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Abstract

This paper aims to develop a level-set-based topology optimization approach for the design of negative permeability electromagnetic
metamaterials, where the topological configuration of the base cell is represented by the zero-level contour of a higher-dimensional level-
set function. Such an implicit expression enables us to create a distinct interface between the free space and conducting phase (metal). By
seeking for an optimality of a Lagrangian functional in terms of the objective function and the governing wave equation, we derived an
adjoint system. The normal velocity (sensitivity) of the level-set model is determined by making the Eulerian derivative of the Lagrangian
functional non-positive. Both the governing and adjoint systems are solved by a powerful finite-difference time-domain algorithm. The
solution to the adjoint system is separated into two parts, namely the self-adjoint part, which is linearly proportional to the solution of
the governing equation; and the non-self-adjoint part, which is obtained by swapping the locations of the incident wave and the receiving
planes in the simulation model. From the demonstrative examples, we found that the well-known U-shaped metamaterials might not be
the best in terms of the minimal value of the imaginary part of the effective permeability. Following the present topology optimization
procedure, some novel structures with desired negative permeability at the specified frequency are obtained.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Metamaterials signify a new and special class of artificial
periodical structures fabricated in a micro- or even nano-
scale to obtain such extraordinary electromagnetic proper-
ties as negative permeability and/or negative permittivity at
megahertz or optical frequency. The theoretical framework
was proposed by Veselago [1] as early as the 1960s, but had
not attracted much attention due to the inexistence of such
materials until recently. After long-time research for the
media with sophisticatedly shaped inclusions (e.g. x-like
shape in Ref. [2]), a novel composite with bi-helix-shaped
conducting inclusion was devised by Lagarkov in 1997,
which was found to have negative permeability experimen-
tally [3]. Two years later, Pendry et al. [4] numerically dem-

onstrated that a non-magnetic conducting microstructure
with double split ring resonators (SSRs) has negative per-
meability. Subsequently, Smith et al. [5] devised a compos-
ite medium with both negative permeability and negative
permittivity concurrently by assembling a periodic array
of interspaced SRRs and continuous wires. Their pioneer-
ing work has paved a new avenue to control electromag-
netic waves at will, thereby making some equipment
which was thought to exist only in myths, such as an invis-
ible cloak [6] and a super lens [7], physically possible.

The reason why metamaterials have such unusual prop-
erties is due to the electromagnetic resonances induced in
some specially designed structures over a spectrum of fre-
quencies. In addition to the SRR structures, many other
special structures (e.g. U-shaped, S-shaped and complex-
shaped base cell) were proposed and tested in different fre-
quency ranges [8–10]. The roles of these novel structures in
achieving desired functional performance and facilitating
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fabrication are evident. For example, the layered U-shaped
structures allow the generation of a certain level of negative
permeability and is fairly easy to be fabricated in nano-
scale for its relatively simple geometry [9]. In order to can-
cel out the resonant responses to the magnetic field but
keep those to the electric field, some simple structures with
uniaxial or biaxial symmetry layouts were also proposed,
as in Ref. [10]. Nevertheless, all the above-mentioned struc-
tures are devised empirically and such a trial-and-error
approach appears less efficient when seeking for some spec-
ified or extremized electromagnetic properties under more
complicated conditions.

Being aware of the challenges, some researchers
attempted to introduce various optimization techniques
into metamaterial design recently. By optimally distribut-
ing the void and conducting materials into the hexagon pix-
els, several magnetic and electric structures attaining the
target negative permeability/permittivity and negative
refractive index were obtained by using a non-gradient
genetic algorithm (GA), demonstrating the versatility and
applicability of optimization methods [11]. With the solid
isotropic material with penalization (SIMP) method
[12,13] that has been widely used in structural topology
optimization, several metamaterials with negative perme-
ability were designed by materializing the local elements
with metal phase or free space in the finite element frame-
work [14]. In the SIMP method, the sensitivity of the objec-
tive function with respect to the design variables were
derived by a two-step adjoint variable method [15] and
was applied to a gradient-based optimizer (namely, method
of moving asymptotes – MMA [16]) such that the objective
function can be minimized. Based upon an increasing pop-
ularity of the level-set technique [17] and its special features
in a range of fields [18–29], we attempted to develop a level-
set-based topology optimization algorithm for the electro-
magnetic metamaterial design in our previous study, where
some benchmark topologies were regenerated in a system-
atic way. The level-set algorithm demonstrated several
noticeable advantages, e.g. more smoothly capturing inter-
facial evolution and better accommodating an adaptive
mesh [26]. Nevertheless, our early work [25] was based on
an intuitive observation on a series of existing metamaterial
designs and was aimed to generate a desirable loop of cur-
rent flow on the metal surface for generating resonance,
where the objective function was not explicitly related to
the effective electromagnetic properties. Also the process
was governed by the electric field integral equation (EFIE)
and solved by the method of moment (MoM) [30] in an
adaptive triangular mesh rather than by Maxwell’s equa-
tions in the typical rectangular elements. Overall, in spite
of such above-mentioned attempts, the topology optimiza-
tion for metamaterials is still in its infancy and substantial
work is needed to make it more versatile and effective in
accommodating various specific design issues.

Compared with the density-based topology methods
that represent the structural configuration in a point or
piecewise fashion, the level-set method continuously cap-

tures the structural boundaries, which can be rather critical
to such complicated problems as electromagnetic metama-
terial design. With a given normal velocity, the boundaries
can be driven smoothly. In such an evolution process, the
topological variation of the structure can take place in a
more natural fashion whilst the objective function is mini-
mized. Due to these features, the level-set technique has
been widely used in a range of engineering problems [18–
26]. In the electromagnetic fields, one of the most prevalent
applications of the level-set method is perhaps in the non-
linear inverse problem [31], where the shape of an unknown
object can be reconstructed by minimizing the difference
between the electromagnetic fields scattered from the real
and the in-design objects. As this technique allows seeing
through the non-transparent objects, its engineering value
seems tremendous. Such success showed a great potential
to extend the level-set method to other electromagnetic
design [32,33].

The key to metamaterial design lies in constructing a
well-defined structural configuration so that the electro-
magnetic resonance can be induced and manipulated.
From the topology optimization point of view [34], an
objective function that is used to measure the metamaterial
performance should be minimized by materializing the
design domain (base cell) in either metal or free space prop-
erly. In this paper, the objective functions are formulated
directly in terms of the effective permeability or the least
square of the difference between the effective values and
their targets. It is noted that the objective functions for
metamaterial design appear to be rather sensitive to the
shape and topological change. We found that the objective
function can fluctuate drastically with the breakage of the
local connectivity in some critical elements [25]. Some
numerical tests even show that the effective permeability
can jump from negative to positive territory with only
one element changed. Thus, it is important to capture the
geometrical details of the metamaterials by using a proper
mesh size.

In this paper, we adopted a more efficient and widely
accepted algorithm in electromagnetics context, namely
the finite-difference time-domain (FDTD) method [35], to
solve both the governing equation, namely the vector wave
equation (one type of the Maxwell’s equations), and its
adjoint system. This method enables us to discretize the
base cell domain to a mesh size up to ny � nz = 64 � 64
in a general personal computer. For the adjoint system,
its solution is separated into two parts: (1) the self-adjoint
part that is linearly proportional to the solution of the gov-
erning equation, and (2) the non-self-adjoint part that is
obtained by swapping the locations of the incident wave
and the receiving planes in the numerical model. In this
paper, the adjoint system is derived from the optimality
condition of the Lagrangian functional in terms of the
summation of the objective function and the governing
equations at a saddle point. By making the Eulerian deriv-
ative of the Lagrangian functional non-positive, the normal
velocity of the level-set method can be defined. In this
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paper, we will show that starting from a number of ran-
domly distributed (but vertically symmetric) circular spots
the level-set method allows optimizing the size, shape
and topology concurrently. In addition to the U-shaped
configuration, several novel structures which attain the
target or minimal permeability are obtained through the
optimization.

Following this introduction, Section 2 defines the model
for metamaterial design and extracts the effective proper-
ties. Section 3 elucidates the level-set technique for meta-
material design and derives the normal velocity to
minimize the objective function. Section 4 presents a num-
ber of demonstrative examples based on the present level-
set topology optimization method. Finally, Section 5 draws
some conclusions.

2. Statement of the problem

In this section, we first set up a numerical model, aiming
to obtain the reflection and transmission coefficients that
are the basic parameters used to extract the effective elec-
tromagnetic properties for metamaterial design. Further-
more, the Maxwell’s equations are simplified to a
waveguide discontinuity model to facilitate the sensitivity
analysis in Section 3.

2.1. Simulation model

Metamaterials have been typically designed as a class of
composites constructed by periodically ranked base cells
(Fig. 1a). Since the electromagnetic properties of metama-
terials can be extracted from the base cell in Fig. 1b, we
would like to focus on this representative element. It is
noted that the extraordinary properties of metamaterials
come from the electromagnetic resonance when the inci-
dent wave impinges on the metal surface [1,4,5]. This pro-
cess can be illustrated in Fig. 1 as follows: (1) the design
domain governed by the Maxwell’s equations is a cube with

50 lm in the side length; (2) the metal (gold) structure is
printed within a 36 � 36 lm square base cell (dashed
square in Fig. 2) centrally located at the 50 � 50 lm sub-
strate made by semi-insulating gallium arsenide (GaAs);
(3) the metal surface is located at the y–z plane that is par-
allel to the electric field E but perpendicular to the mag-
netic field H; (4) a beam of incident wave is applied to
the cube on surface S1 and propagates along the z direc-
tion, namely the direction of Poynting vector k; (5) this
wave is transmitted to surface S2 and reflected back to
S1. Such a model has been validated experimentally and
numerically in literature [10]. This model implies that such
a metamaterial design can be modeled in a 2.5-dimensional
optimization problem, in which the base cell is optimized in
two dimensions while the Maxwell’s equations are solved in
three-dimensional space.

To study the effective properties of metamaterial, the
conducting material in the base cell is regarded as an obsta-
cle in the waveguide. In two-dimensional space, as shown
in Fig. 2, the cross-section of the cube defines a square with
a = 50 lm in width. The incident electric field EI ¼
E0yexp�jk0z1 is applied to S1 (z1 = �25 lm) and received
at S2 (z2 = 25 lm), where the magnitude of the electric field
is denoted as E0 and y = [0 1 0]T is a unit vector parallel to
the direction of the incident electric field. To make the elec-
tric field be a summation of the incident and reflected fields
at S1, the incident and receiving surfaces S1 and S2 should
be placed far enough from the boundaries of base cell [36].
In this model, the reflection coefficient S11 and transmis-
sion coefficient S21 are defined in terms of the distribution
of the electric field and the incident electric field over these
two surfaces S1 and S2, mathematically given by [36]

S11 ¼
2exp�jk0z1

a2E0

Z
S1

E � ydS � 2exp�2jk0z1 ð1Þ

S21 ¼
2expjk0z2

a2E0

Z
S2

E � ydS ð2Þ

k
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Fig. 1. The schematic of a traditional metamaterial: (a) constructed by periodically ranked base cells on the substrate; (b) the simulation model for the
base cell.
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For convenience of expression, the coefficients are usually
expressed in a logarithmic scale (i.e. decibel or dB), as
S11 = 20 log10 S11 and S21 = 20 log10 S21.

2.2. The waveguide discontinuities model

The governing Maxwell’s equations in the aforemen-
tioned model can be simplified to a vector wave equation
in terms of electric field E only, given by

r� ðr � EÞ � k2
0E ¼ 0 8 x 2 X0=X ð3aÞ

r � ð1=lrðxÞr � EÞ
� ðk2

0erðxÞ � jrðxÞxl0ÞE ¼ 0 8 x 2 X0 ð3bÞ

where domain X0 is a square with width a (Fig. 2). Bound-
ary oX0 represents the summation of six surfaces, namely
oX0 = S1 [ S2 [ Sp1 [ Sp2 [ Sp3 [ Sp4 (Fig. 1). The relative
permeability and permittivity of the gold at position x with
respect to the free space are denoted as lr and er, respec-
tively. The surface current flow will be induced on gold
material as it has a relatively high electrical conductivity
r. The wave number in free space is k0 ¼ x

ffiffiffiffiffiffiffiffiffi
l0e0
p ¼

2p=k0, in which x and k0 refer to the frequency and wave-
length of the incident wave. The permeability and permit-
tivity of free space are denoted as l0 and e0. For
conciseness of expression, the dependence of the properties
of materials on position x is hidden in the following equa-
tions. The continuity condition on free space/metal inter-
face for the electric field is

n� Ein ¼ n� Eout 8 x 2 C ð4Þ
ern � Ein ¼ n � Eout þ qs 8 x 2 C ð5Þ

where n is a unit vector normal on interface C and qs is sur-
face charge density. The electric fields inside or outside the
metal object but infinitely close to the interface C are de-
noted as Ein or Eout, respectively. The boundary conditions
are ni � E = 0 and ni � ($ � E) = 0 on the two sets of
opposite surfaces (SP1–2 and SP3–4) of the cube, where ni

(i = 1, 2, 3, 4) are the normal vectors to these surfaces.
Note that these boundaries act as a perfect electric conduc-
tor and a perfect magnetic conductor, which can reason-
ably reflect the periodicity for the metamaterials [37].

2.3. Effective properties

It is well-known that the effective permeability leff

depends on the effective impedance zeff and effective refrac-
tive index neff as

leff ¼ neff zeff ð6Þ

Based on the model proposed by Lubkowski et al. [38]
for the homogeneous metamaterial slab with width d, the
relations of the reflection coefficient (S11) and transmission
coefficient (S21) to the effective impedance and effective
refractive index are defined as

S11 ¼ ðzeff � z0Þ=ðzeff þ z0Þ ð7Þ

S21 ¼ exp �jxneff d=cð Þ ð8Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l0e0

p
and z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
are the velocity of

light and the impedance in free space (j ¼
ffiffiffiffiffiffiffi
�1
p

), respec-
tively. The effective permeability depends on the integrals
of electric field at the incident and receiving surfaces after
substituting Eqs. (7) and (8) into Eq. (6), given by

leff ¼
1þ R
1� R

jc
xd

logT ð9Þ

where

R¼ 1

2S11

1þS2
11�S2

21�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2S2

11�2S2
11S2

21þS4
11�2S2

21þS4
21

q� �

ð10Þ

T ¼ 1

2S21

1�S2
11þS2

21þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2S2

11�2S2
21S2

11þS4
11�2S2

21þS4
21

q� �

ð11Þ

In addition to this extraction method, other effective retrie-
val approaches, e.g. Ref. [39], are also applicable. Never-
theless, the above-mentioned method appears more
favorable as it suppresses some numerical problems raised
from other extraction methods, and more importantly, it is
applicable to both the single and double negative metama-
terials [38].

3. Level-set model and sensitivity analysis

This section first reviews the classical level-set model
proposed by Osher and Sethian [17] in 1988 and then
depicts its specific form for the application in metamaterial
design. In this paper, the normal velocity of the level-set
model is obtained by a sensitivity analysis of the objective
function with respect to time through solving an adjoint
system. Note that the FDTD method is used herein to solve
both the governing and adjoint equations.

3.1. Level-set model and relevant numerical issues

In the level-set model, the profile of a structure is implic-
itly expressed by the zero-level contour of a higher-dimen-
sional scalar function u(x). Mathematically, the level-set
function should be Lipschitz-continuous. As illustrated in

S1

a

a

Ω

Γ

Ω0 S2

SP1

SP

y
k

Base 
cell

S1

a

a

Ω

n

Γ

Ω0 S2

SP1

SP2

z

y
k

Base 
cell

Fig. 2. The schematic of the cross-section of the waveguide discontinuities
model.
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Fig. 3, the negative, zero and positive values of the level-set
function separate the design domain into three territories
as below:

uðxÞ < 0 8 x 2 X ð12aÞ
uðxÞ ¼ 0 8 x 2 C ð12bÞ
uðxÞ > 0 otherwise ð12cÞ

One of the main features of the level-set model is that a
complex shape can be embedded in a moving surface gov-
erned by the well-known Hamilton–Jacobi (HJ) equation:

@u
@t
þ V nkruk ¼ 0 ð13Þ

where ||$uk is the norm of the gradient of the level-set
function u and the normal velocity Vn will be derived from
the subsequent sensitivity analysis.

From the level-set model, the vector waveguide equation
in Eq. (3) is expressed as

vlðu; lrÞr �r� E� k2
0ve u; erð Þ � jxl0vr u; rð Þ

� �
E

¼ 0 8 x 2 X0 ð14Þ

where the characteristic functions vl, ve and vr depend on
u and the local electromagnetic properties as

vlðu; lrÞ ¼ HðuÞ þ ð1� HðuÞÞ=lr ð15aÞ
veðu; erÞ ¼ HðuÞ þ ð1� HðuÞÞer ð15bÞ
vrðu; rÞ ¼ ð1� HðuÞÞð1þ rÞ þ HðuÞ � 1 ð15cÞ

The Heaviside function H(u) is defined as

HðuÞ ¼
0 u < 0

1 u > 0

�
ð16Þ

Since the Heaviside function jumps from 0 to 1 discon-
tinuously at u = 0, it could result in singularity in numeri-
cal implementation. Thus an approximation function that
allows varying the change continuously from 0 to 1 within
a bandwidth of 2g is used in all the examples below, as

HðuÞ ¼
0 u < �g

ð1þ u=gþ sinðpu=gÞ=pÞ=2 otherwise

1 u > g

8><
>: ð17Þ

By multiplying Eq. (14) with a test function v in the vector-
valued Sobolev space on both sides and applying the first
vector Green’s theorem ha;r�r� biX0

¼ hr � a;r� biX0

�ha�r� b; ni@X0
, its weak form can be obtained as

aðE; vÞ � hvlv�r� E; ni@X0
¼ 0 ð18Þ

where aðE; vÞ ¼ vlr� E;r� v
� 	

X0
� k2

0ve � jxl0vr

� �
E; v

� 	
X0

and
ha; biX0

¼
R

X0
a � bdX denotes an inner product. Because

of the periodic boundary conditions on the walls (SP1–2

and SP3–4), the electric fields on these two sets of opposite
surfaces are identical but have opposite normal directions,
thus the surface integrals are cancelled out on these bound-
aries and Eq. (18) becomes

aðE; vÞ � hvlv�r� E; niS1[S2
¼ 0 ð19Þ

Note that the characteristic function vl can be dropped
because vl = 1 on surfaces S1 and S2, the relationship
becomes
ha�r� b; ni@X0

¼ hr � b; n� ai@X0
¼ �ha; n�r� bi@X0

and the boundary conditions are

n�r� Eþ jk0n� ðn� EÞ ¼ �2jk0EI 8 x 2 S1 ð20aÞ
n�r� Eþ jk0n� ðn� EÞ ¼ 0 8 x 2 S2 ð20bÞ

As a result, the weak form is ended up with

cðE; vÞ ¼ jk0 n� v; 2n� EI
� 	

S1
ð21Þ

where
cðE; vÞ ¼ aðE; vÞ þ jk0 n� v; n� Eh iS1

þ jk0 n� v; n� Eh iS2
:

3.2. The objective function and its sensitivity analysis

In order to seek an optimal topology for a desired per-
meability of metamaterials, the simplest choice of the
objective function J is the least square of the difference
between the target l* and the imaginary part of the effec-
tive Im(leff), read as

J ¼ 1=2ðImðleff Þ � l�Þ2 ð22Þ

One of the most important issues in metamaterial topol-
ogy optimization is how to derive the sensitivity of the
objective functional with respect to a perturbation induced

Fig. 3. The level-set function (left) and its zero-level contour (right).
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by the variation of metal material. By associating the gov-
erning wave equation with the objective function, we
obtained a Lagrangian functional, as

Lðt;E;wÞ ¼ 1=2 Imðleff Þ � l�
� �2 þRe vlr�r� E;w

� 	
X0




� k2
0ve � jxl0vr

� �
E;w

� 	
X0

�
ð23Þ

where the Lagrangian multiplier w is the solution to the
adjoint system of the waveguide equation, which will be
discussed later. In a common procedure of the level-set-
based electromagnetic problem [31–33], only the real part
(Re) of the waveguide equation is taken into account in
the Lagrangian functional. In fact, the consideration of
its imaginary part (Im) has the same effect on the
optimization.

The dependence of the time (t) in Eq. (23) is implicitly
expressed by the level-set function u in the characteristic
functions. According to the second vector Green’s theorem
ha;r�r� biX0

¼ hb;r�r� aiX0
� ha�r� b� b�r

� a; ni@X0
and the boundary conditions in Eq. (20), the

second term of the Lagrangian functional becomes

vlr�r� E;w
� 	

X0
¼ hvlE;r�r� wiX0

þ hvlE

�r� w; ni@X0
� hvlw�r

� E; ni@X0

¼ hvlE;r�r� wiX0
� hE; n

�r� wiS1[S2
þ hw; n�r

� Ei@X0

¼ hvlE;r�r� wiX0
� hE; n

�r� wiS1[S2
þ jk0hn� w; n

� E� 2n� EIiS1
þ jk0hn

� w; n� EiS2
ð24Þ

Since Eq. (24) is applicable to both the real and imagi-
nary parts, the real/imaginary symbol is not expressed
explicitly.

Mathematically, the original objective is formulated as
the min–max of the Lagrangian functional, read as [40]

J ¼ min
E

max
w

L ð25Þ

The optimality of the Lagrangian functional is located at a
saddle point, at which the partial derivatives of the
Lagrangian functional with respect to E and w should be
zero, as

@L
@ReðEÞ ¼

@L
@ImðEÞ ¼

@L
@ReðwÞ ¼

@L
@ImðwÞ ¼ 0 ð26Þ

Plugging Eq. (24) into the Lagrangian function and dif-
ferentiating it with respect to the real part of the electric
field and multiplying it by the test function v, we obtained

@L
@ReðEÞI;v
� 

X0

¼ 0

)hvlr�v;r�wiX0
�hv�r�w;niS1[S2

� k2
0ve� jxl0vr

� �
v;w

� 	
X0

�hv;n�r�wiS1[S2
þ jk0hn�w;n�viS1[S2

¼� v;
ðleff �l�Þ@leff

@ReðEÞ

� 
X0

) cðv;wÞ

¼�v � leff �l�
� � @leff

@ReðEÞI
� �

ð27Þ

where I is the unit vector. Eq. (27) is named as the adjoint
system of the vector waveguide equation.

Cuer and Zolésio [41] stated that the Eulerian derivative
of the Lagrangian function with respect to time t equals to
its partial derivative, specifically

dL=dt ¼ @Lðt;E;wÞ=@t ð28Þ
Since the dependence of this partial derivative on t is

uniquely associated with the level-set u in the characteristic
functions, we obtained

dL=dt ¼ Re 1� 1=lrð ÞH 0ðuÞr � E;r� wh iX0




� k2
0ð1� erÞ þ jxl0r

� �
H 0ðuÞE;w

� 	
X0

�
ð29Þ

where the Dirac function is given as H0(u) = (oH(u)/
ou)(ou/ot) = d(u)ou/ot. Since lr = er = 1 in X0/X, the ac-
tive domain in Eq. (29) is confined to X, as

dL=dt ¼ Re hð1� 1=lrÞH 0ðuÞr � E;r� wiXð

� ðk2
0ð1� erÞ þ jxl0rÞH 0ðuÞE;wiX

� �
ð30Þ

From the HJ equation, we thus obtained ou/ot = �Vnk$
uk. Furthermore, the relation of volume integral to surface
integral can be expressed asZ

X
V ndðuÞkrukdX ¼

Z
C

V n dX ð31Þ

Plugging the HJ equation and Eq. (31) into Eq. (30), we
obtain

dL=dt ¼ �Reðhð1� 1=lrÞV nr� E;r� wiC � hðk2
0ð1

� erÞ þ jxl0rÞV nE;wiCÞ ð32Þ

Since the metal material considered is gold with nearly
perfect conductivity, either electric or the adjoint field can-
not sustain inside the metal or its boundaries. Thus the last
term in Eq. (32) can be dropped, making the Eulerian
derivative of the Lagrangian functional read as

dL
dt
¼ �Reðhð1� 1=lrÞV nr� E;r� wiCÞ ð33Þ

When the normal velocity Vn in the level-set model is given
as

V n ¼ Reðhr � E;r� wiCÞ ð34Þ
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the Eulerian derivative becomes

dL=dt ¼ �ð1� 1=lrÞReðhr � E;r� wiÞ2C 6 0 ð35Þ
Eq. (35) is non-positive because lr > 1 for all conducting

materials. Thus it can drive the objective function towards
an optimum at which the effective permeability approaches
to the target.

3.3. Numerical implementation

Since the weak form of the adjoint system in Eq. (27)
has the same left-hand side as that of the governing equa-
tions in Eq. (21), we only considered its right side herein.
By using the chain rule, its right-hand side becomes

� v;
leff � l�
� �

@leff

@ReðEÞ

� 
X0

¼ � leff � l�
� �

� v �
@leff

@S11

@S11

@ReðEÞ þ
@leff

@S21

@S21

@ReðEÞ

� �
I

� �
ð36Þ

Thus the adjoint system can be separated into the following
two sub-adjoint equations as

cðv;w1Þ ¼ �
2exp�jk0z1 leff � l�

� �
a2E0

@leff

@S11

hn� v; n� yiS1

ð37Þ

cðv;w2Þ ¼ �
2expjk0z2 leff � l�

� �
a2E0

@leff

@S21

hn� v; n� yiS2
ð38Þ

The solution to the adjoint equation equals the summation
of the solutions to these two sub-adjoint equations due to
their linear relationship, namely w = w1 + w2. Compared
with the right-hand side of the weak form of the governing
equation jk0hn� v; 2n� EIiS1

, the right-hand side of Eq.
(37) is linearly proportional to that in Eq. (21). Thus, we
concluded that the first sub-adjoint system is self-adjoint
and its solution equals

w1 ¼ �
2exp�jk0z1 leff � l�

� �
a2E0

@leff

@S11

1

2jk0E0exp�jk0z1
E

¼
leff � l�
� �

k0a2E2
0

@leff

@S11

jE ð39Þ

By swapping the position of the incident (S1) and receiving
surfaces (S2) in the simulation model, the incident wave
and the right-hand side of the weak form become
EI ¼ E0yexpjk0z2 and �jk0hn� v; 2n� EIiS2

, respectively.
An electric field G can be obtained and the solution to
the second sub-adjoint equation equals

w2 ¼
2expjk0z2 leff � l�

� �
a2E0

@leff

@S21

1

2jk0E0expjk0z2
G

¼ �
leff � l�
� �

k0a2E2
0

@leff

@S21

jG ð40Þ

One of the most popular approaches to the solution of
the vector wave equation has been the FDTD method
[35], which is a finite difference algorithm with stable and

fast convergence. As FDTD is a well-established technique,
it is not discussed here. Interested readers can consult rele-
vant references.

4. Demonstrative examples

In addition to the objective function defined in Eq. (22),
where a target is expected to be attained, the minimal effec-
tive permeability will be sought in some examples below. A
volume constraint is used herein to avoid multiple solu-
tions, make the different stages of design more comparable,
and prevent large volume fraction fluctuations that may
lead to numerical instabilities. In this paper, the bi-section
algorithm [23] is used to maintain a nearly constant metal
volume. In addition to this technique, the Newtown’s
method was reported to be effective for such a constraint
in level-set model [22].

Since typical metamaterials have been usually singly
symmetrical, a geometrical constraint is applied to keep
the structure symmetric with respect to the horizontal
axis. The finest mesh adopted in the following examples
is ny � nz = 64 � 64, which is considered adequate to
capture the major geometrical features of the structures.
A finer mesh like ny � nz = 128 � 128 was tested but it
increased the computational cost drastically without evi-
dent improvement of the optimization results.

4.1. The objective function with targeted effective

permeability

The mesh size for the first example is ny � nz = 64 � 64
and the constraint of the volume fraction for metal (gold)
region is V0 = 0.1140. We first attempted to make the
imaginary part of the effective permeability attain the tar-
get of Im(leff) = �0.07 at the frequency of f = 0.62 THz.

As shown in Fig. 4, this example starts from a number of
randomly distributed circles with vertically symmetric con-
straint at iteration m = 0. Because some circles are overlap-
ping, the connected parts form a truss-like structure in the
first snapshot of Fig. 4 (the metal region is colored in green
in the base cell). The snapshots show that the level-set
model handles the topological changes rather smoothly
with the mergence of the circles and quickly shapes a dis-
tinct metal object at the early stage (m = 0–12). Corre-
spondingly, the reduction in the objective function is
quite evident in this stage (Fig. 5a), especially when topo-
logical change takes place. For example, when the left
bar breaks at iteration m = 22 (Fig. 4), the objective func-
tion drops quickly from 4.45 � 10�4 to 1.38 � 10�4

(Fig. 5a).
In this example, the shape optimization dominates the

subsequent evolution (m = 22–40) except some minor
topological variation (e.g. the disappearance of two small
holes inside the two arms from m = 21 to m = 28 in
Fig. 4). It is noted that the design only takes 30 iterations
to converge to an optimum. Nevertheless, we should bear
in mind that the convergent speed largely depends on a
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number of factors, such as the initial structure, band width
2g of the approximation to the Heaviside function in Eq.
(17) and the parameters of level-set method. Overall, all
the examples in this paper demonstrate that the optimiza-
tion can be converged fairly well.

Fig. 6 shows Im(leff) in a spectrum of frequencies in dif-
ferent iteration steps, which exhibit that the negative peak

of Im(leff) drifts from right to left with the attained Im(leff)
(denoted by black dots) approaching to its target closely
(red pentagram) at given frequency (f = 0.62 THz). In
addition to the above-mentioned phenomenon, it is noted
in Fig. 6 that the minimal value of Im(leff) in different steps
increases a bit as the optimization progresses. To have a
clearer view of the decrease of Im(leff) at f = 0.62 THz,

Fig. 4. The snapshots of the metal object in different iteration steps (Example 1).

Fig. 5. The convergences of the objective function for: (a) Example 1 and (b) Example 2.
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the part in the circled dashed zone is enlarged in a larger
insert view in Fig. 6.

Example 2 starts from a circle centrally located in the
base cell and confined to a volume fraction of V0 = 0.25
at m = 0 (Fig. 7). It is discretized into a mesh of
ny � nz = 32 � 32. We also attempted to make Im(leff)
attain –0.07 at f = 0.62 THz.

Fig. 7 shows the snapshots for this example. It is seen
that the evolution presents a shape optimization as it is
not easy for the level-set method to create new holes. Nev-
ertheless, it is noted that for some special initial designs
with multiple holes or separated parts, such as Example
1, topology optimization can be triggered and handled dur-
ing the evolution. In this example, the structure evolves

Fig. 6. Im(leff) in a spectrum of frequencies and at given frequency
(Example 1).

Fig. 7. The snapshots of the metal object in different iteration steps m (Example 2).

Fig. 8. Im(leff) in a spectrum of frequencies and at given frequency
(Example 2).
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from a circle to a rectangular shape with dents in the mid-
dle of the four edges in the early stage (m = 0–16). As the
optimization goes on, these four dents become deeper
and wider while those four corners extend longer and
longer (m = 16–49), gradually forming an X-shaped object
(m = 30). It is noted that the right corners extend them-
selves much further along their diagonal directions, contin-
uously from iteration m = 30 to m = 49; and finally form
an elegant scissor-like structure (m = 49).

From the value of Im(leff) at a spectrum of frequencies
in Fig. 8, we noted that the initial circular solid does not
have any negative Im(leff) over a spectrum ranging from
f = 0.5 THz to f = 1.7 THz. After the optimization, Im(leff)
drops to the negative territory over this spectrum and
attains a negative value as low as Im(leff) = �6 at
f = 1.56 THz. The enlarged insert (circled in red1 dashed
line) in Fig. 8 clearly shows that Im(leff) drops during the
optimization and its final value attains the target (red pen-
tagram) precisely. The convergence history for this example
is illustrated in Fig. 5b, which shows a quick and continu-
ous decrease in the objective function.

4.2. The objective function targeted for minimal effective

permeability

In addition to the above-mentioned objective function in
terms of the difference between the effective and target per-
meability, the level-set-based optimization method can be
also applicable to other forms of objective functions. In
this section, Im(leff) will be used as a cost function:

J ¼ Imðleff Þ ð41Þ

The following two examples aim to minimize Im(leff) at
a specific frequency f = 0.90 THz with different mesh sizes.

Example 3 (Fig. 9) starts from a vertical symmetry struc-
ture generated from several randomly distributed circles.
The volume constraint of V0 = 0.1182 and a mesh size of
ny � nz = 32 � 32 are adopted here. The snapshots in
Fig. 9 show that the circles merge rather quickly (m = 3)
and form a structure with one hole and two antennas
(m = 6). Then the hole breaks on the left-hand side
(m = 9) and finally shapes the structure into a well-known
U-shaped structure (m = 20). Interestingly, it shows that
some parts of the final structure (m = 20) appear relatively
thin, which induces high current flow density and reso-
nance that is in good agreement with our recent findings
in [25]. However, these thinner parts are quite easy to break

Fig. 9. The snapshots of the metal object in different iteration steps m (Example 3).

Fig. 10. Im(leff) in a spectrum of frequencies and at given frequency
(Example 3).

1 For interpretation of color in Figs. 1–4 and 6–14, the reader is referred
to the web version of this article.
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if the mesh size is not sufficiently fine. Nevertheless, the
optimization procedure can reconnect the broken parts in
the subsequent iterations, indicating that the optimization
reaches a fluctuant convergence.

The zoomed-in part in Fig. 10 clearly shows that Im(leff)
changes from �0.008 to �0.2411 at the specific frequency
f = 0.90 within the 20 iterations. In the mean time, Im(leff)
falls into the negative territory over a spectrum range of
f = 0.8–1.8 THz and the negative peaks of Im(leff) drift
from right to left during the optimization.

In Example 4 (Fig. 11), the design objective and param-
eters are the same as those in Example 3 except for the vol-
ume fraction (V0 = 0.25) and initial structure (a circle).
Since the optimization starts from the same circular struc-
ture as in Example 2, they come with a similar shape
change in the beginning of the optimization (m = 0–30).
Nevertheless, the topological variation takes place in the

late stage of Example 4, making the left scissors-like the
structure finally smashed out (m = 30–75). Whereas its
right part gradually evolves to a SRR-like structure with
a non-uniform thickness. Evidently, Im(leff) drops from
+0.001 to �0.3748 (Fig. 12a) during the optimization. In
the mean time, the real part of the effective permittivity
Re(eeff) falls into negative territory as well, rendering the
final structure (m = 91) a negative refractive index in the
frequency region as highlighted in blue in Fig. 12b.

Example 5 (Fig. 13) aims to minimize Im(leff) at a fre-
quency of f = 0.62 THz but with a finer mesh of
ny � nz = 64 � 64. The optimization starts from several
randomly distributed circles with a vertical symmetry and
some overlapping (V0 = 0.0977). The snapshots in Fig. 13
indicate that the central circles are reshaped into an I-
shaped structure in the first 20 iterations, while the random
circles on the boundaries gradually diminish (m = 0–30)

Fig. 11. The snapshots of the metal objects in different iteration steps m (Example 3).

Fig. 12. The effective properties in a spectrum of frequencies for: (a) the intermediate structures and (b) final structure (Example 4).
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and finally disappear after iteration m = 30. The left ends
of the I-shaped object enclose in iterations m = 20–30,
forming a small hole in the solid region. With the disap-
pearance of this hole, an elegant forceps-like structure is
developed (m = 50). But such a structure seems unstable
and quickly breaks into two separate parts (m = 70): the
left one shrinks gradually but does not disappear com-
pletely; the right part grows up along the diagonal direc-

tions and finally its two ends reach the bottom/top-right
corners (m = 200). Note that the right part of the structure
is actually a V-shaped object, which is fairly similar to the
commonly used U-shaped metamaterial structure.

Fig. 14a clearly shows Im(leff) changes from 0.0068 to
�0.1082 consistently during the optimization. Again, since
both Im(leff) and Re(eeff) fall into the negative territory, the
structure has a negative refractive index over a range of

Fig. 13. The snapshots of the metal object in different iteration steps m (Example 5).

Fig. 14. The effective properties in a spectrum of frequencies for: (a) the intermediate structures and (b) final structure (Example 5).
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frequencies (1.2–1.4 THz), as highlighted in blue region in
Fig. 14b.

Similar to the structures generated by the SIMP method
in Ref. [14], the level-set approach presented here also
yields a U-like topology when taking into account the effec-
tive permeability in the objective functions. It is noted that,
different from typical structural optimization, the reso-
nance frequency and effective permeability in the electro-
magnetic metamaterials can be rather sensitive to a
topological variation. The SIMP model requires some spe-
cial filters and/or hybrid algorithm to avoid the resultant
gray areas [14]. The level-set design, on the other hand, pre-
sents sharp topological boundaries without ambiguous-
ness. The corresponding convergences of objectives in
these level-set examples are fairly stable even with some sig-
nificant change in the topologies.

5. Concluding remarks

This paper attempts to develop a topology optimization
method for metamaterial design within a level-set frame-
work. Specifically, the free space/solid (metal) interface is
implicitly represented by the zero-level contour of a
higher-dimensional scalar level-set function. Two different
objective functions are tested at specific frequency: (1) the
least square of the difference between the effective and tar-
get permeabilities, and (2) the effective permeability itself.
As only the electric field is related to the effective perme-
ability, the vector wave equation is used as the governing
equation in this study.

To make the Eulerian derivative of the Lagrangian func-
tion, namely a summation of the objective function and the
governing equation, dissipative with respect to time, the
normal velocity of the Hamilton–Jacobi equation is
derived. With such normal velocity, the free space/metal
interface gradually evolves toward an optimum. Since both
the governing and adjoint equations are solved by the
FDTD method, the design domain can be discretized with
a reasonably fine mesh to better capture the detailed geo-
metrical and physical features of the metamaterial. The
numerical examples demonstrate the effectiveness of the
proposed level-set topology optimization approach for
metamaterial design. Several novel structures are obtained
and their effective permeabilities do attain the specified tar-
gets or the minimum at the given frequency specified.
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