm⁻².

5.2.1.1 The continuous solar simulator used for the indoor experimental characterisation of the developed asymmetrical compound parabolic photovoltaic concentrator unit.

5.2.1.2 Physical and geometrical characteristics of lamps used in the continuous solar simulator (Anon, 2001i).

5.2.1.3 Schematic diagram of the continuous solar simulator.

5.2.1.4 The incident solar flux intensity for the continuous solar simulator when illuminating different areas (a) horizontally, (b) vertically.

5.2.2.1 Spectral distributions for HMI 1200 W/GS lamp used in continuous solar simulator for 100% and 60% rated wattage (Anon, 2001i).

5.3.1 Standard circuit diagram for I-V curve characterisation of PV system (Komp, 1995).

5.3.2 Modified circuit diagram for continuous I-V measurement of photovoltaic system under illumination conditions.
5.5.1 Experimental characterisation of an ACPPVC-50 using the solar simulator.

5.5.2 Enlarged view of the ACPPVC-50 used for indoor experimental characterisation.

5.5.1.1 I-V characteristics for a non-concentrating flat panel with three solar cells connected in series for different incident radiation intensities. The ambient room temperature was 20ºC for all measurements and the solar incidence angle was 0º.

5.5.1.2 I-V characteristics of the ACPPVC-50 for different incident radiation intensities. The ambient room temperature was 20ºC for all measurements and the solar incidence angle was 0º.

5.5.1.3 I-V characteristics for flat non-concentrating panel and the ACPPVC-50 for incident radiation intensity of 250 Wm\(^{-2}\). Room temperature was 20ºC for all the measurements and the radiation incidence angle was 0º.

5.5.1.4 I-V characteristics for the ACPPVC-50 for inclination angles of 0, 5 and 10º. The ambient temperature was 20ºC for all the measurements and the radiation incidence angle was perpendicular to the wooden mounting stand.

5.5.1.5 Indoor experimental characterisation of three flat non-concentrating PV panels using a relay switching card.

5.5.1.6 I-V characteristics of Panel 1 for solar radiation intensity of 200 Wm\(^{-2}\). The ambient room temperature was 20ºC and the radiation incidence angle was 0º.

5.5.1.7 I-V characteristics of Panel 3 for solar radiation intensity of 200 Wm\(^{-2}\). The ambient room temperature was 20ºC and the radiation incidence angle was 0º.

5.5.1.8 I-V characteristics of Panel 4 for solar radiation intensity of 200 Wm\(^{-2}\). The ambient room temperature was 20ºC and the radiation incidence angle was 0º.

5.5.2.1 Variation of instantaneous power with sweep voltage for different radiation intensities of Panel 1. The ambient room temperature was 20ºC and the radiation incidence angle was perpendicular to the PV surface.

5.5.2.2 Variation of instantaneous power with sweep voltage for different radiation intensities of Panel 2. The ambient room temperature was 20ºC and the radiation incidence angle was perpendicular to the PV surface.

5.5.3.1 Frontal view of the location of temperature sensors on the rear aluminium back plate of the three trough ACPPVC-50.

5.5.3.2 Measured temperatures for the three trough ACPPVC-50 with time of exposure to a constant incident radiation of 250 Wm\(^{-2}\).

5.5.3.3 I-V characteristics of the ACPPVC-50 (Panel 2) for different solar cell temperatures at solar radiation intensity of 250 Wm\(^{-2}\).

5.5.3.4 I-V characteristics of the 9-mm wide (Panel 4) solar cell non-concentrating flat panel for different solar cell temperatures for a solar radiation intensity of 250 Wm\(^{-2}\).

5.5.4.1 The variation of fill factor for the ACPPVC-50 with incident solar radiation intensities at constant solar cell temperature of 25ºC.

5.5.4.2 The variation of fill factor with solar cell temperature for Panel 3 at a solar incident radiation intensity of 250 Wm\(^{-2}\).
5.6.1 The variation of electrical conversion efficiency of Panel 1 and Panel 2 for different solar incident radiation intensities.

5.7.1 Variation of power with instantaneous voltage for non-concentrating flat PV panel (Panel 1) and ACPPVC-50 system (Panel 2) at incident solar radiation intensity of 250 Wm\(^{-2}\).

5.7.2 Variation of power with instantaneous voltage for Panel 2 (ACPPVC-50) for different PV cell temperatures with radiation intensity of 250 Wm\(^{-2}\) incident perpendicular to the PV surface.

5.7.3 Variation of power with instantaneous voltage for Panel 4 for different PV cell temperatures with radiation intensity of 250 Wm\(^{-2}\) incident perpendicular to the PV surface.

5.7.4 Variation of output power with output voltage for different inclination angle of the ACPPVC-50 system with solar radiation of 250 Wm\(^{-2}\).

6.2.1 Fabricated ACPPVC-50 systems for outdoor experimental characterisation: (a) System 1 clearly indicating the location of the replaced solar cell (b) System 2.

6.3.1 Block diagram of equipment for testing of PV systems.

6.3.2 Electrical circuit connections used for measuring current and voltage generated by the photovoltaic systems through a 40-channel switching card.

6.3.3 Thermocouple connections at the reflector back plate and at either side of solar cell edge to measure reflector and solar cell temperature respectively.

6.3.4 Thermocouple locations at which the aluminium back plate temperature was measured for System 1.

6.3.5 Thermocouple locations at which the rear aluminium back plate temperature was measured for System 2.

6.4.1 System 1 mounted at an angle 18º from the vertical.

6.4.2 A non-concentrating and an ACPPVC-50 mounted at an inclination angle of 30º to the vertical.

6.4.3 A non-concentrating and an ACPPVC-50 mounted vertically.

6.4.1.1 Measured solar radiation and temperatures for the ACPPVC-50 on the 21st August 2002.

6.4.1.2 (a) I-V curves at different times for different incident solar radiation intensities, (b) variation of short circuit current with solar incidence angle.

6.4.1.3 Shadow created on the right-end solar cell by the wooden frame at 11:54:32 on 21st August 2002.

6.4.1.4 Shadow created on the left-end solar cell by the wooden frame at 14:55:39 on 21st August 2002.

6.4.1.5 Instantaneous power output with voltage developed by System 1 at different times for different incident solar radiation intensities.

6.4.1.6 Change in open circuit voltage and short circuit current with time for System 1.
6.4.1.7 Shadow cast by the wooden frame onto the solar cells at different times of the day.

6.4.1.8 Maximum power output and efficiency of System 1 with incident solar radiation intensity.

6.4.1.9 Diurnal variation of cover glass, aluminium back plate temperature and solar radiation.

6.4.1.10 Measured temperature contours at the aluminium back plate at time (a) 10:30 (b) 12:30 (c) 14:30 (d) 16:30 on the 21st of August 2002.

6.4.1.11 Diurnal variation of solar radiation and back plate temperature at thermocouple positions ‘t5’ and ‘t17’.

6.4.1.12 Diurnal variation of solar radiation and aluminium back plate temperature at thermocouple positions 12 and 15 as shown in figure 6.3.4.

6.4.1.13 Diurnal variation of solar radiation and the aluminium back plate temperature at thermocouple locations t11, t12 and t13 as shown in figure 6.3.4.

6.4.1.14 Diurnal variation of solar radiation and temperature of the aluminium back plate at thermocouple locations t6, t9, t12, t15 and t18 as shown in figure 6.3.4.

6.4.1.15 Measured temperature contours of the aluminium back plate at time 14:50 on the 21st of August 2002.

6.4.1.16 Diurnal variation of solar radiation, top and bottom aperture cover glass temperature for System 1.

6.4.1.17 Variation of average back plate temperature and ambient temperature with time for System 1. All eight PV strings were connected in series.

6.4.2.1 The change of solar radiation with time for nine days (a) 9th to 13th August (b) 15th to 20th August. The solar radiation was measured at 55 second intervals.

6.4.2.2 Variation of maximum power generated by System 1 with incident solar radiation intensity.

6.4.2.3 Hourly variation of maximum power of System 1 for nine days in August 2002.

6.4.3.1 Variation of solar radiation, ambient temperature, cover glass temperature and aluminium back plate temperature with time for System 1 with six PV strings connected in series.

6.4.3.2 The I-V curves for different incident solar radiation intensities for System 1 with six PV strings were connected in series.

6.4.3.3 Output voltage vs. power generated for System 1 with six PV strings connected in series.

6.4.3.4 Variation of efficiency and maximum power generated with incident solar radiation by System 1 when six PV strings were connected in series.

6.4.3.5 Variation in fill factor with incident solar radiation for System 1 with six PV strings connected in series.

6.4.3.6 Variation in temperatures and incident solar radiation with time for System 1 with six PV strings connected in series.
6.4.3.7 Measured temperature contours of the aluminium back plate at time (a) 14:00 (b) 15:00 (c) 16:00 (d) 18:00, on the 30th of August 2002.

6.4.4.1 Variation of solar radiation and wind speed with time on the 2nd of September 2002.

6.4.4.2 I-V curves at different solar radiation intensities for System 1 with six PV strings connected in series and the concentrator system removed.

6.4.4.3 Variation of short circuit current and open circuit voltage with time for System 1 with six PV strings connected in series and concentrator system removed.

6.4.4.4 Variation of efficiency and maximum power output from System 1 with incident solar radiation, when six PV strings were connected in series and the concentrator system removed.

6.4.4.5 Variation of maximum power and efficiency with solar radiation intensity with six PV strings were connected in series for System 1 and the concentrator system removed on the 2nd of September 2002.

6.4.4.6 Variation of solar radiation, ambient temperature, cover glass temperature and average back plate temperature with time when six PV strings were connected in series and the concentrator system removed.

6.4.4.7 Diurnal variation of solar radiation and temperatures on the aluminium back plate for System 1 without concentrators when six PV strings were connected in series.

6.4.4.8 Diurnal variation of solar radiation, maximum and minimum back plate temperatures for System 1 without concentrators when six PV strings were connected in series. Thermocouples were located at the position of ‘t8’ and ‘t15’ as shown in figure 6.3.4.

6.4.5.1 I-V curve for a single PV string without a concentrator for different solar radiation intensities. The string was the 5th from the left side as shown in figure 6.3.4.

6.4.5.2 Power curve with voltage developed by a single string of five PV cells.

6.4.5.3 Variation of fill factor with incident solar radiation for System 1 without concentrator. A single PV string was considered for this measurement.

6.4.5.4 Variation of open circuit voltage and short circuit current with incident solar radiation for a single PV string of System 1 without concentrator.

6.4.5.5 Effect of maximum output power and efficiency with incident solar radiation for a single PV string of System 1 without concentrator.

6.4.6.1 Flat non-concentrating and asymmetric compound parabolic photovoltaic concentrators under outdoor experimental characterisation at the University of Ulster. Both systems are identical with equal numbers of PV cells connected in series in each systems.

6.4.6.2 The variation of total and diffuse radiation with time on the 20th of September 2002.

6.4.6.3 Short circuit current and open circuit voltage for the flat non-concentrating and the concentrating ACPPVC-50 with time on the 20th of September 2002.

6.4.6.4 Shadow cast by the wooden frame on the top most solar cells for (a) the flat non-concentrating system and (b) the ACPPVC-50 at noon on the 20th of September 2002.
6.4.6.5 Variation of maximum power output for the flat non-concentrating and the concentrating ACPPVC-50 system with solar radiation intensity.

6.4.6.6 Effect of efficiency with incident solar radiation for the flat non-concentrating PV panel and the ACPPVC-50 system with six PV strings connected in series.

6.4.6.7 Maximum power point ratio of flat non-concentrating PV panel and the ACPPVC-50 system with incident solar radiation for six PV strings connected in series.

6.4.6.8 Diurnal variation of solar radiation and reflector substrate temperature for the ACPPVC-50. The thermocouples were connected inside the reflector troughs as shown in figure 6.3.3.

6.4.6.9 Diurnal variation of solar radiation and solar cell temperature for the ACPPVC-50. The thermocouples were connected at the edges of the solar cells as shown in figure 6.3.3.

6.4.6.10 Diurnal variation of solar radiation and aluminium back plate temperature for the ACPPVC-50 system. The thermocouples were located as shown in figure 6.3.5.

6.4.6.11 Diurnal variation of solar radiation and aluminium back plate temperature for the flat non-concentrating PV panel. The thermocouples were located as shown in figure 6.3.4.

6.4.7.1 I-V curves for different intensities of solar radiation for the flat non-concentrating system with four PV strings connected in series.

6.4.7.2 I-V curves for different intensities of solar radiation for the ACPPVC-50 system with four PV strings connected in series.

6.4.7.3 Variation of total radiation, diffuse radiation and ambient temperature with time on the 23rd of September 2002.

6.4.7.4 Variation of short circuit current and open circuit voltage for the flat non-concentrating PV panel and the concentrating ACPPVC-50 system with time. Four PV strings were connected in series for both systems.

6.4.7.5 Maximum power point for the flat non-concentrating and the concentrating ACPPVC-50 systems with incident solar radiation intensity.

6.4.7.6 Maximum power point ratio for the flat non-concentrating and the concentrating ACPPVC-50 systems with incident solar radiation intensity.

6.4.7.7 Comparison of efficiency for the flat non-concentrating and the ACPPVC-50 with incident solar radiation.

6.4.7.8 Diurnal variation of solar radiation, ambient temperature, average back plate temperature of the flat non-concentrating system, average reflector temperature of the ACPPVC-50, average solar cell temperature of the ACPPVC-50 and average back plate temperature of the ACPPVC-50.

6.4.7.9 Diurnal variation of solar radiation and back plate temperatures for the flat non-concentrating system. The thermocouples were located as shown in figure 6.3.4.

6.4.7.10 Diurnal variation of solar radiation and back plate temperatures for the ACPPVC-50. The thermocouples were located as shown in figure 6.3.5.
6.4.7.11 Measured temperature contours of the aluminium back plate at 11:30 on the 23rd of September 2002 for (a) flat non-concentrator (b) ACPPVC-50.
6.4.7.12 Measured temperature contours of the aluminium back plate at 13:30 on the 23rd of September 2002 for (a) flat non-concentrator (b) ACPPVC-50.
6.4.7.13 Measured temperature contours of the aluminium back plate at 15:30 on the 23rd of September 2002 for (a) flat non-concentrator (b) ACPPVC-50.
6.4.7.14 Measured temperature contours of the aluminium back plate at 17:30 on the 23rd of September 2002 for (a) flat non-concentrator (b) ACPPVC-50.
6.4.7.15 Diurnal variation of solar radiation and reflector substrate temperatures of the ACPPVC-50. The thermocouples were located as shown in figure 6.3.3.
6.4.7.16 Diurnal variation of solar radiation and solar cell temperatures for the ACPPVC-50. The thermocouples were located as shown in figure 6.3.3.
6.4.8.1 Total radiation, diffuse radiation and ambient temperature with time on the 21st of September 2002.
6.4.8.2 Short circuit current and open circuit voltage for the flat non-concentrating and the ACPPVC-50 system with five PV strings connected in series on the 21st of September 2002.
6.4.8.3 Maximum power point with incident solar radiation intensity for the flat non-concentrating and the ACPPVC-50 systems.
6.4.8.4 Electrical conversion efficiency with incident solar radiation intensity for the flat non-concentrating and the ACPPVC-50 systems.
6.4.8.5 Diurnal variation of maximum power point ratio with incident solar radiation intensity for the flat non-concentrating and the ACPPVC-50 systems.
6.4.8.6 Diurnal variation of solar radiation and reflector temperature of the ACPPVC-50 on the 21st of September 2002. The thermocouples were located as shown in figure 6.3.3.
6.4.8.7 Diurnal variation of solar radiation and solar cell temperatures for the ACPPVC-50 on the 21st of September 2002. The thermocouples were located as shown in figure 6.3.3.
6.4.8.8 Diurnal variation of solar radiation, aluminium back plate and cover glass temperature of the flat non-concentrating system on the 21st of September 2002.
6.4.9.1 Total radiation and ambient temperature with time on the 2nd of October 2002.
6.4.9.2 Short circuit current and open circuit voltage with time for the flat non-concentrating and the ACPPVC-50 system with six PV strings connected in series.
6.4.9.3 Maximum power against incident solar radiation intensity for the flat non-concentrating and the ACPPVC-50 systems.
6.4.9.4 Electrical conversion efficiency against incident solar radiation intensity for the flat non-concentrating and the ACPPVC-50 system.
6.4.9.5 The variation of the maximum power point ratio for the flat non-concentrating and the ACPPVC-50 system with incident solar radiation intensity.
6.4.9.6 Diurnal variation of solar radiation, ambient temperature, average back plate temperature, average reflector temperature and the average solar cell temperature for the ACPPVC-50 system.

7.3.1 The theoretically predicted isotherms for an ACPPVC-50 with heat loss from the aluminium back plate of (a) 3.7 Wm^{-2}K^{-1}, (b) 13.5 Wm^{-2}K^{-1} and (c) 23.3 Wm^{-2}K^{-1}. The isotherms are at 1°C intervals. The solar radiation intensity was 900 Wm^{-2} incident at the aperture cover at an angle of 60°.

7.3.2 The enlarged view of predicted isotherms and velocity vectors of ACPPVC-50 with heat loss from the aluminium back plate of 3.7 Wm^{-2}K^{-1} inside (a) 1st trough (b) 5th trough. The isotherms are at 1°C intervals. The velocity vector is scaled to the reference vector of magnitude 0.2 ms^{-1}. The solar radiation intensity was 900 Wm^{-2} incident at the aperture cover at an angle of 60°.

7.3.3 The enlarged view of predicted isotherms and velocity vectors of ACPPVC-50 with heat loss from the aluminium back plate of 13.5 Wm^{-2}K^{-1} inside (a) 2nd trough (b) 4th trough. The isotherms are at 1°C intervals. The velocity vector is scaled to the reference vector of magnitude 0.2 ms^{-1}. The solar radiation intensity was 900 Wm^{-2} incident at the aperture cover at an angle of 60°.

7.3.4 The enlarged view of predicted isotherms and velocity vectors of ACPPVC-50 with heat loss from the aluminium back plate of 23.3 Wm^{-2}K^{-1} inside (a) 1st trough (b) 5th trough. The isotherms are at 1°C intervals. The velocity vector is scaled to the reference vector of magnitude 0.2 ms^{-1}. The solar radiation intensity was 900 Wm^{-2} incident at the aperture cover at an angle of 60°.

7.4.1 Non-concentrating solar panels with (a) 52-mm (b) 2-mm tab spacing between individual solar cells without EVA and no glass cover.

7.4.1.1 Maximum power point and difference in maximum power point with intensity of incident solar radiation for the long and short tabbed non-concentrating flat solar panel.

7.4.1.2 The power developed for the long and short tabbed non-concentrating flat solar panel with the voltage developed by the system for different incident solar radiation intensities.

7.4.1.3 Efficiency for long and short tabbed solar cell panels with incident solar radiation intensity. The average ambient temperature was 20°C.

7.4.3.1 Change in predicted PV surface temperature in the vertical direction for heat loss coefficients of (a) 13.7 Wm^{-2}K^{-1} and (b) 23.3 Wm^{-2}K^{-1} from the aluminium back plate to the ambient. The incident solar radiation was 900 Wm^{-2}.

7.5.2.1 Predicted and measured I-V curves for different solar radiation intensities.

8.2.2.1 Maximum power available for different series combinations of PV strings for the non-concentrating and the ACPPVC-50 system. The calculation was made based on the data points available as described in chapter 6, the maximum power available was calculated on the basis of 1000 Wm^{-2} incident solar radiation.

8.2.2.2 Maximum power of the non-concentrating and the ACPPVC-50 systems when four PV strings were connected in series. The calculation was made based on figure 6.4.7.5 (page 219) assuming a power ratio of 1.9.
8.2.2.3 Efficiency of the non-concentrating and ACPPVC-50 systems when four PV strings were connected in series. The calculations were made based on figure 6.4.7.7 assuming a power ratio of 1.9.

8.2.2.4 Value of thermal resistances from previous and present study. Previous studies are shown in table 1.7.4.1 (page 40). The value in the present study was calculated using the equation 1.7.4.1. For the present study the efficiency and average solar cell temperatures were extracted from figure 6.4.9.4 (page 229) and figure 6.4.9.5 (page 230) respectively.

A.1.1 Circuit diagram for determining I-V characteristics of a photovoltaic system.

A.1.2 I-V curve for the electrical simulation of a photovoltaic system.

B.1.1.1 Model 2400 Keithley source meter for sourcing and sinking voltage/current for the test device.

B.1.3.1 Model 2700 Keithley data acquisition system.
List of Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.7.1</td>
<td>Experimental and predicted temperatures of asymmetric inverted CPC with 75 mm and 125 mm parallel walled reflector section for validation of comprehensive unified model (Eames et.al., 2001). The thermocouples were located as illustrated in figure 1.3.7.3.</td>
<td>21</td>
</tr>
<tr>
<td>1.5.7.1</td>
<td>Single-junction solar cell efficiencies.</td>
<td>28</td>
</tr>
<tr>
<td>1.7.4.1</td>
<td>Thermal resistance of different building integrated PV element.</td>
<td>40</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Geometrical characteristics employed for the ray trace analysis.</td>
<td>50</td>
</tr>
<tr>
<td>2.7.1.1</td>
<td>Optical properties employed in the present analysis.</td>
<td>56</td>
</tr>
<tr>
<td>3.4.2.2.1</td>
<td>Physical and chemical properties of Radiant Mirror VM2000 reflector film (Anon, 2001d).</td>
<td>78</td>
</tr>
<tr>
<td>3.4.3.1.1</td>
<td>Electrical test results for ten full size Saturn solar cells (Eager et al., 2002).</td>
<td>79</td>
</tr>
<tr>
<td>3.5.4.1</td>
<td>The physical and chemical properties of the low temperature solder used (Anon, 2001f).</td>
<td>86</td>
</tr>
<tr>
<td>3.5.5.1</td>
<td>Chemical properties of “Output-315” thermally conductive adhesive (Anon, 2001g).</td>
<td>88</td>
</tr>
<tr>
<td>3.5.6.1</td>
<td>Physical and chemical properties of EVA (Anon, 2001h).</td>
<td>89</td>
</tr>
<tr>
<td>3.6.1.1</td>
<td>Physical characteristics of prototype ACPPVC-50 system used for indoor experimental characterisation.</td>
<td>94</td>
</tr>
<tr>
<td>3.6.2.1</td>
<td>System dimension for outdoor experimental characterisation.</td>
<td>95</td>
</tr>
<tr>
<td>4.2.1.1.1</td>
<td>The thermo-physical properties used in the simulations for ACPPVC-50.</td>
<td>101</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Average predicted PV surface and aperture cover temperatures for different incident insolation intensities.</td>
<td>106</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Geometrical characteristics and system dimensions used for the simulations of the three trough ACPPVC-50.</td>
<td>109</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Geometrical characteristics and system dimensions used for the simulations of the five trough ACPPVC-50.</td>
<td>113</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Average temperatures at the PV surface, at the aperture cover, maximum outlet temperature and maximum outlet velocity for different inlet velocities of ACPPVC-50 with a 10 mm wide air gap adjacent to the aperture cover.</td>
<td>132</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Average PV cell temperature, average aperture cover temperature, maximum outlet temperature and maximum predicted velocity at the outlet for ACPPVC-50 with 20 mm wide air space adjacent to the aperture cover for different inlet air velocities.</td>
<td>133</td>
</tr>
<tr>
<td>4.5.2.3</td>
<td>Average PV cell temperature, average aperture cover temperature, maximum outlet temperature and maximum predicted velocity at the outlet for ACPPVC-50 with a 30 mm wide air space adjacent to the aperture cover for different inlet air velocities.</td>
<td>143</td>
</tr>
</tbody>
</table>
4.5.3.1 Predicted temperatures and air velocity of ACPPVC-50 for different configurations. The solar radiation intensity was 1000 Wm$^{-2}$ incident at the aperture cover and the ambient temperature was 20°C.

7.5.1 Experimentally measured and simulated temperatures for the ACPPVC-50 at different locations. The incident solar radiation for the simulation was 900 Wm$^{-2}$ and the experiment was conducted on the 23rd of September 2002.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>absorber length</td>
<td>m</td>
</tr>
<tr>
<td>A</td>
<td>diode factor</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>constant</td>
<td></td>
</tr>
<tr>
<td>A,B</td>
<td>points in space</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>concentration ratio</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>diameter</td>
<td>m</td>
</tr>
<tr>
<td>F</td>
<td>functional value</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>global solar radiation</td>
<td>Wm$^{-2}$</td>
</tr>
<tr>
<td>H</td>
<td>height</td>
<td>m</td>
</tr>
<tr>
<td>I</td>
<td>current</td>
<td>A</td>
</tr>
<tr>
<td>K</td>
<td>heat loss coefficient</td>
<td>Wm$^{-2}$K$^{-1}$</td>
</tr>
<tr>
<td>L</td>
<td>characteristic length</td>
<td>m</td>
</tr>
<tr>
<td>M,N</td>
<td>point in space</td>
<td></td>
</tr>
<tr>
<td>P, Q</td>
<td>point in space</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>right parabola</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>solar radiation</td>
<td>Wm$^{-2}$</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
<td>K</td>
</tr>
<tr>
<td>W</td>
<td>width</td>
<td>m</td>
</tr>
<tr>
<td>U</td>
<td>overall heat loss coefficient</td>
<td>Wm$^{-2}$K$^{-1}$</td>
</tr>
<tr>
<td>V</td>
<td>electrical potential difference</td>
<td>V</td>
</tr>
<tr>
<td>PQ</td>
<td>absorber distance</td>
<td>m</td>
</tr>
<tr>
<td>SR</td>
<td>aperture distance</td>
<td>m</td>
</tr>
<tr>
<td>SP,QR</td>
<td>parabola</td>
<td></td>
</tr>
<tr>
<td>A_a</td>
<td>aperture area</td>
<td>m2</td>
</tr>
<tr>
<td>A_i</td>
<td>surface area of element i</td>
<td>m2</td>
</tr>
<tr>
<td>A_j</td>
<td>surface area of element j</td>
<td>m2</td>
</tr>
<tr>
<td>A_r</td>
<td>receiver area</td>
<td>m2</td>
</tr>
<tr>
<td>A_eff</td>
<td>effective area</td>
<td>m2</td>
</tr>
<tr>
<td>B_eff(θ)</td>
<td>effective source angular functions</td>
<td></td>
</tr>
<tr>
<td>C_l</td>
<td>specific heat</td>
<td></td>
</tr>
<tr>
<td>C_f</td>
<td>shear friction coefficient</td>
<td></td>
</tr>
<tr>
<td>C_g</td>
<td>geometrical concentration ratio</td>
<td></td>
</tr>
<tr>
<td>C_p</td>
<td>specific heat of air</td>
<td>J kg$^{-1}$K$^{-1}$</td>
</tr>
<tr>
<td>C_op</td>
<td>optical concentration ratio</td>
<td></td>
</tr>
<tr>
<td>C_max</td>
<td>maximum concentration ratio</td>
<td></td>
</tr>
<tr>
<td>C_Pαmax</td>
<td>maximum concentration ratio for a parabolic asymmetric concentrator</td>
<td></td>
</tr>
<tr>
<td>C_Pαsus</td>
<td>minimum concentration ratio for a parabolic asymmetric concentrator</td>
<td></td>
</tr>
<tr>
<td>E_r</td>
<td>reflected energy</td>
<td>J</td>
</tr>
<tr>
<td>E_p</td>
<td>absorbed energy</td>
<td>J</td>
</tr>
<tr>
<td>E_in</td>
<td>incident energy</td>
<td>Wm$^{-2}$</td>
</tr>
<tr>
<td>E_tr</td>
<td>transmitted energy</td>
<td>J</td>
</tr>
<tr>
<td>E_tot</td>
<td>total energy absorbed</td>
<td>J</td>
</tr>
<tr>
<td>E_o</td>
<td>reflected energy</td>
<td>Wm$^{-2}$</td>
</tr>
<tr>
<td>F_L</td>
<td>focus of left parabola</td>
<td></td>
</tr>
<tr>
<td>F_R</td>
<td>focus of right parabola</td>
<td></td>
</tr>
<tr>
<td>F_m</td>
<td>heat removal factor</td>
<td></td>
</tr>
<tr>
<td>F_c</td>
<td>correction factor</td>
<td></td>
</tr>
<tr>
<td>F_ij</td>
<td>view factor of surface i and j</td>
<td></td>
</tr>
<tr>
<td>F_ji</td>
<td>view factor of surface j and i</td>
<td></td>
</tr>
<tr>
<td>G_cs</td>
<td>solar radiation at aperture</td>
<td>Wm$^{-2}$</td>
</tr>
<tr>
<td>G_cms</td>
<td>solar radiation at absorber</td>
<td>Wm$^{-2}$</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>G_{sol}</td>
<td>total incident solar radiation Wm^{-2}</td>
<td></td>
</tr>
<tr>
<td>I_g</td>
<td>total normal incident radiation Wm^{-2}</td>
<td></td>
</tr>
<tr>
<td>I_L</td>
<td>light generated current A</td>
<td></td>
</tr>
<tr>
<td>I_o</td>
<td>reverse saturation current A</td>
<td></td>
</tr>
<tr>
<td>I_{mp}</td>
<td>current at maximum power point A</td>
<td></td>
</tr>
<tr>
<td>I_{sc}</td>
<td>short circuit current A</td>
<td></td>
</tr>
<tr>
<td>I_d</td>
<td>diffuse component of total incident solar radiation Wm^{-2}</td>
<td></td>
</tr>
<tr>
<td>$I_{D,\phi}$</td>
<td>diffuse solar radiation Wm^{-2}</td>
<td></td>
</tr>
<tr>
<td>I_{ref}</td>
<td>reference light generated current A</td>
<td></td>
</tr>
<tr>
<td>$I_{sc,ref}$</td>
<td>reference short circuit current A</td>
<td></td>
</tr>
<tr>
<td>I_{max}</td>
<td>current at maximum power point A</td>
<td></td>
</tr>
<tr>
<td>$I_{max,ref}$</td>
<td>reference current at maximum power point A</td>
<td></td>
</tr>
<tr>
<td>K_f</td>
<td>conductivity of fluid $\text{Wm}^{-1}\text{K}^{-1}$</td>
<td></td>
</tr>
<tr>
<td>K_{norm}</td>
<td>normalization factor</td>
<td></td>
</tr>
<tr>
<td>P_1, P_2, P_3, P_4</td>
<td>pressure drop at different points Nm^{-2}</td>
<td></td>
</tr>
<tr>
<td>P_{max}</td>
<td>maximum power W</td>
<td></td>
</tr>
<tr>
<td>R_L</td>
<td>load resistance \Omega</td>
<td></td>
</tr>
<tr>
<td>R_s</td>
<td>series resistance \Omega</td>
<td></td>
</tr>
<tr>
<td>R_{sh}</td>
<td>shunt resistance \Omega</td>
<td></td>
</tr>
<tr>
<td>R_{th}</td>
<td>thermal resistance $^\circ\text{CW}^{-1}\text{m}^2$</td>
<td></td>
</tr>
<tr>
<td>T_e</td>
<td>experimental temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_m</td>
<td>mean fluid temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_0</td>
<td>reference temperature K</td>
<td></td>
</tr>
<tr>
<td>T_s</td>
<td>simulated temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_w</td>
<td>wall temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_{ct}</td>
<td>solar cell temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_{FA}</td>
<td>average fluid temperature K</td>
<td></td>
</tr>
<tr>
<td>T_{in}</td>
<td>inlet fluid temperature K</td>
<td></td>
</tr>
<tr>
<td>T_{pv}</td>
<td>average PV module temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_{amb}</td>
<td>ambient temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_{abs}</td>
<td>absorber temperature K</td>
<td></td>
</tr>
<tr>
<td>T_{air}</td>
<td>air temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_{back}</td>
<td>back plate temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_{ext}</td>
<td>external temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_{int}</td>
<td>internal temperature $^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>T_{sky}</td>
<td>sky temperature K</td>
<td></td>
</tr>
<tr>
<td>T_{ref1}</td>
<td>first reflector temperature K</td>
<td></td>
</tr>
<tr>
<td>T_{ref2}</td>
<td>second reflector temperature K</td>
<td></td>
</tr>
<tr>
<td>T_{ground}</td>
<td>ground temperature K</td>
<td></td>
</tr>
<tr>
<td>T_{module}</td>
<td>PV module temperature K</td>
<td></td>
</tr>
<tr>
<td>T_{outlet}</td>
<td>outlet temperature K</td>
<td></td>
</tr>
<tr>
<td>T^*</td>
<td>dimensionless temperature</td>
<td></td>
</tr>
<tr>
<td>U_0</td>
<td>flow velocity ms^{-1}</td>
<td></td>
</tr>
<tr>
<td>U_{int}</td>
<td>inlet air velocity ms^{-1}</td>
<td></td>
</tr>
<tr>
<td>V_{oc}</td>
<td>open circuit voltage V</td>
<td></td>
</tr>
<tr>
<td>V_{max}</td>
<td>voltage at maximum power point V</td>
<td></td>
</tr>
<tr>
<td>$V_{max,ref}$</td>
<td>reference voltage at maximum power point V</td>
<td></td>
</tr>
<tr>
<td>W_2</td>
<td>width m</td>
<td></td>
</tr>
<tr>
<td>Z_0</td>
<td>incident flux Wm^{-2}</td>
<td></td>
</tr>
<tr>
<td>Z_1</td>
<td>absorbed flux Wm^{-2}</td>
<td></td>
</tr>
<tr>
<td>F'</td>
<td>first derivative of function</td>
<td></td>
</tr>
<tr>
<td>M', N'</td>
<td>points in space</td>
<td></td>
</tr>
<tr>
<td>T^*</td>
<td>dimensionless temperature</td>
<td></td>
</tr>
<tr>
<td>Gr</td>
<td>Grashof number</td>
<td></td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
<td></td>
</tr>
<tr>
<td>\overline{Nu}</td>
<td>average Nusselt number</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
<td></td>
</tr>
</tbody>
</table>
Ra: Rayleigh number
Re: Reynolds number
Re_{\text{min}}: minimum Reynolds number
Re_{\text{max}}: maximum Reynolds number
R_{\text{th,conc}}: thermal resistance of concentrating (ACPPVC-50) system °C\cdot m^2
R_{\text{th,flat}}: thermal resistance of non-concentrating system °C\cdot m^2
I(\theta): distance along tangent from receiver m
I(\psi): tangent of length from the cusp
I_\lambda(\theta): energy contained to corresponding wave length J
\Delta T: change of temperature °C
A/W: solar response AW^{-1}

n: normal vector
a, b, c: constant numbers
diameter
f: focal length m

h: heat transfer coefficient Wm^{-2}K^{-1}
i, j: various components or points
k: thermal conductivity of air Wm^{-1}K^{-1}
k: Boltzmann constant m^2 kg s^{-2} K^{-1}
m: constant
n, p: number
q: electronic charge eV
q: wall heat flux Wm^{-2}
r: radius m
s: stratification parameter

u: velocity component in x-direction ms^{-1}
v: velocity component in y-direction ms^{-1}
x, y, z: co-ordinate

b_a: PV thickness m
b_c: air gap between PV panel and building wall m
b_d: air gap between glazing and PV panel m
b_g: glazing thickness m
b_i: insulation thickness m
b_{in}: inlet air gap m
b_{out}: exit aperture length m

m: parameter
d_{A_i}: elemental area of surface i m^2
d_{A_j}: elemental area of surface j m^2
f_{app}: apparent friction factor in developing flow

f(\theta): angular acceptance function

h_c: heat loss coefficient Wm^{-2}K^{-1}
h_{ab}: heat loss coefficient from absorber Wm^{-2}K^{-1}
h_{ap}: heat transfer coefficient from aperture cover Wm^{-2}K^{-1}
h_{pf}: heat loss coefficient from reflector Wm^{-2}K^{-1}
h_{\text{wind}}: convective heat transfer coefficient from a surface to ambient Wm^{-2}K^{-1}
h_{\text{ground}}: heat loss coefficient from surface to ground Wm^{-2}K^{-1}
h_{\text{min}}: minimum heat loss coefficient from rear aluminium Wm^{-2}K^{-1}
h_{\text{max}}: maximum heat loss coefficient from rear aluminium Wm^{-2}K^{-1}
h_{\text{abs-apt,conv}}: convective heat transfer coefficient from absorber to aperture Wm^{-2}K^{-1}
h_{\text{abs-apt,rad}}: radiative heat transfer coefficient from absorber to aperture Wm^{-2}K^{-1}
h_{\text{abs-ref1,conv}}: convective heat transfer coefficient from absorber to first reflector Wm^{-2}K^{-1}
h_{\text{abs-ref1,rad}}: radiative heat transfer coefficient from absorber to first reflector Wm^{-2}K^{-1}
h_{\text{abs-ref2,conv}}: convective heat transfer coefficient from absorber to sky Wm^{-2}K^{-1}
h_{abs-ref2-rad} \text{radiative heat transfer coefficient from absorber to second reflector } \text{Wm}^{-2}\text{K}^{-1}

h_{abs-sky,rad} \text{radiative heat transfer coefficient from absorber to sky } \text{Wm}^{-2}\text{K}^{-1}

h_{apt-sky,rad} \text{radiative heat transfer coefficient from aperture to sky } \text{Wm}^{-2}\text{K}^{-1}

h_{ref1-apt,conv} \text{convective heat transfer coefficient from first reflector to aperture } \text{Wm}^{-2}\text{K}^{-1}

h_{ref1-apt,rad} \text{radiative heat transfer coefficient from first reflector to aperture } \text{Wm}^{-2}\text{K}^{-1}

h_{ref2-apt,conv} \text{convective heat transfer coefficient from second reflector to aperture } \text{Wm}^{-2}\text{K}^{-1}

h_{ref2-apt,rad} \text{radiative heat transfer coefficient from second reflector to aperture } \text{Wm}^{-2}\text{K}^{-1}

k_f \text{conductivity of fluid } \text{Wm}^{-2}\text{K}^{-1}

k_{entr} \text{entrance friction factor}

n_1 \text{refractive index of medium 1}

n_2 \text{refractive index of medium 2}

n_i \text{refractive index of first medium}

n_r \text{refractive index of second medium}

q_x \text{heat loss along length } x \text{WK}^{-1}

q_{lwr} \text{long wave electromagnetic energy radiation per unit area } \text{Wm}^{-2}

q_i \text{heat loss at surface } i \text{ W}

q_j \text{heat loss at surface } j \text{ W}

q_{lwr_{ij}} \text{long wave radiation exchange between surface } i \text{ and } j \text{ W}

\dot{q}_{abs} \text{absorbed energy} \text{ W}

r_i \text{inner radius} \text{ m}

r_{equ} \text{equivalent radius} \text{ m}

r_{inc} \text{incident vector}

r_{ref} \text{reflected vector}

r_{refl} \text{reflective vector}

r_{refr} \text{refractive vector}

r_0 \text{room temperature} °

v_i, v_j \text{velocity at } i^{th} \text{ and } j^{th} \text{ component} \text{ ms}^{-1}

x_1, y_1 \text{end point}

a' \text{parametric length} \text{ m}

y^* \text{dimensionless co-ordinate}

\overline{h} \text{terminated height} \text{ m}

\bar{l} \text{terminated length} \text{ m}

\dot{q} \text{heat transfer rate} \text{ W}

\overline{x}, \overline{y} \text{terminated co-ordinate}

y^{'*} \text{dimensionless length}

\langle e \rangle \text{element}

\alpha, \psi \text{constant}

\alpha \text{absorptance}

\beta \text{coefficient of volume expansion}

\delta \text{maximum angle with respect to the optics axis} °

\epsilon \text{emittance}

\phi \text{angle} °

\eta \text{efficiency}

\phi \text{tilt angle} °

\lambda \text{friction factor}

\pi \text{constant}

\theta \text{angle} °

\rho \text{density} \text{ kg m}^{-3}

\sigma \text{Stefan-Boltzman constant} \text{ Wm}^{-2}\text{K}^{-4}

\tau \text{transmittance}

\nu \text{reflectance of glass}

\omega \text{hour angle} °

\psi \text{subtended angle at the receiver} °

\alpha_i \text{extinction coefficient of glass} °
\(\beta_0 \) source subtended angle
\(\phi_i \) acceptance half angle for left parabola
\(\phi_r \) acceptance half angle for right parabola
\(\eta_{op} \) optical efficiency
\(\theta_a \) acceptance angle
\(\theta_i \) polar angle at surface \(i \)
\(\theta_j \) polar angle at surface \(j \)
\(\theta_{sc} \) half acceptance angle
\(\rho_0 \) density at \(t_0 \)
\(\rho_m \) mean density of air
\(\nu_{\perp} \) perpendicular component of reflectance
\(\nu_n \) normal reflective coefficient
\(\tau_{\lambda_i} \) wave length dependent transmittance
\(\tau_{\lambda_i} \) transmittance of wave length for particle \(i \)
\(\tau_{\perp} \) parallel component of transmittance
\(\tau_{\perp} \) perpendicular component of transmittance
\(\psi_0 \) angle at centre
\(\theta' \) exit angle
\(\theta_{sc} \) acceptance half-angle
\(\theta_{in} \) incidence angle
\(\theta_{tr} \) transmittance angle
\(\theta_{subc} \) angle
\(\nu_{\parallel} \) parallel component of reflectivity
\(\epsilon_{sky} \) sky emittance
\(\theta_{acc} \) half-acceptance angle
\(\theta_{max} \) maximum angle
\(\theta_{ref} \) reflective angle
\(\theta_{tr11} \) transmittance angle between surface 1 & 2
\(\theta_{tr12} \) transmittance angle between surface 2 & 1
\(\beta_{\text{surface}} \) surface tilt angle
\(\epsilon_{\text{ground}} \) ground emittance
\(\epsilon_{\text{module}} \) PV module emittance
\(\eta_{\text{elec}} \) solar cell electrical efficiency
\(\omega \) vorticity
\(\sum \beta_k \) overall thermal conductivity of air
\(\psi|_{\sigma} \) stream function at the boundary
\(\tau(\theta) \) angular dependence of transmittance
\(\Delta P \) pressure difference
\(\Delta T \) temperature difference
\(\tau(\alpha) \) transmittance-absorptance product
\(\nabla \) gradient
\(\partial \) del operator
\(\times \) vector product
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPC</td>
<td>asymmetric compound parabolic concentrator</td>
</tr>
<tr>
<td>ACPPVC</td>
<td>asymmetric compound parabolic photovoltaic concentrator</td>
</tr>
<tr>
<td>AM</td>
<td>air mass</td>
</tr>
<tr>
<td>A/W</td>
<td>Ampere Watt⁻¹</td>
</tr>
<tr>
<td>BEM</td>
<td>boundary element method</td>
</tr>
<tr>
<td>BIPV</td>
<td>building integrated photovoltaics</td>
</tr>
<tr>
<td>CdTe</td>
<td>cadmium telluride</td>
</tr>
<tr>
<td>CFD</td>
<td>computational fluid dynamics</td>
</tr>
<tr>
<td>CID</td>
<td>compact iodide daylight</td>
</tr>
<tr>
<td>CIS</td>
<td>copper indium diselenide</td>
</tr>
<tr>
<td>CPC</td>
<td>compound parabolic concentrator</td>
</tr>
<tr>
<td>CdS</td>
<td>cadmium sulphide</td>
</tr>
<tr>
<td>CST</td>
<td>Centre for Sustainable Technologies</td>
</tr>
<tr>
<td>DUT</td>
<td>device under test</td>
</tr>
<tr>
<td>EAC</td>
<td>extreme asymmetrical concentrator</td>
</tr>
<tr>
<td>EVA</td>
<td>ethylene venyl acetate</td>
</tr>
<tr>
<td>FDM</td>
<td>finite difference method</td>
</tr>
<tr>
<td>FE</td>
<td>finite element</td>
</tr>
<tr>
<td>FEM</td>
<td>finite element method</td>
</tr>
<tr>
<td>Fi</td>
<td>focal length</td>
</tr>
<tr>
<td>FVM</td>
<td>finite volume method</td>
</tr>
<tr>
<td>GaInAs</td>
<td>gallium indium arsenide</td>
</tr>
<tr>
<td>GPIB</td>
<td>general purpose interface bus</td>
</tr>
<tr>
<td>HID</td>
<td>high intensity discharge</td>
</tr>
<tr>
<td>ITO</td>
<td>indium tin oxide</td>
</tr>
<tr>
<td>I-V</td>
<td>current-voltage</td>
</tr>
<tr>
<td>MaReCo</td>
<td>maximum reflector collector</td>
</tr>
<tr>
<td>MINP</td>
<td>metal-insulator n-type solar cell</td>
</tr>
<tr>
<td>MPP</td>
<td>maximum power point</td>
</tr>
<tr>
<td>N.I.</td>
<td>Northern Ireland</td>
</tr>
<tr>
<td>NOCT</td>
<td>nominal operating cell temperature</td>
</tr>
<tr>
<td>Pb</td>
<td>lead</td>
</tr>
<tr>
<td>PC</td>
<td>personnel computer</td>
</tr>
<tr>
<td>PESC</td>
<td>passivated-emitter solar cell</td>
</tr>
<tr>
<td>PV</td>
<td>photovoltaic</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>R1</td>
<td>reflector one</td>
</tr>
<tr>
<td>R2</td>
<td>reflector two</td>
</tr>
<tr>
<td>RFPC</td>
<td>reverse flat-plate collector</td>
</tr>
<tr>
<td>W</td>
<td>west</td>
</tr>
<tr>
<td>c-Si</td>
<td>crystalline silicon</td>
</tr>
<tr>
<td>a-Si</td>
<td>amorphous silicon</td>
</tr>
<tr>
<td>abs</td>
<td>absorber</td>
</tr>
<tr>
<td>amb</td>
<td>ambient</td>
</tr>
<tr>
<td>apt</td>
<td>aperture</td>
</tr>
<tr>
<td>abs,f</td>
<td>absorber to fluid</td>
</tr>
<tr>
<td>conc</td>
<td>concentrator</td>
</tr>
<tr>
<td>conv</td>
<td>convective</td>
</tr>
<tr>
<td>ff</td>
<td>fill factor</td>
</tr>
<tr>
<td>inc</td>
<td>incident</td>
</tr>
<tr>
<td>m</td>
<td>mean</td>
</tr>
<tr>
<td>rad</td>
<td>radiative</td>
</tr>
<tr>
<td>rds</td>
<td>readings</td>
</tr>
<tr>
<td>ref</td>
<td>reflection</td>
</tr>
<tr>
<td>ref1</td>
<td>reflector 1</td>
</tr>
<tr>
<td>ref2</td>
<td>reflector 2</td>
</tr>
</tbody>
</table>