Timing Diagrams

- Graphical representation of circuit behavior overtime
\rightarrow illustrates the logic behavior of signals in a digital circuit as a function of time
- May be used as a device specification
\rightarrow illustrates device performance
- May be used as a module or system specification
\rightarrow identifies a requirement for system performance
- May be used as a tool in system analysis

Caution: terminology may vary slightly between vendors.
Set-up time , t_{su} : the minimum length of time that a signal must be valid at a circuit input before a second triggering signal arrives at a second input.

Usually a clock

Delay time , t_{co} : the length of time that a circuit requires for its output(s) to begin to change in response to a triggering signal arriving at an input. (also called propagation delay)

Hold time , t_{no} : the minimum length of time that a signal must be kept valid at a circuit input after a triggering signal has been received at a second input.
Timing skew, $\mathrm{t}_{\text {skew }}$: the maximum range of times over which a particular signal transition can occur.
-- Due to variations in driver output impedance
-- Problems in clock distribution

Nomenclature for Timing Diagrams

Symbol	Input	Output
	The input must be valid	The output will be valid
	If the input were to fall	Then the output will fall
$\underline{\square}$	If the input were to rise	Then the output will rise
P0x	Don't care. it will work regardless	Don't know, the output value is indeterminate
-	Nonsense	High impedence, tristate. HiZ. Not driven, floating

Example Timing Diagram

- Functional Timing Diagram (idealized)
\rightarrow assumes zero delays
\rightarrow simply demonstrates logic relations

Arrows show cause and effect which input transactions cause which output transactions,
especially in complex timing diagram

Example Timing Diagram

- Timing Diagram (more realistic)
\rightarrow shows delays using typical or maximum values

- $\mathrm{t}_{\mathrm{pHL}}=$ HIGH to LOW propagation delay
- $t_{\text {pLH }}=$ LOW to HIGH propagation delay

74LS244 Buffer 1

PARAMETER	TEST CONDITIONS		'LS240			'LS241, 'LS244			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
tpLH	$\mathrm{R}_{\mathrm{L}}=667 \Omega$,	$C_{L}=45 \mathrm{pF}$		9	14		12	18	ns
$\mathrm{t}_{\text {PHL }}$				12	18		12	18	

- Propagation delay $=12 n S$ (enabled) - typical value
\rightarrow Analysis (design) should use MAXIMUMyalues for worst case.

74LS244 Buffer 2

- tri-state buffer (see later slide)
- Propagation delay $=12 n S$ (enabled)

PARAMETER	TEST CONDITIONS		'LS240			'LS241, 'LS244			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	$\mathrm{R}_{\mathrm{L}}=667 \Omega$,	$C_{L}=45 \mathrm{pF}$		9	14		12	18	ns
$\mathrm{t}_{\text {PHL }}$				12	18		12	18	
tpZL	$\mathrm{R}_{\mathrm{L}}=667 \Omega$,	$C_{L}=45 \mathrm{pF}$		20	30		20	30	ns
tPZH				15	23		15	23	
tPLZ	$R_{L}=667 \Omega$,	$C_{L}=5 \mathrm{pF}$		10	20		10	20	ns
tpHz				15	25		15	25	

Karnaugh Map

- Karnaugh Maps (K-Maps) are a graphical method of visualizing the 0's and 1's of a boolean function
\rightarrow K-Maps are very useful for performing Boolean minimization.
- Will work on 2, 3, and 4 variable K-Maps in this class.
\rightarrow Variable-Entered-Maps will be used for systems with more than 4 variables.
- Karnaugh maps are much easier to use than boolean equations for minimization.

Karnaugh Map

- Karnaugh Map Method
\rightarrow K-map is an alternative method of representing the truth table that helps visualize adjacent terms in up to 6 dimensions
 K-map

\rightarrow Numbering Scheme: 00, 01, 11, 10
\rightarrow Gray Code -- only a single bit changes one code word to the next

Boolean Adjacency

- Note on the three variable map:

WRONG!!!

- Each square on the 3-variable map is Boolean Adjacent. Adjacent squares
- only differ by ONE BOOLEAN VARIABLE
- Although drawn as a 2-D diagram the edges wrap round left-right and top-bottom.

Plotting 4-Variable Functions

Plotting 4-Variable Functions								Ψ_{0}	
Row\|A B C D		F(A,B,C,D)	CD ${ }^{\text {AB }}$		01				
0	0000								
1	0 0001	$?$	00	?		?	?	?	
2	$\begin{array}{lllll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}$	$?$	01	?	?	?	?		
4	0100	?	11	?	?	?	?		
5	0101	?							
6	0110	?	10	?	?	?	?		
7	0111	?							
8	1000	?		B_{0}					
9	1001	?	CD		01	11	10		
10	1010	?	00	r0	r4	r12	r8		
11	$\begin{array}{lllll}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}$?	01	r1	r5	r13	r9		
12	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 11 & 1 & 0 & 1\end{array}$?	11	r3	r7	r15	r11		
14	1110	?							
15	1111	?	10	r2	r6	r14	r10		
			14					Digtala Design	

Row	A B C	F(A,B,C)	${ }^{\text {A }}$		1
0	000	0	${ }^{\text {BC }}$	0	0
1	$\begin{array}{llll}0 & 0 & 1 \\ 0 & 1 & 0\end{array}$	0	00		0
2	010			0	0
3	011	0	11	0	0
4	100	0	10		
5	101	0			
6	110				
7	111	0	F(A,B,C	$\begin{array}{r} C)=\overline{1} \\ =\bar{A} \\ =E \\ =E \end{array}$	$\begin{aligned} & \Sigma_{1} \\ & \overline{\mathrm{~A}} \mathrm{~B} \\ & \mathrm{BC} \\ & \mathrm{BC} \end{aligned}$

Boolean adjacency can be used to minimize functions!

Simplification using K-Maps

- Grouping blocks of '1'
\rightarrow A group must consist of $16,8,4,2$ or 1 cells
\rightarrow Each cell must be horizontally and/or vertically adjacent to cells in the other group
\rightarrow Always include the largest number of '1's in a group
\rightarrow Each '1' in the map should be included in a group
\rightarrow Groups can overlap
\rightarrow Map edge cells connect in a loop to cells at the opposite edge
- Naming groups
\rightarrow The product description for a group will include ALL variables that are CONSTANT over the group
\rightarrow For example, for a 4-variable map
> An 8 -cell group is described by a 1 -variable product term
> An 4 -cell group is described by a 2 -variable product term
> An 2-cell group is described by a 3 -variable product term
> An 1 -cell group is described by a 4 -variable product term

Groupings on K-Maps

- Grouping can be read DIRECTLY as "BC" by looking at what is COMMON within the circled group.

Example Groupings on 3-Variable K-Maps

${ }^{\text {A }}$	0	1				
BC			$\mathbf{F}(\mathbf{A}, \mathrm{B}, \mathrm{C})=$			$\mathbf{F}(\mathbf{A}, \mathrm{B}, \mathrm{C})=$
00	1	0				
01	1	0				
11	0	0	BC	0	1	
10	0	0	00	1	1	
10	0	0	01	0	0	
${ }^{\text {A }} 0$			11	0	0	
			10	1	1	
00	1	1	$\mathbf{F}(\mathbf{A}, \mathrm{B}, \mathrm{C})=$			
01	1	1				
11	0	0				
10	0	0				

Try to cover all ' 1 's with largest possible groupings.

${ }^{\text {A }}$	0	1
00	1	0
01	1	1
11	0	0
10	0	0

$F(A, B, C)=$

${ }^{\text {A }} 0$		
BC		
00	0	1
01	0	0
11	1	0
10	1	0

Groupings of only a single ' 1 ' are ok if larger groupings cannot be found.

$$
\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathrm{C})=
$$

Illegal Groupings

$$
\bar{A} \bar{B} \bar{C}+A \bar{B} C=\bar{B}(\bar{A} \bar{C}+A C)
$$

- Valid groupings will always be a power of 2.
\rightarrow will cover $1,2,4,8$, etc minterms.

$\mathrm{CD}^{\mathrm{AB}} \mathbf{0 0}$		01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	0	1	0
10	1	1	0	1

$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=$

Other Groupings						$\xrightarrow{+0}$
					$\left.\right\|_{c}$	
$\text { D } \left\lvert\, \begin{aligned} & 00 \\ & 01 \\ & 11 \\ & 10 \end{aligned}\right.$	1	0	0	1		
	1	0	0	1		
	1	0	0	1		
	1	0	0	1		
$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=$						
23						Digital Design

More than one way to group.....

$\begin{array}{ccccc}\mathrm{AB}^{\text {AB }} & \\ \text { CD } & & 11 & 10\end{array}$					
00	1	1	1	1	$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\overline{\mathrm{B}} \mathrm{D}+\overline{\bar{C}} \bar{D}+C \bar{D}$
01	T	0	0	1	
11	1	0	0	1	
10	1	1	1	1.	

Four Corner Grouping on 4-Variable Map

AB				
CD 0000				
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

4 Corner
grouping is valid
on four variable map

$$
\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=
$$

K-map Definitions

- Implicant
\rightarrow Any single 1 or any group of 1 's is called an implicant of F.
\rightarrow Any possible grouping of ' 1 's is an implicant.

- Prime Implicant
\rightarrow A implicant that cannot be combined with some other implicant to eliminate a variable

Minimum Sum-Of-Products (SOP)

- The minimum SOP expression consists of some (but not necessarily all) of the prime implicants of a function.
- If a SOP expression contains a term which is NOT a prime implicant, then it CANNOT be minimum.

Prime Implicants

EACH of these coverings is a PRIME
IMPLICANT (i.e. cannot be reduced)
$\bar{B} \bar{C}, \bar{A} \bar{C} D, \bar{A} \bar{B} D$

Minimum SOP will have some or all of these prime implicants.
The included prime implicants must cover all of the ONEs.
$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\mathrm{B} \bar{C}+\overline{\mathrm{A}} \bar{B} D \quad$ (minimum set of PIs)
$=B \bar{C}+\bar{A} \bar{B} D+\bar{A} \bar{C} D \quad$ (valid set of PIs, but not minimum)
$\neq \bar{A} \bar{B} D+\bar{A} \bar{C} D$
(both PI's, but all '1's not included!)

$$
\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D})=\mathrm{B} \bar{C}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{D} \quad \text { (minimum \# of PIs) }
$$

- NON-ESSENTIAL prime implicant
\rightarrow Prime Implicant $\bar{A} \bar{C} D$ is non-essential because its ' 1 's are covered by other Pls. A PI is ESSENTIAL if it covers a MINTERM that cannot be covered by any other PI.

An example with more than one solution

Recall that a covering is a Prime Implicant if it cannot be combined with another covering to eliminate a variable.

Two Solutions

$\underset{\sim}{\stackrel{3}{\rightleftarrows}}$

EACH solution is equally valid.

$$
\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\bar{A} \bar{C}+\mathrm{ACD}+\overline{\mathrm{A}} \mathrm{BD}
$$

Essential PIs
Non-Essential
PIs

$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\bar{A} \bar{C}+A C D+B C D$

Minimal Solution

- A minimal SOP will consist of prime implicants.
- A minimal SOP equation will have all of the essential prime implicants on the map. By definition, these cover a minterm that may not be covered by some other prime implicant.
- The minimal SOP equation may or may not include nonessential prime implicants. It will include non-essential prime implicants if there are ' 1 's remaining that have not been covered by an essential prime implicant.

