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Timing Diagrams

� Graphical representation of circuit behavior over time

� illustrates the logic behavior of signals in a digital circuit as a 

function of time

� May be used as a device specification

� illustrates device performance

� May be used as a module or system specification

� identifies a requirement for system performance

� May be used as a tool in system analysis
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Timing Diagram Notation
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Caution:  terminology may vary slightly between vendors.

Set-up time , tsu:  the minimum length of time that a signal must be valid at a
circuit input before a second triggering signal arrives at a
second input.

Delay time , tco:  the length of time that a circuit requires for its output(s) to 
begin to change in response to a triggering signal arriving 
at an input.  (also called propagation delay)

Hold time , tho:  the minimum length of time that a signal must be kept valid 
at a circuit input after a triggering signal has been received 
at a second input.

Timing skew , tskew:  the maximum range of times over which a particular
signal transition can occur.

-- Due to variations in driver output impedance

-- Problems in clock distribution

Usually a clock

Timing Terminology
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Nomenclature for Timing Diagrams
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Example Timing Diagram

� Functional Timing Diagram (idealized)

� assumes zero delays

� simply demonstrates logic relations 

Arrows show cause and effect
which input transactions cause which output

transactions, 
especially in complex timing diagram
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Example Timing Diagram

� Timing Diagram (more realistic)

� shows delays using typical or maximum values

� tpHL = HIGH to LOW propagation delay

� tpLH = LOW to HIGH propagation delay
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74LS244 Buffer 1

� Propagation delay = 12nS (enabled) – typical value

� Analysis (design) should use MAXIMUM values for worst case.
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74LS244 Buffer 2

� tri-state buffer (see later slide)

� Propagation delay = 12nS (enabled)
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Karnaugh Map

� Karnaugh Maps (K-Maps) are a graphical method of visualizing 
the 0’s and 1’s of a boolean function

� K-Maps are very useful for performing Boolean minimization. 

� Will work on 2, 3, and 4 variable K-Maps in this class.

� Variable-Entered-Maps will be used for systems with more than 4 

variables.

� Karnaugh maps are much easier to use than boolean equations 
for minimization.

Digital Design10

� Numbering Scheme: 00, 01, 11, 10

� Gray Code -- only a single bit changes one code word to the next

Karnaugh Map

� Karnaugh Map Method 

� K-map is an alternative method of representing the truth table that  

helps visualize adjacent terms in up to 6 dimensions

2-variable
K-map

3-variable
K-map

4-variable
K-map
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2-Variable K-Map

Row  A B     F(A,B)     
0       0  0     0  
1       0  1     0
2       1  0     0
3       1  1     1

A
1

0 0

0 1

0

1

B 0

F(A,B) =  ab

Row  A B     F(A,B)     
0       0  0     0  
1       0  1     1
2       1  0     1
3       1  1     0

A
1

0 1

1 0

0

1

B 0

F(A,B) =  Ab + aB

1
AB aB0

1

B 0

Ab ab

A
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Boolean Adjacency

� Note on the three variable map:

A
1

r0 r4

r1 r5

00
BC 0

r3 r7

r2 r6

01

11

10

� Each square on the 3-variable map is Boolean Adjacent.  Adjacent 
squares 

� only differ by ONE BOOLEAN VARIABLE

� Although drawn as a 2-D diagram the edges wrap round left-right 
and top-bottom.

A
1

r0 r4

r1 r5

00
BC 0

r2 r6

r3 r7

01

10

11

WRONG!!!

row 4 of 
truth table
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3-Variable K-Map

Row  A B C     F(A,B,C)     
0       0  0 0       1  
1       0  0 1       0
2       0  1 0       1
3       0  1 1       0
4       1  0 0       0
5       1  0 1       0
6       1  1 0       1
7       1  1 1       0

A
1

1 0

0 0

00
BC 0

0 0

1 1

01

11

10

F(A,B,C) = Σ m(0,2,6)

sum of minterms

B

C

A

AbC
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Plotting 4-Variable Functions

Row  A B C D     F(A,B,C,D)     
0       0 0  0 0       ?  
1       0 0  0 1       ?
2       0 0  1 0       ?
3       0 0  1 1       ?
4       0 1  0 0       ?
5       0 1  0 1       ?
6       0 1  1 0       ?
7       0 1  1 1       ?
8       1 0  0 0       ?  
9       1 0  0 1       ?

10      1 0  1 0       ?
11      1 0  1 1       ?
12      1 1  0 0       ?
13      1 1  0 1       ?
14      1 1  1 0       ?
15      1 1  1 1       ?

AB
01

? ?

? ?

00
CD 00

? ?

? ?

01

11

10

? ?

? ?

? ?

? ?

11 10

AB

r0 r4

r1 r5

00
CD

r3 r7

r2 r6

01

11

10

r12 r8
r13 r9
r15 r11

r14 r10

0100 11 10
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Plotting 4-Variable Functions

Row  A B C D     F(A,B,C,D)     
0       0 0  0 0       0 
1       0 0  0 1       0
2       0 0  1 0       1
3       0 0  1 1       1
4       0 1  0 0       0
5       0 1  0 1       0
6       0 1  1 0       1
7       0 1  1 1       0
8       1 0  0 0       0  
9       1 0  0 1       0

10      1 0  1 0       1
11      1 0  1 1       0
12      1 1  0 0       0
13      1 1  0 1       0
14      1 1  1 0       0
15      1 1  1 1       1

AB
01

0 0

0 0

00
CD 00

1 0

1 1

01

11

10

0 0

0 0

1 0

0 1

11 10

ABcd

F =Σ m(2,3,6,10,15)
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Minimization via K-Maps

Row  A B C     F(A,B,C)     
0       0  0 0       0  
1       0  0 1       0
2       0  1 0       1
3       0  1 1       0
4       1  0 0       0
5       1  0 1       0
6       1  1 0       1
7       1  1 1       0

A
1

0 0

0 0

00
BC 0

0 0

1 1

01

11

10

F(A,B,C) = ΣΣΣΣ m(2,6)
= AbCAbCAbCAbC + + + + abCabCabCabC
= bC(A+abC(A+abC(A+abC(A+a))))
= bCbCbCbC

Boolean adjacency can be used to minimize functions!
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Simplification using  K-Maps

� Grouping blocks of ‘1’

� A group must consist of 16,8,4,2 or 1 cells

� Each cell must be horizontally and/or vertically adjacent to cells in 

the other group

� Always include the largest number of ’1’s in a group

� Each ’1’ in the map should be included in a group

� Groups can overlap

� Map edge cells connect in a loop to cells at the opposite edge

� Naming groups

� The product description for a group will include ALL variables that 

are CONSTANT over the group

� For example, for a 4-variable map

� An 8-cell group is described by a 1-variable product term

� An 4-cell group is described by a 2-variable product term

� An 2-cell group is described by a 3-variable product term

� An 1-cell group is described by a 4-variable product term
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Groupings on  K-Maps

� Grouping can be read DIRECTLY as 
“BC” by looking at what is COMMON within the circled group.

F(A,B,C) = bCbCbCbC

1

0 0

0 0

00
BC 0

0 0

1 1

01

11

10

A
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Example Groupings on  3-Variable K-Maps

1

1 0

1 0

00
BC 0

0 0

0 0

01

11

10

A

1

1 1

1 1

00
BC 0

0 0

0 0

01

11

10

A

1

1 1

0 0

00
BC 0

0 0

1

01

11

10 1

F(A,B,C) =

F(A,B,C) = 

F(A,B,C) =
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Multiple Groupings

1

1 0

1 1

00
BC 0

0 0

0 0

01

11

10

Try to cover all ‘1’s with 
largest possible groupings. 

1

0 1

0 0

00
BC 0

1 0

1 0

01

11

10

Groupings of only a single ‘1’ are ok if 
larger groupings cannot be found.

A

A

F(A,B,C) =

F(A,B,C) =
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Illegal Groupings

� Valid groupings will always be a power of 2.  

� will cover 1, 2, 4, 8, etc minterms.

1

1 0

0 1

00
BC 0

0 0

0 0

01

11

10

A

Illegal Grouping! Minterms
are not boolean adjacent!

ABC, aBc will NOT reduce to a single product term

ABC + aBc = B(AC+ac)
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Groupings on four Variable Maps

AB
01

0 0

0 0

00
CD 00

1 0

1 1

01

11

10

0 0

0 0

1 0

0 1

11 10

F(A,B,C,D) =
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Other Groupings

AB
01

1 0

1 0

00
CD

00

1 0

1 0

01

11

10

0 1

0 1

0 1

0 1

11 10

F (A,B,C,D) =

A

B

C

D
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More than one way to group…..

AB
01

1 1

1 0

00
CD 00

1 0

1 1

01

11

10

1 1

0 1

0 1

1 1

11 10

F (A,B,C,D) =  Bd + CD + cD

F (A,B,C,D) =  B + D

Want LARGEST groupings 
that can cover ‘1’s.

AB
01

1 1

1 0

00
CD 00

1 0

1 1

01

11

10

1 1

0 1

0 1

1 1

11 10
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Four Corner Grouping on 4-Variable Map

AB
01

1 0

0 0

00
CD 00

0 0

1 0

01

11

10

0 1

0 0

0 0

0 1

11 10

F (A,B,C,D) =

4 Corner 
grouping is valid 
on four variable 
map
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K-map Definitions

� Implicant

� Any single 1 or any group of 

1’s is called an implicant of F.

� Any possible grouping of ‘1’s is 

an implicant.  

1

0 1

0 0

00
BC 0

1 1

1 1

01

11

10

A
aBC

bc

bbbb

1

0 1

0 0

00
BC 0

1 1

1 1

01

11

10

A
aC

b

� Prime Implicant

� A implicant that cannot be 

combined with some other 

implicant to eliminate a 

variable   
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Minimum Sum-Of-Products (SOP)

� The minimum SOP expression consists of some (but not 
necessarily all) of the prime implicants of a function.  

� If  a SOP expression contains a term which is NOT a prime 
implicant, then it CANNOT be minimum.  
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Prime Implicants

Minimum SOP will have some or all of these prime implicants.  
The included prime implicants must cover all of the ONEs.

F(A,B,C,D)  =  bC +   ABd (minimum set of PIs) 
=  bC + ABd + ACd (valid set of PIs, but not minimum)
≠≠≠≠ ABd + ACd (both PI’s, but all ‘1’s not included!)

AB
01

0 1

1 1

00
CD 00

1 0

0 0

01

11

10

1 0

1 0

0 0

0 0

11 10
EACH of these coverings is a PRIME 
IMPLICANT (i.e. cannot be reduced)

bC ,      ACd ,    ABd
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Non-Essential vs. Essential Prime Implicants

� NON-ESSENTIAL prime implicant

� Prime Implicant ACd is non-essential because its ‘1’s are covered by 

other PIs .  A PI is ESSENTIAL if it covers a MINTERM that cannot be 

covered by any other PI.

AB
01

0 1

1 1

00
CD 00

1 0

0 0

01

11

10

1 0

1 0

0 0

0 0

11 10
EACH of the coverings is a 
PRIME IMPLICANT .

bC ,      ACd ,    ABd

F(A,B,C,D)  =  bC +   ABd (minimum # of PIs)
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An example with more than one solution

AB
01

1 1

1 1

00
CD 00

0 1

0 0

01

11

10

0 0

0 0

1 1

0 0

11 10 EACH of the coverings is a 
PRIME IMPLICANT .AC 

Abd bcd

acd

Recall that a covering is a Prime Implicant if it cannot 
be combined with another covering to eliminate a 
variable.
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Two Solutions

AB
01

1 1

1 1

00
CD 00

0 1

0 0

01

11

10

0 0

0 0

1 1

0 0

11 10
EACH solution is equally valid.

F(A,B,C,D) =  AC + acd + Abd

AB
01

1 1

1 1

00
CD 00

0 1

0 0

01

11

10

0 0

0 0

1 1

0 0

11 10

F(A,B,C,D) =  AC + acd + bcd

Essential PIs

Non-Essential 
PIs
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Minimal Solution

� A minimal SOP will consist of prime implicants.

� A minimal SOP equation will have all of the essential prime 
implicants on the map.  By definition, these cover a minterm
that may not be covered by some other prime implicant.

� The minimal SOP equation may or may not include non-
essential prime implicants.  It will include non-essential prime 
implicants if there are ‘1’s remaining that have not been 
covered by an essential prime implicant.


