OCDMA with advanced modulation formats

Xu Wang
School of Engineering and Physical Sciences
Heriot-Watt University, Edinburgh, UK

Special thanks
Prof. K. Kitayama, Osaka University
Dr. N. Wada, NICT
Acknowledgements

Collaborators
Prof. G. Cincotti, University of Roma Tre
Dr. T. Miyazaki, NICT
Mr. A. Nishiki and K. Sasaki, OKI Electronic Ltd
Dr. A. Sakamoto, Fujikura Ltd

Students
Mr. K. Matsushima, Osaka University (now NTT west Japan)
Mr. T. Hamanaka, Osaka University (NHK)

Technical supporters
Mr. Y. Tomiyama, Mr. T. Makino and Mr. H. Sumimoto, NICT
Outline

- Background
- DPSK/DQPSK-OCDMA
- CSK-OCDMA
- Summary
The last mile problem

Bandwidth requirement for next-generation services (ethernet, video, voice and etc.)

Optical access

Promising for future last mile networks.

TDMA
Time-Division-Multiple-Access

SCMA
Sub-Carrier-Multiple-Access

WDMA
Wavelength-Division-Multiple-Access

OCDMA
Code-Division-Multiple-Access

Nov.7, 2007 X. Wang

OPS&OCDMA WS07@Tokyo, Japan
Features and advantages of OCDMA

- All optical processing
- Fully asynchronous transmission
- Low-latency access
- Dynamic allocation of bandwidth
- Protocol transparency
- Decentralized architecture
- Soft capacity on demand
- Physical layer QoS Control
- Potential confidentiality
Classification of OC processing techniques

By coding dimension

1-dimensional
Time-spreading (TS)

2-dimensional

By operating principle

Incoherent

Coherent

Channel 1
Channel 2
Channel N

Incoherent: FDL, PLC, SSFBG, AWG

Coherent: SLM, FBG, AWG, MRR

Nov. 7, 2007 X. Wang
OOK-OCDMA: Coherent coding, OOK data format

\[Z = T_c \Re P_d + T_c \Re \sum_{i=1}^{m} P_i + 2\Re \sum_{i=1}^{m} \sqrt{P_d P_i} \int_{0}^{T_c} \cos(\omega_{i,d}(t, \tau_i) + \phi_{i,d}(t, \tau_i)) dt + 2\Re \sum_{j=i+1}^{m} \sum_{i=1}^{m-1} \sqrt{P_d P_j} \int_{0}^{T_c} \cos(\omega_{i,j} t + (\omega \tau)_{i,j} + \phi_{i,j}(t, \tau_{i,j})) dt + \int_{0}^{T_c} n_0(t) dt \]

Signal MAI Signal-interference beat noise Interference-interference beat Noise Receiver noises

Nov.7, 2007 X. Wang

OPS&OCDMA WS07@Tokyo, Japan
Issues with OOK-OCDMA

a. MAI and beat noise

Data-rate detection in presence of MAI and beat noises
Noise tolerance enhancement

b. Vulnerable confidentiality

Eavesdropper
Data-rate power detection
Break without code information

C. K estimation and dynamic Th setting Requirement

Complexity and cost

Advanced modulation formats (DPSK, DQPSK, CSK, M-ary CSK)
DPSK/DQPSK-OCDMA

DPSK-OCDMA: Coherent coding, Differential-phase-shift-keying data format

[Diagram of DPSK-OCDMA system with components labeled: Data, Optical PG, DPSK encoder, PM, Star Coupler, OCDMA Encoder, OCDMA Decoder, Interferometer, PD, 1-bit delay, MAI, Beat, Signal, Thermal, Shot, Noises, Integrals, and other related components.]
Performance improvement of DPSK-OCDMA

Theory

Number of active users

OOK, opt Th

511 chip

OOK, fix Th

DPSK

BER=6e-5

~4 dB improvement

-36
-32
-28
-24
-20

10
15
20
25
30
35

66
99
1717

Experiment

Maximum interference number (\(K\)) for BER=6\times10^{-5}

Single interference level \(\xi_1\), dB

3~4 dB improvement

Experimental set up of WDM/DPSK-OCDMA

- MLLD 1550.2 nm
- MLLD 1553.4 nm
- MLLD 1556.6 nm
- Tunable optical delay line
- Phase modulator
- LN-PM
- Bandpass filter
- PC
- WDM
- Spectrum
- 3.2 nm (400 GHz)
- 1nm/div
- Delay: 0, 10, ..., 160 m
- Port 1
- Port 16
- VOA
- Multi-ports OCDMA Encoder
- Pattern Generator/ BER
- Pattern Generator/ BI
- Pattern Generator/ BER test
- Pattern Generator/ Pattern Generator/ BER
- Interferometer (10.71 GHz)
- 20 ps/div
- Bandpass filter
- PC
- DPSK Encoder
- RF Amp.
- LN-PM
- Koganei
- Tokyo
- Koganei
- Yokohama
- Chiba
- Metro area
- 100 km installed fiber
- Tokyo
- Koganei
- 50 km
- 10.71 GHz
- Clock
- 20 ps/div
- 1 nm/div
- 400 GHz
- DPSK detection
- (30 GHz, 10.71 GHz)
- Bandpass filter
- Interferometer
- (−93 ps)
- 5 nm
- 20 ps/div
- Optical switch
- Waveform
- 3 WDM, 12 OCDMA, 10.71 Gbps/user
- Data Clock
- 20 ps/div
- 10 km
- SMF
- 20 nm
- 400 GHz
- Programmable OCDMA Decoder
- Code 4, 8, 12, 16
- Field area
- Metro area
- 100 km installed fiber
- Tokyo
- Koganei
- 50 km
- 100 km installed fiber
- Tokyo
- Koganei
- 50 km
- 100 km installed fiber

* X. Wang, et al, OFC’06 postdeadline, PDP44, 2006

Koganei

Tokyo, Japan
Back-to-back BER performance

Spectral efficiency (η) ≈ 0.32 bit/s/Hz
Field transmission BER performance

Asynchronous environment
- Balanced power
- Random delay
- Random bit phase
- Random polarization state

Worst-case scenario
\[\eta \approx 0.27 \text{ bit/s/Hz} \]
Tera-bit WDM/OCDMA field trial

* X. Wang, et al, OFC’07 postdeadline, PDP14, 2007
Field transmission BER performance

OCDMA #: 25
Total capacity: 1.24 Tbps
\[\eta \approx 0.41 \text{ bit/s/Hz} \]
DQPSK-OCDMA experiment

- Sync. DQPSK-OCDMA
- 4OCDMA*2PolM
- FEC
- $\eta \approx 0.87 \text{ bit/s/Hz}$

*J. Jackel et al, OFC’07 postdeadline, PDP7, 2007
CSK-OCDMA

CSK-OCDMA: Coherent coding, Code-shift-keying data format

Proposed scheme

Two-dimensional operation

OPS&OCDMA WS07@Tokyo, Japan
Experimental setup

OPS&OCDMA WS07@Tokyo, Japan
Enhanced confidentiality

OOK

CSK-BD

Eye opening

Eye closure

Nov. 7, 2007 X. Wang

OPS&OCDMA WS07@Tokyo, Japan
Enhanced multi-user capability

Decoder port 1 (Mark 0) Decoder port 8 (Mark 1) Balanced detection

K=1

K=8
BER performance

(a) LOG(BER) vs. Received Power, dBm

(b) PP, dB vs. Number of active users, K

Decoder #6

FEC OFF

FEC ON

K=1 K=4 K=8 K=12

K=14

Received power, dBm

* X. Wang, et al, ECOC’05 postdeadline, Th 4.5.3, 2005

Nov. 7, 2007 X. Wang

OPS&OCDMA WS07@Tokyo, Japan
M-ary CSK-OCDMA

Summary

- Novel OCDMA schemes with DPSK, DQPSK, CSK and M-ary CSK data formats have been proposed and experimentally demonstrated.

- Performance improvement over OOK-OCDMA:
 1. Improved receiver sensitivity;
 2. Better tolerance to beat noise and MAI noise;
 3. No need for optical thresholding;
 4. No need for dynamic threshold level setting;
 5. Enhanced confidentiality.

- High capacity asynchronous OCDMA experiments with DPSK and CSK data format.

- Further Enhancement: multi-level modulations (DQPSK, M-ary CSK, etc).
Thank you!

Nov.7, 2007 X. Wang

OPS&OCDMA WS07@Tokyo, Japan