
International Journal of Modern Physics B 

Vol. 23, Nos. 6 & 7 (2009) 1345–1351 

 World Scientific Publishing Company 

1345 

COMPUTATIONAL DESIGN FOR MULTIFUNCTIONAL 

MICROSTRUCTURAL COMPOSITES 

YUHANG CHEN, SHIWEI ZHOU, QING LI* 

School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney,                              

Sydney, NSW 2006, Australia 
*Q.Li@usyd.edu.au 

Received 28 November 2008 

As an important class of natural and engineered materials, periodic microstructural composites have 

drawn substantial attention from the material research community for their excellent flexibility in 

tailoring various desirable physical behaviors. To develop periodic cellular composites for 

multifunctional applications, this paper presents a unified design framework for combining stiffness 

and a range of physical properties governed by quasi-harmonic partial differential equations. A 

multiphase microstructural configuration is sought within a periodic base-cell design domain using 

topology optimization. To deal with conflicting properties, e.g. conductivity/permeability versus 

bulk modulus, the optimum is sought in a Pareto sense. Illustrative examples demonstrate the 

capability of the presented procedure for the design of multiphysical composites and tissue scaffolds. 
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tissue engineering; cellular materials. 

1.   Introduction 

As innovative technologies rapidly emerge, multifunctional demands are increasingly 

placed on the material systems involved. However, the development of novel engineered 

materials for an array of desirable physical properties is rather challenging and often 

involves a laborious trial-and-error process in material design and characterization, 

making empirical or experiment-based methods sometimes uneconomic (if not infeasible). 

Periodic microstructural composites have gained substantial attention for their advantages 

in design and fabrication, signifying a class of promising multifunctional cellular 

materials. In this respect, computational modeling has become a major alternative to 

experimental methods for developing new materials, where finite element based 

homogenization and its inverse form exhibit special promise.  

Pioneered by Sigmund, the inverse homogenization method
1
 aims to achieve specific 

physical properties by tailoring the microstructural configuration of a representative 

volume element (RVE) or periodic base cell (PBC). The idea is to minimize the 
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difference between the target and homogenized properties within a topology optimization 

framework. Over the last decade, considerable efforts have been devoted to this area with 

a special focus on various individual physical properties
2
, including extremal bulk/shear 

modulus, negative Poisson’s ratio, conductivity and permeability. Although some studies 

consider the design of competing material properties, e.g. thermal and electrical 

conductivities
3,4

, stiffness and conductivity
5,6

 and stiffness and permeability
7
, few 

specifically address the mathematical equivalence for quasi-harmonic fields
8,9

. This paper 

presents a unified inverse homogenization procedure incorporating the aforementioned 

physical properties and their combinations with the elasticity tensor to design 

multifunctional composites for engineering applications.  

2.   Materials and Methods 

For many steady state scalar fields, as summarized in Table 1, the governing equation 

commonly takes the following quasi-harmonic form
9
  

 div( ) 0Qκ φ∇ + =  (1) 

where φ denotes the known scalar function and κ the media properties. It is noted that for 

vector fields of the elastostatic problem, the equilibrium equation, ( )div( : ) 0C u bε + = , 

takes a similar form to the quasi-harmonic Eq. (1).  

Table 1. Steady state scalar fields governed by the quasi-harmonic equation. 

Scalar field Unknown(φ) Coefficient (κ) Constant (Q) 

Heat transfer  Temperature Thermal conductivity Internal heat source 

Incompressible flow Stream function Unity Twice the vorticity 

Incompressible flow Velocity potential Unity Zero 

Gas Diffusion Concentration Diffusivity Zero 

Elastic torsion Stress function (Shear modulus)-1 Twice the rate of twist 

Seepage flow Hydraulic head Permeability Zero 

Electric conduction Voltage Electric conductivity Zero 

Electrostatics Permittivity Charge density Zero 

Magnetostatics 

Incompressible lubrication 

Magnetic potential 

Pressure 

Reluctivity 

(Film thickness)3/viscosity 

Charge density 

Lubricant supply 

Linear elastostatics  Displacement (u)  Elasticity tensor (C) Force (b) 

 

The homogenization method has proven effective for calculating the effective 

properties of a PBC with given composition and configuration. Based upon the 

asymptotic expansion and periodicity assumption
2
, the homogenization procedure 

calculates the effective elasticity tensor within the finite element framework as 
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where Ω denotes the total volume of the design domain, 
H

ijkl
C  the homogenized elasticity 

tensor and e

s
C  the elemental elasticity tensor interpolated by empirical formula, e.g. solid 

isotropic material with penalization (SIMP) method
10

. 0( )

0
( )e iju ε  and *( )( )e iju ε  are the 

nodal displacements induced by the unit test strain 0( )ijε  and fluctuation strain *( )ijε , 

respectively
2,5

. 

Similarly, the effective properties of a quasi-harmonic field can be computed as
11
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where 
H

ij
K  and e

c
κ  are the homogenized and local elemental property tensors, 

respectively, and 
i

χ  is a solution to the following characteristic equation, similar to  

Eq. (1)
5
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Conversely, the inverse homogenization aims to tailor PBC configuration for one or 

more specific (or extremal) physical properties
1,2

. It is often formulated to either 

maximize objective properties or minimize the squared difference between the target 

(normally on the material bounds) and homogenized values
5,11

. 

Having defined the effective properties for vector (Eq. (2)) and scalar (Eq. (3)) fields, 

the design of multifunctional microstructural materials can be formulated as a topology 

optimization problem given by      

  
1

min

. .

M

r rr
J w f

s t d Vρ

=

Ω

 =


Ω =

∑

∫
 (5) 

where the weights satisfy Σwr=1, f r  denotes the rth normalized objective property, M the 

number of properties involved, and V the volume constraint. By varying the weights, one 

can obtain a series of solutions, thereby determining a Pareto front for competing 

properties. To solve the topology optimization in Eq. (5) and avoid checkerboarding, the 

method of moving asymptotes (MMA)
12

 and a filter technique
13 

are adopted herein.  

3.   Results and Discussion 

Although the methodology described in this paper allows us to design microstructural 

materials for any meaningful and sensible physical properties, given in Table 1, and their 

combinations, we will restrict our attention to heat/electrical conductivity, fluid 

permeability and their combination with the stiffness objectives for demonstrative 

purposes. It is noted that the same homogenization (Eq. (3)) and sensitivity equations
5,11

 

can be applied for both conductivity and permeability designs due to their mathematical 

equivalence, given by Eq. (1), making the numerical procedure established here more 

versatile. 
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Owing to the cubic symmetry in 3D, 1/8 of the PBC is discretized into 20×20×20 8-

node elements with symmetric and periodic boundary conditions in the following 

examples.  

3.1.   Composite design for maximum bulk modulus and conductivity 

As one of the most typical engineered materials, thermal or electrical conductors with a 

degree of mechanical stiffness are of particular interest. It is assumed that the high 

stiffness material has a low conductivity (i.e. E1=20 and k1=1, in red/dark color in the 

color /black and white pictures below), while the high conductivity material has a low 

stiffness (i.e. E2=1 and k2=20, in green/light color)
5,6

. This example generates a Pareto 

optimum for the competing properties of bulk modulus Cb and conductivity Kc by 

formulating the design problem as 

         
11min −− +=+= ccbbccbb KwCwfwfwJ .  (6) 

To deal with intermediate properties during the design, three different schemes, 

namely arithmetic and Hashin-Shtrikman (H-S) upper and lower bounds
11

, are considered 

for conductivity, but only the arithmetic bound (i.e. E (ρ)=ρ p
E 1+(1–ρ)

p
E 2 ,  p=3) for 

the Young’s modulus
2
. It should be pointed out that the material interpolation schemes 

affect the final results. Table 2 summarizes these effects on the resultant PBC 

configurations for the fully-conductive (wb=0; wc=1) and fully-stiff (wb=1; wc=0) designs 

in separate phases. It is observed that as a benchmark problem, the stiffer material forms 

the matrix to maximize the bulk modulus in the fully-stiff design; while the conductive 

material forms the matrix in the fully-conductive design. In both cases, the opposite 

phase is developed as an inclusion to minimize its influence on the overall objective. 

Table 2. Effects of interpolation schemes on design of base cell (2×2×2). 

 
Full conductivity 

(Arithmetic) 

Full conductivity 

(H-S upper) 

Full conductivity 

(H-S lower) 

Full stiffness 

(Arithmetic) 

Phase I 

(E1=20, k1=1) 

    

Phase II 

(E2=1,k2=20,) 

    

 

By varying one of the weights in Eq. (6), from 0 to 1, a series of topologies are 

obtained for different conductivities and bulk moduli. Figure 1 plots the Pareto fronts
 
in 

the normalized function space for these three different interpolation schemes. All these 
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three curves are consistently convex, demonstrating the effectiveness of using the linear 

weighting formulation, (Eq. (6)), for solving the multifunctional optimization problem. 

From this example, it appears that the arithmetic interpolation provides the best Pareto 

optimum. 

 

Fig. 1. Pareto fronts for bi-objective designs with different material interpolation schemes. 

3.2.   Scaffold design for the specific stiffness tensor and maximum permeability 

The design and fabrication of porous biomaterials has been a key to the success of 

scaffold tissue engineering. A scaffold must provide certain stiffness to support in-vivo 

implantation and high permeability to maximize nutrient delivery and metabolite removal. 

This example applies inverse homogenization to the design of periodic scaffolds.  

To determine the stiffness target, two samples of bone tissue, namely human iliac 

crest (HIC) bone (75% porosity) and mini-pig trabecular (MTR) bone (49% porosity)
14

 

are exploited herein. As per the previous example, solid and void materials represent the 

scaffold (E1=Escaffold) and tissue hydrolysate (Etissue=10
-3

E1), respectively. The objective 

function is formulated in terms of the difference between the homogenized (C
H
) and 

target stiffness (C
*
) tensors as well as the maximization of the permeability tensor Kp as,  

 
12*][min −+−=+= pp

H
sppss KwCCwfwfwJ . (7) 

where ws and wp are weighting factors, which in this formulation also contain the 

normalization of individual objective components. Considering properties of general 

biomaterials, a Young’s modulus of Escaffold=6GPa
14,15

 is adopted for the scaffold design.  

Table 3 summarizes the design results. It is clear that there is good overall agreement 

between the target and effective stiffness tensors in all the design cases. Inclusion of the 

permeable criterion in Eq. (7) improves the overall permeability by over 10% for both the 

HIC scaffold and MTR scaffold in Table 3. In particular, in the lower porosity MTR case, 

excluding the permeability criterion leads to a blind channel in the vertical direction, 

rendering the scaffold non-functional in this course.  
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4.   Concluding Remarks 

Many physical problems can be described by either vector or scalar fields that are 

commonly governed by analogical partial differential equations. To develop novel 

periodic cellular materials with such fields, a unified design framework is presented to 

seek desirable physical properties. A multiobjective topology optimization is formulated 

Table 3. Two different scaffold designs with or without permeability criterion. 

 HIC HIC (wp=0)  MTR MTR (wp=0) 

Base cell 

topology for 

scaffold 

    

Porosity 75.5% 75.0% 50.6% 50.0% 

E11/E11Target 409.8793/410 409.1434/410 1061.15/1050 1050.10/1050 

E22/E22Target 289.9245/289 289.9633/289 2020.34/2025 2026.11/2025 

E33/E33Target 155.5836/155 155.1509/155 2072.45/2050 2051.18/2050 

G13/G13Target 74.1289/75 73.4130/75 652.29/750 744.14/750 

G23/G23Target 89.7344/90 89.7777/90 327.54/500 497.34/500 

G12/G12Target 124.7524/125 124.6076/125 293.22/500 499.96/500 

Permeability 65.1823 58.7146 45.9645 40.6237 

 

to solve such cellular material design problems. Two examples are presented: the first 

seeks a Pareto optimum for the two competing properties of bulk modulus and 

conductivity, and the second devises scaffolds for load-bearing tissue engineering with 

targeted stiffness and maximum permeability. Both examples demonstrate the capability 

of the proposed unified design framework. It is noted that all these designed PBC 

composites can be materialized using free-form fabrication methods
14,15

. 
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