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Abstract
In this paper, we deal with the problem of computing the distance to a surface (a curve in 2D) and consider
several distance function approximation methods which are based on solving partial differential equations (PDEs)
and finding solutions to variational problems. In particular, we deal with distance function estimation methods
related to the Poisson-like equations and generalized double-layer potentials. Our numerical experiments are
backed by novel theoretical results and demonstrate efficiency of the considered PDE-based distance function
approximations.

Keywords: distance function approximations, variational methods, iterative optimization.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and systems; G.1.8 [Numerical Analysis]: Partial
Differential Equations—Iterative solution techniques.

1. Introduction

Efficient computation of distance maps and their approx-
imations and generalizations is an important component
of many recent studies including those on object and ac-
tion recognition [Zuc13, WBR14], surface reconstruction
[CT11], computational mechanics [FST11], computational
photography [CSCRP10], medical imaging [RC13], com-
puter graphics [CWW13, CHK13, YWH13], architectural
geometry [PHD∗10], and computational fluid dynamics
[Tuc11, RS13]. In particular, in the computer graphics field,
"shape aware" substitutes and approximations of the ex-
act distance functions are becoming increasingly popular
[RLF09, LRF10, PBDSH13, SRGB14]. See also references
therein.

In this paper, we deal with the problem of approximating
the distance to a surface (a curve in 2D). More precisely, let
us consider a bounded domain Ω in Rm and assume that ∂Ω

is oriented by its inner normal n. Denote by

d(x) = dist(x,∂Ω)

the distance from x ∈ Ω to ∂Ω. The problem of fast and re-
liable approximation of d(x) is important, for example, for

level-set methods [OF01, EZL∗12, SOG14], computational
mechanics applications [BST04,FST11,XT11,XTC12], tur-
bulence modelling [Tuc11, Tuc14], and pattern recognition
studies [GBS∗07, Zuc13].

We consider several distance function approximation
methods which are based on energy minimization and solv-
ing partial differential equations (PDEs). In particular, we
deal with distance function estimation methods related to
the Poisson, screened Poisson and p-Poisson equations and
generalized double-layer potentials. The contribution of the
paper is threefold:

• we introduce a variational approach for distance function
estimation and propose efficient iterative schemes for cor-
responding energy minimization problems;

• we investigate several normalization procedures used to
enhance distance function approximations and, in partic-
ular, develop a normalization scheme for the p-Laplacian;

• we extend our previous results [BFP13] by analyz-
ing asymptotic properties of the Lp-distance fields and
demonstrating how they can be used for an accurate es-
timation of the distance function near the boundary.
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The rest of the paper is organized as follows. In Section 2,
we describe some basic properties of the distance function.
Section 3 is devoted to a brief explanation of the heat prop-
agation approach proposed in [Var67] for distance function
estimation and employed in [CWW13] for a highly efficient
computation of surface geodesics. In Section 4, we propose
and study simple iterative schemes for approximating the
distance function. We apply the alternating direction method
of multipliers (ADMM) to derive a more sophisticated iter-
ative scheme in Section 5. In Section 6, we discuss various
normalization schemes used to estimate the distance func-
tion. In Section 7, we develop a novel normalization scheme
to be used with the solution of a p-Poisson equation. In Sec-
tion 8, we study asymptotic properties of the so-called Lp-
distance fields introduced in [BFP13]. It allows us to achieve
a highly accurate estimation of the distance function near
the boundary by normalized Lp-distance fields. Section 9 is
devoted to numerical experiments with the proposed vari-
ational PDE-based methods for distance function estima-
tion. We conclude and indicate directions for future work in
Section 10. Finally, the appendix contains technical deriva-
tions of our normalization schemes for p-Laplacian dis-
tances (subsection A) and our theoretical results on asymp-
totic properties of the Lp-distance fields (subsection B).

2. Basic properties of the distance function

Let us assume that ∂Ω is oriented by its inner normal n. It
is well-known that the distance function d(x) satisfies the
eikonal equation

|∇d|= 1 in Ω. (1)

and boundary conditions

d = 0 and ∂d/∂n = 1 on ∂Ω, (2)

∂
kd/∂nk = 0 on ∂Ω, k = 2,3, . . . .

Typically (1) is used with the first (Dirichlet) boundary con-
dition of (2).

It is well known (see, for example, [Giu84, Appendix B]
that the Laplacian of the distance function d(x) is propor-
tional to the mean curvature H(x) of the distance function
level set d = const passing through x

∆d = (1−m)H, (3)

where m is the number of dimensions and where we as-
sume that the level set of H(x) is smooth at x. Here H =
(k1 + · · ·+ km−1)/(m−1), where k1, . . . ,km−1 are the prin-
cipal curvatures of d = const. Since (1−m)H(x) = div(n),
where n(x) =∇d(x) is the unit inner normal of the level set
of d(x) at x ∈Ω, we arrive at a 2nd-order nonlinear PDE

∆d = div(∇d/|∇d|) (4)

which is equivalent to (3). It is interesting that (4) serves as

the Euler-Lagrange equation for the energy

E(u) =
∫

Ω

(|∇u|−1)2 dx, (5)

which was considered, for example, in [LXGF05] and
[XQYH12].

3. Varadhan’s distance functions

In this section, inspired by a recent work of Crane et al.
[CWW13], we exploit S. R. S. Varadhan’s approach [Var67]
to approximating smooth distance functions using solutions
to the so-called screened Poisson equation

w− t∆w = 0 in Ω, w = 1 on ∂Ω, (6)

where t is a small, positive parameter. Then, according to
[Var67, Theorem 2.3],

lim
t→0

{
−
√

t ln[w(x)]
}
= d(x), (7)

Thus d(x) is approximated by

u(x) =−
√

t lnw(x) (8)

and parameter t controls the smoothing properties of u(x).

An intuitive explanation of (7) is given in [GR09] and uses
a variant of the so-called Hopf-Cole transformation [Eva98].
Substituting

v(x) = exp
{
−u(x)/

√
t
}

(9)

in (6) leads to

0 = v− t∆v = v
[(

1−|∇u|2
)
+
√

t∆u
]
. (10)

and we arrive at a regularized eikonal equation for u(x)(
1−|∇u|2

)
+
√

t ∆u = 0 in Ω, u = 0 on ∂Ω (11)

and it is natural to expect that u(x) provides a better and
better approximation of d(x), as t→ 0.

A distance function approximation closely related to (6)
and (8) was proposed in [CWW13]. Note that w(x) and u(x)
have the same level sets. Crane et al. suggested to consider
the normalized gradient ∇w/|∇w| and approximate (1) by
the solution to a simple least square minimization problem∫

Ω

(∇φ−∇w/|∇w|)2dx→min .

In other words, d(x) is approximated by φ(x) which satisfies

∆φ(x) = div(∇w/|∇w|) in Ω, φ(x) = 0 on ∂Ω. (12)

4. Method of Laplacian iterations and its relaxation and
splitting

The gradient normalization scheme (12) of [CWW13] in-
spires us to consider a simple iterative process

∆di+1 = div(∇di/|∇di|) in Ω,

di+1 = 0 on ∂Ω
(13)
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which delivers fixed-point iterations for (4).

One can interpret (13) as follows. Given di(x), its nor-
malization ni(x) =∇di(x)/|∇di(x)| coincides with n(x) =
∇d(x) on ∂Ω. On the other hand, v = di+1(x) is the solution
to ∫

Ω

|∇v−ni|2 dx→min . (14)

Thus, normalization di → ni = ∇di/|∇di| reduces the ap-
proximation error near ∂Ω, while (14) redistributes the re-
maining error over Ω.

We face two problems when dealing with iterative proce-
dure (13): our inability to establish its convergence proper-
ties rigorously and a relatively slow convergence to the true
distance function d(x) in practice. One possible way to ac-
celerate (13) consists of rewriting (5) as∫

Ω

(|p|−1)2 dx, where p =∇u

and then relaxing the constraint p = ∇u (the so-called
penalty method)

E(p,u) =
∫

Ω

{
(|p|−1)2 +

r
2
(p−∇u)2

}
dx, (15)

where r is positive. Note that (15) attains its minimal value,
0, if and only if u = d(x) and p =∇d.

Let us fix ∇u in (15) and optimize it w.r.t. p. For given
x ∈ Ω, the optimal p in (15) is proportional to ∇u, that is
p(x) = c(x)∇u(x) for some c(x), as illustrated by the left
image of Fig. 1,

Figure 1: Left: at given x ∈ Ω, for fixed ∇u, optimal p in
(15) is proportional to ∇u. Right: a schematic explanation
of iterative process (18), see the main text for details.

Substituting p = c∇u to (15) and optimizing w.r.t. c yields

c =
2+ r|∇u|
(2+ r)|∇u| , p = c∇u =

2+ r|∇u|
(2+ r)|∇u|∇u. (16)

Optimizing (15) w.r.t. u(x) leads to

∆u = divp in Ω

or, equivalently, ∫
Ω

|∇u−p|2 dx→min, (17)

where u = 0 on ∂Ω. Thus we are arriving at an iterative pro-
cedure

pk =
2+ r|∇uk|
(2+ r)|∇uk|

∇uk and ∆uk+1 = divpk (18)

which is reduced to (13) if r = 0 and, therefore, can be con-
sidered as a generalization of (13).

Intuitively, convergence of (18) can be justified as follows.
The first step of (18),∇uk→ pk, makes pk closer to the unit
sphere |p| = 1 than ∇uk is. Indeed, according to (15) we
have ∫

Ω

(|pk|−1)2 dx≤ E(pk,uk) (19)

≤ E(∇uk,uk) =
∫

Ω

(|∇uk|−1)2 dx

In view of (17), the second step of (18), pk →∇uk+1, can
be considered as the orthogonal projection of pk onto the
linear subspace of gradients∇u. Therefore,∇uk+1 is closer
to |p| = 1 than pk is. See the right image of Fig. 1 for an
illustration.

Assume now that uk and pk converge in a proper sense
to u∗ and p∗, respectively. Then, in view of the second in-
equality in (19), we have ∇u∗ = p∗. Passing to the limit in
the second equation of (16) yields |∇u∗|= 1 and, therefore,
u∗(x) is the distance function d(x).

According to our experiments (see Section 9 for details),
(18) demonstrates a faster convergence than simple Lapla-
cian iterations (13). Better numerical algorithms for mini-
mizing (5) can be derived by exploiting a similarity between
(5) and minimization problems associated with sparse signal
recovery methods (see, for example, [HLY13, Chapter 4] for
a friendly introduction to sparse optimization algorithms). In
particular, in the next section, we demonstrate how the alter-
nating direction method of multiplies (ADMM) can be used
for minimizing (5).

5. Alternating direction method of multiplies (ADMM)
for minimizing (5)

For better handling constraint p = ∇u in (15), we can
use ADMM (see, for example, [BPE∗11] for an excellent
overview of ADMM and its extensions and modifications)
and add a Lagrange multiplier term to (15):∫

Ω

{
(|p|−1)2 +λ · (p−∇u)+

r
2
(p−∇u)2

}
dx, (20)

where λ(x) is the vector of the Lagrange multipliers.

It is easy to rewrite (20) as∫
Ω

{
(|p|−1)2 +

r
2

[
p−

(
∇u− λ

r

)]2

− λ2

2r

}
dx. (21)

Thus, for fixed ∇u and λ, the optimal p is proportional to
q =∇u−λ/r. In other words,

p = cq = c(∇u−λ/r) (22)

for some scalar c. Now substituting (22) into (21) and opti-
mizing w.r.t. c yields

c =
2+ rq
(2+ r)q

, p = cq =
2+ rq
(2+ r)q

q with q = |q|.
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Optimizing (20) w.r.t. u(x) leads to

r∆u = r divp+divλ.

Thus, following ADMM, we arrive at the following iterative
procedure

pk =
2+ rqk
(2+ r)qk

qk with qk =∇uk−λk/r, qk = |qk|, (23)

∆uk+1 = divpk +divλk/r in Ω, uk+1 = 0 on ∂Ω, (24)

λk+1 = λk + r (pk−∇uk) . (25)

Notice that instead of (24) one can use

∇uk+1 = pk +λk/r (26)

and, therefore, solving systems of linear equations for each
iteration is not required. However (24) imposes zero bound-
ary conditions on uk+1(x) and that helps to reduce the ap-
proximation error at least near the boundary. In contrast, (26)
does not care about boundary conditions. One possible way
to use (26) while imposing boundary conditions consists of
using (26) for a fixed number of iterations (e.g., for 10 iter-
ations), then use (24), and then again use (26) for the same
number of iterations, etc.

6. Rvachev, Taubin, and Spalding-Tucker
normalization schemes

In their studies, Rvachev [Rva74, RSST01] and Taubin
[Tau94] dealt with the problem of computing an approximate
distance from a point to implicitly defined surfaces (curves
in the two-dimensional case). Assume that ∂Ω is the zero-
level set of function u(x). Then according to [Rva74] d(x)
can be estimated by

ω1[u](x) =
u(x)√

u(x)2 + |∇u(x)|2
. (27)

Alternatively, Taubin considered approximations of d(x)
near ∂Ω by

δ1[u](x) = u(x)/|∇u(x)| (28)

δ2[u](x) =
1
F

(√
|∇u|2 +2Fu−|∇u|

)
=

2u√
|∇u|2 +2Fu−|∇u|

, (29)

where F is the Frobenious norm of the Hessian of u(x).

Interestingly, setting F = 1 in (29) leads to

ν[u](x) =
√
|∇u|2 +2u−|∇u| (30)

=
2u

|∇u|+
√
|∇u|2 +2u

,

a simple normalization scheme proposed by Spalding
[Spa94] and further developed by Tucker [Tuc98] in a re-
lation to their studies of turbulence phenomena.

It is easy to see that ω1[u], δ1[u], δ2[u], and ν[u] satisfy (2)
and, therefore, deliver accurate approximations of d(x) near
∂Ω. Further refinements are possible. For example, follow-
ing [Rva74] (see also [Sha07]) one can set

ω2(x) = ω1(x)−
1
2

ω
2
1

∂
2
ω1

∂n2 (31)

and arrive at

ω2 = 0, ∂ω2/∂n = 1, ∂
2
ω2/∂n2 = 0 on ∂Ω. (32)

Unfortunately, in a general case, normalizations ω1[u](x),
ω2[u](x), δ1[u](x), δ2[u](x), ν[u](x), and similar schemes
may behave unpredictably far from ∂Ω.

7. Poisson and p-Laplacian (p-Poisson) distances

A common approach for a quick and simple approximation
of a smooth distance function consists of solving the homo-
geneous Dirichlet problem for Poisson’s equation

∆u =−1 in Ω, u = 0 on ∂Ω. (33)

Applications of the Poisson distance function u(x) in-
clude action recognition [GBS∗07, GGS∗06], shape skele-
tonisation [AA12], estimating the so-called wall distance
in turbulence modeling [Tuc98], and geometric de-featuring
[XTC12].

While the approximation accuracy of the true distance
function by the solution to (33) is rather poor, a simple nor-
malization procedure (30) proposed in [Spa94, Tuc98] sig-
nificantly improves the approximation accuracy. See also
[XTC12] for recent applications of (33) and (30) for medial
axis detection and geometric de-featuring.

Let us now consider a natural generalization of (33)

div
(
|∇up|p−2∇up

)
=−1 in Ω, up = 0 on ∂Ω (34)

with 2≤ p <∞. It can be shown [BDM89, Kaw90] that

up(x)→ d(x) as p→∞. (35)

Moreover, according to [BDM89], convergence (35) is
strong in the Sobolev space W 1,k(Ω) for arbitrary k > 1.

Similar to (30) one can normalize up(x) and arrive at

vp(x) =−|∇up|p−1 +

[
p

p−1
up + |∇up|p

] p−1
p

. (36)

See Appendix A of this paper for a derivation. It is easy to
verify that

vp = 0 and ∂vp/∂n = 1 on ∂Ω. (37)

Therefore, one can expect that vp(x) delivers a more accu-
rate approximation of the distance function than up(x).
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8. Lp-distance fields

Following [BFP13] let us consider a singular potential∫
∂Ω

ny · (y−x)
|x− y|m+p σ(y)dSy, p≥ 0, (38)

where x ∈ Ω ⊂ Rm, y ∈ ∂Ω, ny is the orientation normal
at y, dSy is the surface element at y, and σ(y) is a density
function defined on ∂Ω. The classical double-layer potential
corresponds to (38) with p = 0. As discussed in [BFP13],
setting p = 1 in (38) yields integrals used to define the mean
value coordinates [Flo03, JSW05].

Generalized double-layer potentials (38) and their single-
layer counterparts were also studied by R. Rustamov
[Rus07] in relation to generalized barycentric coordinates
and transfinite interpolations and their applications to free-
form deformations.

Let us assume that σ≡ 1 which means that the generalized
dipoles are uniformly distributed over ∂Ω and consider

Φp(x) =
∫

∂Ω

ny · (y−x)
|x− y|m+p dSy =

∫
Σ

dΣy

|x− y|p
, (39)

where p > 0, Σ is the unit sphere centered at x, and dΣy is
the solid angle at which surface element dSy is seen from x.
We have used a simple relation

dSy = ρ
mdΣy

/
h, where ρ = |x− y| and h = ny (y−x) .

Here h is the distance from x to the plane tangent to ∂Ω at y.
The two-dimensional version of (39) can be written in polar
coordinates as

Φp(x) =
∫ 2π

0

dθ

ρ(θ)p , (40)

where θ is the angle between vector y−x and a fixed direc-
tion.

The integral over ∂Ω in (39) is correctly defined for an
arbitrary bounded domain Ω. However the integral over unit
sphere Σ is properly defined if Ω is star-shaped w.r.t. x. To
overcome this problem, we follow [BFP13] which, in its
turn, follows [DF09, BF10]. Consider a ray originated at x
and intersecting ∂Ω at l points y1, . . . ,yl . We set εi = 1 if the
ray [x,yi) arrives at yi from the positive side of ∂Ω, εi =−1
if the ray approaches yi from the negative side of ∂Ω, and
εi = 0 if the ray is tangent to ∂Ω at yi. Now let us assume
that |x− y|p in the denominator of the integral over the unit
sphere Σ in (39) means ∑i εi |x− yi|

p. See the left image of
Fig. 2 below for a visual explanation.

As demonstrated in [BFP13],

Ψp(x) =
[
cp
/

Φp(x)
]1/p

, p≥ 1, (41)

where cp is a certain normalization constant, approximates
the distance function d(x). (The particular case p = 1 was
studied in [DF09, BF10] where Φ1(x) was used for interpo-
lation purposes.)

Figure 2: Left: generalized double layer potential (39) can
be defined using polar (spherical in 3D) coordinates. Right:
generalized double layer potential is smooth far from ∂Ω,
see the main text for an explanation.

In contrast to the distance function approximations con-
sidered in the previous sections of this paper, (41) approxi-
mates the signed distance function. Another attractive prop-
erty of (41) is that it can be calculated analytically for the
odd values of p [BFP13].

As we will see below, (41) nicely approximates the dis-
tance function near ∂Ω. However, for relatively small p and
far from the boundary, (41) is too smooth to approximate the
distance function accurately. Indeed, note that

1
|x− y|N =

1
N−m

divy

(
x− y
|x− y|N

)
. (42)

Assume that ∂Ω has bumps, as shown in the right image of
Fig. 2, and consider Ωs ⊂Ω such that ∂Ωs is much smoother
than ∂Ω and R = Ω\Ωs is small. In view of (42) and the di-
vergence theorem, the difference between the potentials (39)
for ∂Ω and ∂Ωs is given by

p
∫
R

dy
|x− y|m+p

which is small if R is small and x is inside Ωs and far from
∂Ωs. Therefore, the approximations of the distance functions
from ∂Ω and ∂Ωs by (41) are close to each other at x.

Nevertheless one can easily improve the distance function
estimation by (41) far from the boundary. Generalized mean
value potential Φp(x) satisfies some interesting properties
including the following one (see Proposition 3 in [BFP13])

∆Φp(x) = p(p+m)Φp+2(x) (43)

which delivers a simple procedure to improve the approxi-
mation accuracy at x.

It turns out that in the two-dimensional case

Φp(x) =
∫ 2π

0

dθ

ρ(θ)p =
cp

hp + k
dp

hp−1 +O
(

1
hp−2

)
(44)

with

cp =
∫ π/2

−π/2
cosp

θdθ and dp = cp−2
/

2,

where k is the curvature of ∂Ω. See Appendix B for a deriva-
tion.
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It is interesting that for p = 1 corresponding to mean-
value coordinates we have

Φ1(x)∼
2
h
+2k ln

1
h
+O(1), as h→ 0.

Similar to the 2D case, in 3D we have

Φp(x)∼
∫

Σ

dΣ

ρ(θ,ϕ)p =
cp

hp +H
dp

hp−1 +O
(

1
hp−2

)
(45)

where the integration is taken over the unit sphere Σ, H is
the surface mean curvature of ∂Ω, and

cp =
1
2

∫
Σ

cosp
θdΣ with dΣ = sinθdθdϕ.

In particular, c1 = π.

Notice that (44) and (45) imply that

Ψp = 0 and ∂Ψp/∂n = 1 on ∂Ω. (46)

Obviously one can get more from (44) and (45). Namely
we have

Ψp(x) = h− dpk
pcp

h2 +O
(

h3
)
,

where k is the curvature in the 2D (curve) case and the mean
curvature in the 3D (surface) case. So one possible way to
get a higher-order normalization of Ψp(x) is similar to (31)
and consists of

Ψ̃p(x) = Ψp(x)+
dpk
pcp

[Ψ1(x)]
2 = h+O

(
h3
)

(47)

as h→ 0. Thus

Ψ̃p = 0, ∂Ψ̃p/∂n = 1, ∂
2
Ψ̃p/∂n2 = 0 on ∂Ω (48)

and Ψ̃p(x) is supposed to deliver a more accurate approxi-
mation of the distance function d(x) than Ψp(x) near ∂Ω.

9. Numerical experiments

9.1. Discretization

In our numerical experiments, we solve the various par-
tial differential equations appearing via the finite element
method (FEM). We use piecewise linear hat functions. In
2D, the domain Ω is discretized by triangles. We use the
program Triangle [She96] for meshing. The left image in
Fig. 3 shows a triangulation of a 2D polygon used in some
of our experiments. The right image presents the exact dis-
tance field for the polygon.

In our 3D experiments, we deal with tetrahedral meshes
generated from surface meshes by applying the volumet-
ric mesher from the CGAL library [Cga]. In particular,
we used CGAL to generate volumetric models (tetrahedral
meshes) corresponding to the Stanford bunny, Fertility, and
Armadillo surface meshes.

Scalar fields are defined at each node, and interpolated in-
side the elements (triangles or tetrahedra) by piecewise lin-
ear functions. Vector fields are defined per element. Some of

Figure 3: Left: the triangulated domain used for our two-
dimensional experiments. Right: the exact distance field.

the proposed methods (Sections 7, 4 or 5) require the compu-
tation of the gradient of a scalar field or the divergence of a
vector field on the discretization. We compute their approx-
imations following the descriptions given in [CWW13, Sec-
tion 3.2.1] for a triangulation and [TLHD03] for a tetrahedral
mesh.

9.2. Initial solution with the Poisson distance

Since an initial solution is needed to most of the iterative
schemes introduced in this paper, we use the solution to the
Poisson equation (33). In practice, it is possible to get a bet-
ter initial approximation when starting with the Spalding-
Tucker normalization (30) applied to the solution of the Pois-
son equation (33). The left column of Fig. 4 compares the
result obtained with the Spalding-Tucker normalization (30)
applied to the solution of the Poisson equation (33) in the
bottom-row, against the solution of the Poisson equation (33)
in the top-row.

In practice, since the normalized solution gives a better
approximation of the distance, we use it as an initial solution
for each of the iterative methods (Sections 4, 5, and 7).

9.3. Iterative schemes

Given an initial solution computed by solving (33) and using
the normalization (30), we can compute an approximation of
the distance by iterations of (13). Figure 5 illustrates the re-
sults obtained by this approach after 5,10 and 15 iterations.

In practice, using the iterative procedure in (18) seems to
converge faster. Figure 6 illustrates the results obtained by
respectively 5,10 and 15 iterations of the steps in (18). The
rightmost image in Fig. 6 indicates for comparison the solu-
tion obtained by iterating until the relative error: ‖uk+1−uk‖1

‖uk‖1

is below some threshold.

9.4. ADMM Splitting

Alternatively, one can use ADMM described in Section 5 to
solve (5). The results of this approach are shown for 5,10
and 15 iterations in Fig. 7. Here we use the step (24) every 5
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Figure 4: Poisson (left) and normalized Poisson (right) distances. The field on the left is obtained from the solution of (33),
which is then normalized by the Spalding-Tucker normalization (30) in order to obtain the result on the right.

Figure 5: Approximate distance field obtained after 5, 10 and 15 iterations of (13).

Figure 6: Solution to the iterative scheme (18) after 5,10,15 iterations and until convergence.

iterations to update the field uk+1, otherwise we only update
∇uk+1 with (26). For comparison, the rightmost picture in
Fig. 7 illustrates the result obtained by iterating the process
until the relative error: ‖uk+1−uk‖1

‖uk‖1
is below some threshold.

As illustrated in Fig. 8, solving (24) at every step gives a
more accurate approximation of the distance (compare the
left picture in Fig. 8 to the exact distance field in Fig. 13).
However, solving (24) requires solving a sparse linear sys-
tem at each step. One practical alternative is to solve (24) ev-
ery l iterations and the rest of the time to update only∇uk+1
(instead of uk+1) with (26). The middle picture in Fig. 8 il-
lustrates this approach with l = 5. Compare this result (mid-
dle) with the result obtained (left) when a linear system is
solved at each step. Finally, the rightmost image in Fig. 8
always uses (26). The result is less accurate, but it is fast:
it solves only two sparse linear systems of equation: one to

compute the initial solution by solving (33), and one at the
end to recover u from∇u.

9.5. p-Laplacian

In practice, it seems that we can get a better approximation
from the solution of the p-Poisson equation (34) and its nor-
malization (36). The equation in (34) is non-linear. We solve
it by the Newton method with the Jacobian matrix approxi-
mated by the stiffness matrix (see for example [LB13, Chap-
ter 9]).

In Fig. 9, the result of the p-Laplacian distance (34) for the
case p = 4,8,10 is illustrated in the top row. The bottom row
corresponds to its normalized solution (36). They both pro-
duce an accurate approximation of the exact distance func-
tion.
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Figure 7: Solution to (5) using ADMM. From left to right: the result after 5, 10, 15 iterations and until convergence.

Figure 8: Solution to the iterative scheme with ADMM after 15 iterations. The left picture corresponds to the case where a
linear system is solved at each iteration. The middle picture corresponds to the case where a linear system is solved every 5
iterations. The rightmost picture corresponds to the case where a linear system is solved only at the end.

Figure 9: Top row: p-Laplacian (p-Poisson) distances for p = 4,8,10. Bottom row: their normalizations (36).

9.6. Lp-distance fields

In Fig. 10, the Lp-distance fields (41): Ψ1 and Ψ5 are shown
for comparison. While the result obtained from Ψ1 is only
accurate close to the boundary, Ψ5 delivers a smooth accu-
rate approximate of the exact distance. The interesting thing
with this approach is that the solutions can be computed an-

alytically in contrary to the other methods that require a nu-
merical approach (FEM is used in this paper).

We illustrate then two additional properties of the Lp-
distance fields: the formula for computing Φp+2 from the
Laplacian of Φp (43) and a normalization of Ψp near the
boundary (47). Given Φ1, one can use (43) to compute Φ3,
by using for example a 5-point stencil to approximate the
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Figure 10: The Lp-distance field, for p = 1 on the left; and p = 5 on the right.

Laplacian on a regular grid. Ψ3 can then be computed by
using (41). This is illustrated in Fig. 11 where Ψ3 obtained
from a direct evaluation of Φ3 (left image) is compared
against the approximation of Φ3 computed from the Lapla-
cian of Φ1 using (43).

Figure 11: Lp-distance field for p = 3 computed from a di-
rect evaluation of Φ3 (left) or from its approximation with
the Laplacian formula (43).

Near the boundary of the domain, a normalization of Ψp
can be applied using (47). This is illustrated in Fig. 12 with
the level-sets on the left and the graph of the normalized
function on the right. The normalization given by the asymp-
totic analysis is valid only near the boundary, so it tends to
produce artifacts far away.

Figure 12: Normalization of the Lp-distance field for p = 5
using asymptotics near the boundary (47). Left: level-sets
of the normalized field; right: the graph of the normalized
function.

9.7. Comparison

In Fig. 13, we compare the various approaches introduced in
this paper. Included in the qualitative comparison is also the
heat propagation method introduced in [CWW13]. As noted
earlier, the heat propagation method [CWW13] corresponds
to one iteration of (13) applied to the solution of the heat
diffusion equation after one time-step.

Qualitatively, the best result is obtained with the nor-
malized p-Laplacian approach (p = 10). Both the iterative
method (18) and its solution by ADMM (section 5) provide
also good results. For both methods 15 iterations were used.
For ADMM, a sparse linear system (24) was solved every 5
iterations. The heat approach from ( [CWW13]) is fast, solv-
ing only two sparse linear systems. Finally, the Lp-distance
is also quite accurate and can be evaluated analytically in
contrary to all the other methods that require numerical eval-
uation.

9.8. Approximate distances to surfaces

All the considered approaches naturally work in 3D for com-
puting the distance to a surface. Figure 14 visualizes the
point-wise absolute error between the true distance and the
approximate distance fields computed using the geodesics-
in-heat method [CWW13] (first column), ADMM (second
column), and the p-Laplacian method with p = 8 (the third
column) for polyhedral volumetric Stanford Bunny and Fer-
tility models. In terms of the approximation accuracy, the p-
Laplacian method demonstrates the best performance, while
the ADMM and geodesics-in-heat method share the second
place: ADDM outperforms geodesics-in-heat for the volu-
metric Fertility model and the situation is opposite for the
volumetric Stanford bunny model.

The computational times taken by these approaches for
three volumetric models (the two tetrahedral meshes shown
in Figure 14 and the Armadillo model) are indicated in Ta-
ble 1. In this table, nnodes and nele correspond respectively
to the number of nodes and the number of elements (tetrahe-
dra) in the volumetric mesh used for computing the solutions
by FEM. The code is written in C++ without any particu-
lar effort for optimization. The timings were obtained on a
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Figure 13: Top row: exact distance; geodesics-in-heat [CWW13]; p-Laplacian (with p = 10). Bottom row: relaxation; relax-
ation with ADMM (15 iterations); Lp-distance (p = 5).

Figure 14: Point-wise absolute error |u(x)− dist(x)| computed for tetrahedral 3D meshes, where dist(x) is the true distance
function and u(x) corresponds to the geodesics-in-heat [CWW13] approach (first column); the iterative scheme with ADMM
splitting (Section 5) after 15 iterations (second column); the p-Laplacian for p = 8 (third column);

desktop computer with an Intel Core i3-3220 at 3.30 GHz
and 4 GB of RAM. The matrices involved in all numerical
schemes are sparse. The sparse matrix representation and the
sparse matrix solvers from the library Eigen [GJ∗10] were
used in these computations. The timings indicated in Table 1
correspond to the time taken by all the steps (preparation of
data-structure, matrix and vector assembly, call to the solver)
except IO.

While being the fastest one, the geodesics-in-heat method
of Crane et al. [CWW13] is less capable to deliver an ac-
curate approximation of the distance function far from the
boundary. The p-Laplacian method provides us with the
most accurate but time consuming approximation. In our
opinion, ADMM offers the best combination of the compu-
tational speed and accuracy.

Note that, in terms of the computational time, all the tested
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methods demonstrate a worse performance when dealing
with tetrahedral volumetric meshes to compare with trian-
gular planar ones. The reason is that 2D discrete Laplacian
matrices are sparser than their 3D counterparts.

9.9. Numerical analysis of convergence properties

For a numerical analysis of convergence properties of the
iterative methods introduced in this paper we consider the
relative error ‖uk−dist‖p

‖dist‖p
, where dist denotes the true distance

function and uk is the k-th iteration obtained by either using
Laplacian iterative iterative scheme (13), the relaxation and
splitting scheme (18), or by ADMM (see Section 5). As a
representative example, we use the 2D rider shape. Same as
before, for the solution of (5) by ADMM, we solve a linear
system only every 5 iterations.

As expected, ADMM demonstrates excellent convergence
properties for both the L2 and L∞ norms. The relaxation
and splitting scheme (18) shows the best performance for
the L2 norm, while its convergence w.r.t. the L∞ norm is
questionable. Finally, Laplacian iterations (13) demonstrate
very good convergence results for the first several dozens of
iterations and then bounce back very slightly.

10. Conclusion and future work

We have proposed, studied, and evaluated several new vari-
ational and PDE-based distance function approximation
schemes. Each scheme has its advantages and disadvan-
tages. The p-Laplacian scheme is computationally expensive
but it can be adapted for approximating optimal transporta-
tion problems [EG99, Amb03] which are currently a subject
of intensive interest in geometry processing and computer
graphics [SRGB14]. The Lp-distance fields approximate the
signed distance function. They deliver very accurate approx-
imations near the boundary and can be used within the Kan-
torovich method [Kan41, KK58] and its extensions [Rva82]
for numerical solving PDEs with higher-order boundary
conditions [Sha07]. Our fast iterative schemes can be fur-
ther accelerated by using advanced optimization algorithms
(see, for instance, [HLY13, Chapter 4]).

We think that our methods have a good potential to enrich
each other. For example, a rough distance function approx-
imation generated by one method can be used as a warm

Mesh nnodes nele heat ADMM p-Lap.
Bunny 38k 217k 5.5 11.6 21.2
Fertility 22k 115k 2.6 5.3 111.0
Armadillo 17k 89k 2.0 4.0 51.8

Table 1: Timing in seconds for computing the distance to a
surface with the geodesics-in-heat (heat) method [CWW13]
and some of the methods introduced in this paper. These tim-
ings correspond to the time taken by all the steps except IO.

start for another, more accurate but computationally expen-
sive method.

In our numerical study of the proposed distance approxi-
mation schemes we rely on very simple error analysis tools:
a visual comparison with the exact distance function and a
comparison of the maximal values attained by the distance
approximations and the exact distance (in spite of its sim-
plicity, the latter seems to be a quite reliable indicator of how
accurately the distance function is approximated far from the
boundary). For a more serious error analysis study, we need
to reduce the discretization error. This can be done by using
a moving mesh technique which is capable to align mesh
edges with distance function singularities. This constitutes
another direction for future research.

Finally, extending some of our schemes to the curvilinear
metric case is also a topic for future research.
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Appendix

A. Normalization for p-Laplacian distances

Let us start from the Laplacian in the one-dimensional case
and treat variable x as the distance from 0. Consider

− f u′′(x) = 1, u(0) = 0, (49)

where we assume that f is constant. We have

u(x) =− 1
2 f

(C0− x)2 +C1,

where C0 and C1 are constants. The condition u(0) = 0 im-
plies that C1 =C2

0/(2 f ). Thus

C0 = f x+u′, C1 = u+
(
u′
)2

/(2 f )

and excluding C0 and C1 yields

f x2 +2u′x−2u = 0.

Assuming that x > 0, we arrive at

x =−u′

f
+

√
(u′)2

f 2 +
2u
f
=

2u

u′+
√

(u′)2 +2 f u
. (50)

A multidimensional analogue of the right-hand side of
(50) is obtained by replacing u′ by |∇u| is given by

−|∇u|
F

+

√
|∇u|2

F2 +
2u
F

=
2u

|∇u|+
√
|∇u|2 +2Fu

, (51)

where F is a properly chosen generalization of f from (49).

For example, setting F equal to the Frobenius norm of the
Hessian of u(x) yields Taubin normalization (29), while F =
1 gives Spalding-Tucker normalization (30).

Let us now assume that f = 1 in (49) and consider the
one-dimensional p-Laplacian case((

u′
)p−1

)′
=−1,

(
u′
)p−1

=C0−x, u′=(C0− x)
1

p−1 .

Thus

u(x) =− p−1
p

(C0− x)
p

p−1 +C1.

Now u(0) = 0 yields

− p−1
p

(C0)
p

p−1 +C1 = 0.

We also have

C0 = x+
(
u′
)p−1

, C1 = u+
p−1

p
(
u′
)p

.

Excluding C0 and C1 we arrive at

x+
(
u′
)p−1

=

[
p

p−1
u+
(
u′
)p
] p−1

p

.

Therefore

x =−
(
u′
)p−1

+

[
p

p−1
u+
(
u′
)p
] p−1

p

.

For p = 2 it gives (50) with f = 1.

The suggested normalization procedure for the multidi-
mensional case is

−|∇u|p−1 +

[
p

p−1
u+ |∇u|p

] p−1
p

.

B. Asymptotics of Lp-distance fields near boundary

Figure 16: Osculating parabolas.

2-D case. Given a point x∈Ω situated at the distance h� 1
from ∂Ω, let us introduce Euclidean and polar coordinates,
as shown in Fig. 16, where the origin of coordinates is lo-
cated at the closest point to x on ∂Ω and the y-axis coincides
with the direction of the orientation normal.

We start from the case of the positive curvature k of ∂Ω at
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the origin of coordinates. Locally ∂Ω is approximated by the
osculating parabola

y = x2/(2R),

where R = 1/k is the curvature radius, as seen in the left
image of Fig. 16. In polar coordinates

x = ρsinθ, y = h−ρcosθ

the parabola becomes

ρ
2 sin2

θ+2Rρcosθ−2Rh = 0.

Solving this quadratic equation for ρ > 0 yields

ρ =
−Rcosθ+

√
D

sin2
θ

, D = R2 cos2
θ+2Rhsin2

θ

and we can write

1
ρ
=

1
2Rh

(
Rcosθ

√
1+

2h
R

tan2 θ−Rcosθ

)

=
cosθ

h
+

1
2R

sin2
θ

cosθ
+O(h).

Therefore,

Φp(x)∼
∫ π/2

−π/2

dθ

ρ(θ)p =
cp

hp +
1
R

dp

hp−1 +O
(

1
hp−2

)
,

where

cp =
∫ π/2

−π/2
cosp

θdθ and dp =
p
2

∫ π/2

−π/2
cosp−2

θsin2
θdθ

Simple calculations show that dp = cp−2/2.

Above we have assumed that p > 1. If p = 1 (the case of
the mean value coordinates) we have

Φ1(x) =
∫ π/2

−π/2

dθ

ρ(θ)
=

2
h
+

1
2R

∫ π/2

−π/2

sin2
θ

cosθ
dθ+O(h)

and the integral diverges at ±π/2. So we have to consider

Φ1(x)∼
1

2Rh

∫ π/2

−π/2

(√
R2 cos2 θ+2Rhsin2

θ+Rcosθ

)
dθ

as h→ 0. Note that∫ π/2

−π/2

√
R2 cos2 θ+2Rhsin2

θdθ

= 2R
∫ π/2

0

√
1−

(
1− 2h

R

)
sin2

θdθ = 2RE
(

1− 2h
R

)
where

E(t) =
∫ π/2

0

√
1− t sin2

θdθ

is the complete elliptic integral of the second kind. It can be
shown that

E(1− ε) = 1− 1
2

ε lnε+ . . . as ε→ 0.

Thus

Φ1(x)∼
2
h
+

2
R

ln
1
h
+O(1), as h→ 0.

Now let us consider the negative curvature case which cor-
responds to the right image of Fig. 16. We have

x = ρsinθ, y = h−ρcosθ, y =−x2/(2R),

ρ
2 sin2

θ−2Rρcosθ+2Rh = 0,

ρ =

(
Rcosθ−

√
R2 cos2 θ−2Rhsin2

θ

)/
sin2

θ ,

1
ρ
=

1
2Rh

(√
R2 cos2 θ−2Rhsin2

θ+Rcosθ

)
=

1
2Rh

(
Rcosθ

√
1− 2h

R
tan2 θ+Rcosθ

)

=
cosθ

h
− 1

2R
sin2

θ

cosθ
+O(h).

Thus we have arrived at

1
ρp =

cosp
θ

hp − p
2R

cosp−2
θsin2

θ

hp−1 +O
(

1
hp−2

)
. (52)

Now let us study an asymptotic behavior of∫ α(h)

−α(h)

dθ

ρ(θ)p ,

where the integration limits α(h) and −α(h) correspond to
the two rays originated from x and tangent to the osculat-
ing parabola y = −x2/(2R), as seen in the right image of
Fig. 16. Note that α(h) = π/2+O(h) and cosθ = O(h) for
|θ| between α(h) and π/2, as h→ 0. Thus, in view of (52),
we have

Φp(x)∼
∫ α

−α

dθ

ρ(θ)p =
1

hp

∫ α

−α

cosp
θdθ

− p
2Rhp−1

∫ α

−α

cosp−2
θsin2

θdθ+O
(

1
hp−2

)
=

1
hp

∫ π/2

−π/2
cosp

θdθ− p
2Rhp−1

∫ π/2

−π/2
cosp−2

θsin2
θdθ

+O
(

1
hp−2

)
=

cp

hp −
1
R

dp

hp−1 +O
(

1
hp−2

)
with the same cp and dp as for the positive curvature case.

3-D case. Let us introduce spherical coordinates, as shown
in the right image of Fig. 17.

x = ρsinθcosϕ, y = ρsinθsinϕ, z = h−ρcosθ.

Locally a smooth surface is approximated by a paraboloid

z =
1
2

(
ax2 +by2

)
.

In the spherical coordinates, the paraboloid is given by

2(h−ρcosθ) = ρ
2
(

asin2
θcos2

ϕ+bsin2
θsin2

ϕ

)
.
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Figure 17: Osculating paraboloid.

Let us denote by k(ϕ) the directional curvature at the origin
of coordinates

k(ϕ) = acos2
ϕ+bsin2

ϕ≡ 1/R(ϕ),

then the surface equation is simplified to

ρ
2 sin2

θ+2ρR(ϕ)cosθ−2hR(ϕ) = 0.

Thus 1
/

ρ(θ,ϕ)p is given by

1
[2hR(ϕ)]p

[√
R(ϕ)2 cos2 θ+2R(ϕ)hsin2

θ+R(ϕ)cosθ

]p

So, similar to the 2D case, we arrive at

Φp(x)∼
∫

S

dΩ

ρ(θ,ϕ)p =
cp

hp +H
dp

hp−1 +O
(

1
hp−2

)
where

H =
1

2π

∫ 2π

0

dϕ

R(ϕ)

is the mean curvature and

cp =
1
2

∫
Σ

cosp
θdΣ with dΣ = sinθdθdϕ.

In particular,

c1 =
∫ 2π

0
dϕ

∫ π/2

−π/2
cosθsinθdθ = π.
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