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Abstract—This paper presents a unified framework for the A. Sensors

creation of classified maps of the seafloor from sonar imagery In water. acoustics provides the main sensina modalit
This is a longstanding problem in underwater imagery with direct ' P 9 Y-

applications to remote sensing. It presents difficult chaénges in Electromagnetic waves attenuate rapidly and their opegati
photometric correction, classification, navigation and rgistration ~ range is limited to well below five meters in normal operating
and image fusion, drawing from a wide range of techniques. Te conditions. Sonar (SOund Navigation And Ranging) offers a
paper uses recently developed methods to pre-process thedages good alternative providing the user with accurate resofuti

in order to compensate for the beam pattern of sonar devices and long ranges of hundreds of meters. For imaging, side-
and the motion of the acquisition platform. In a second step,

the corrected images are classified using texture descripwand ~Sc¢an sonar (SSS) a_nd the em_erg_ing synthetic aperture sonar
standard classifiers. In parallel, the navigation of the soar device (SAS) provide very high resolution images of up to centingetr

is processed using Kalman filtering techniques. A Simultareus  accuracy at up to 300 meters. These systems use the principle
Localisation And Mapping (SLAM) framework is adopted to  of 3 Jong antenna to generate a narrow acoustic beam [8], [9].

improve the accuracy of the navigation. The classified image : : :
are fused within a Markovian framework. Two fusion models The beams illuminate a narrow stripe of the seabed at any

are evaluated. The first model uses a voting scheme regulagd ©On€ time. As the system moves through _the water, toweq by
by an isotropic Markov Random Field when the reliability of @ survey vessel or mounted on an AUV, it generates a wide-
each information source is unknown. The Markov model is area image of the sea bed (obtained as a concatenation of
2'03‘)' duzgdré‘;c'r?g?'ms,:]hge pr'egellorll: é’;’hferse,ozo Tf'h“ea'sce'(f:isr?g'cr?]tc')%glsuccessive stripes) as shown in Fig. 2. The main parameters
u usi IX Vi usion. . . .
introduces formally the reliability of each information source into affecting the resolution of the generated Images are trgthien
a probabilistic model. The performances of the two models a of the a_ntenna and frequency of the_ acoustic wave used (these
evaluated on synthetic images and real data. Finally, the sfem is determine the across track resolution) and the speed of the

demonstrated on a real mission containing hundreds of image platform (AUV or towed body) which determines the along

and large scale classification maps are generated. It is shaw 53¢k resolution.

that the Markovian fusion framework improves significantly the

quality of the resulting classified maps.

i ) o ] B. Image Formation Process and Pre-processing
Index Terms— Registration, Classification, fusion, Markov ) . . . . .

Random Fields, side-scan sonar, mosaicing The interpretation of sidescan imagery is a skilled proce-
dure [8], [9]. There are many parameters of the image for-
mation process contributing to intensity variations inoreled

|. INTRODUCTION data which are quite separate from the influences of vanatio

Recent advances in the fields of underwater technologlBsSeabed properties and textures. These are generally well
and robotics have led to the development of Autonomng'derStOOd and good mqqels_emst which can aid the process of
Underwater Vehicles (AUVs). The development of stabi@utomated seabed classification [10], [11]. In the currestkw
platforms [1]-[3], fitted with high resolution sonars, andhe sonar data are preprocesse_d to corr_ect fo_r the influences
capable of swimming close to the seabed has opened up @he Sonar beam pattern and time-varying gain (TVG) [12],
oceans to rapid and high resolution mapping, generating laf13]- This enables the use of simpler and faster classifinati
volumes of data. These data have many practical scient@@orithms which is particularly beneficial for applicatido
uses including reef management [4], oyster management [§{9€ area surveys.
trawling impact assessment [6] and mine-counter measifes |
This paper tackles the difficult problem of generating larde: Classification
scale accurate maps of the seabed from sonar imagery abtaineGiven the vast quantities of data produced, fast classifica-
using these platforms. tion algorithms are required to produce seabed class maps

A large body of work on image based classification of sonagpresenting textural variations and areas of scientific in
data exists, but the methods used have been based on sitgylest. Many supervised techniques have been developed to
sonar images. The generation of large scale maps raisesttekle this problem. Neural Networks and parametric statis
problem of image registration, the difficult related prablef cal classifiers have dominated the scene [14]-[19] and have
autonomous navigation in an environment deprived of GRf&en coupled with feature extraction measures includirgg on
(Global Positioning Systems) and the generation of fusedémensional cepstral and spectral features [20]-[22];téla
maps from multiple overlapping classified images which manalysis [23], spatial point processes [24], grey level-run
contain contradictory information. length measures [17], [25] and co-occurrence matrices, [26]
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[27]. Fuzzy logic analysis [28] and autoregressive mod2® [  Fusion for classification within the image domain allows
have also been investigated for seabed classification. contextual information to be considered and to date has
These image-based technigques consider each image een mainly applied to remote sensing [37], [38], [44]. The
tracted from the sidescan data in isolation. In this paperfasion of multiple images is generally performed at the pixe

variant of the power spectrum feature set [21] is used withlevel [41], [45]-[48], allowing information from surrouirth
simple parametric classifier for rapid supervised clasdifid pixels to be considered when classifying each pixel. An
of the individual sidescan sonar images. However, unlileffective method for incorporating this spatial infornoetiis
previous techniques, the classification result for eactgaria the use of Markov Random Fields(MRF) [49]-[51].

fused with the results derived from all of the images cowgrin This paper details a fusion model for fusing registered,

the same area of seabed. classified sidescan sonar images of the seafloor. Fusion is
conducted at the pixel level where each classifier outputs
D. Registration and Mosaicing a single class decision for each pixel. This maintains the

In order to produce large scale classified maps of the seab, %nerallty of the fusion scheme and allows classified images

L e : L . roin different classifiers to be fused together.
it is first necessary to register the individual sidescanason T ‘ del ted- the first model
images. Given the position of the sensor in the world for WO separate moge's are presented. the Tirst model uses a

each sidescan beam, it is possible to produce a geo-re&ﬂen\f:oung ;cheme to _|n|t|allze the fused clasg map. After, a MRF
odel is used to incorporate contextual information, sioot

image of the seabed. This process is called mosaicing [30], i Lo . .
[31]. The quality of the mosaics produced will uItimateI)) g the final result and ‘inpainting’ regions of pixels whiare
classifiedafter the Voting process. This ensures all pixels

depend on the precision of the position information of each. . . .
P P P ithin the image, for which there is data, are successfully

sonar beam, i.e. the vehicle’s navigation precision. Unddy"™"in o : .
water, navigation is a difficult problem as conventional GPgassmed within the final fused result. The standard Maidov

receivers do not operate. Underwater platforms therefelse pprior term iS. altered so that pixels I.abeled alsclassified_
on dead-reckoning sensors which drift over time. To fix thigom th_e_ Voting scheme, do not contr_lbute to _the Markovian
obability. This ensures that only pixels which have been

drift, we propose to use a Simultaneous Localisation Af o . :
Mapping (SLAM) technique based on the stochastic maayccessfully fused anq classified contribute to the_ fusion
developed for indoor robotics [32], [33] and adapted to son rocess for the other. plxels. The sec;c-)nd.model conS|ders.the
imagery [31], [34]. This is a solution, based on the use §pse wh.en the reliability pf the clas§|f|er is k.nown [52]. §hi
landmarks detected in the sonar imagery to help the namigati'nforma_tlon is stored using cqnfusmn matrices and allows
which does not require the addition of additional sensocs a © Votmg_ Scheme frqm the first model to be replaced by
does not interfere with the data acquisition constrairttsb(e a probabilistic, Markovian framework.

platform, fixed altitude). Sidescan Data Navigation

E. Fusion ¢

. . . . Pre-Processing

During a typical survey of the seabed, multiple views of the
same area are normally collected from different view points
The fusion of these views enables the generation of improved
large scale classified mosaics from the individual claskifie
sonar images. To date, very littte work has been done in Classification - SLAM
image fusion in the underwater domain [35], [36] and it has
been limited to simple multi-sensor fusion. To the author’s Mosaicing
knowledge, there have been no publications concerning the
fusion of underwater imagery to produce large scale claskifi
mosaics of the seafloor.

Fusion of multiple sources of information is a well estabFig. 1. Data flow for formation of fully classified fused sidescan maaics
lished research field. When the information sources produce
the same type of measurements, standard fusion techniquesig. 1 illustrates the progression from the raw sensor and
such as Bayesian theory [37], Fuzzy Logic [38] and Dempsteravigation data through to the fully classified fused sidasc
Shafer theory [39]-[41] can be used. However, for classifieimage mosaics resulting from the processing steps outlimed
which consider different types of input measurements tmis paper.
features, it is often not possible to consider the computed
output measurements to be estimates of the same posterior
probability [42], making fusion difficult. When little is kawn
about the information sources, or when they produce infor- The image formation mosaicing and pre-processing of the
mation at a high level of abstraction, voting schemes can bielescan sonar data are discussed in Section Il. Supervised
successfully used [25], [43]. This is particularly appeglfor classification using features derived from the sonar swath
underwater imaging systems which currently favor ‘black’bo power spectra is described in section Ill. Section 1V ddssi
approaches to classification. the SLAM-RTS technique for improving and smoothing the

Segmentation

Data Fusion

yout
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navigation solution. Section V details the two models pre-

sented for Fusion of the classified sidescan sonar images. a)
Results are presented on simulated and MeasTex sample data

to illustrate the differences between the two models and
guantitatively measure the effectiveness of these appesac

Section VI contains the results of the Fusion model on real,
classified sidescan sonar mosaics. Section VIl concludes th

paper and outlines future research plans.

Il. SIDE-SCAN SONAR IMAGE FORMATION AND DATA
PRE-PROCESSING

A. Image Formation

A sidescan sonar is an acoustic device comprising a long b)
horizontal antenna. This antenna forms a narrow beam or-
thogonal to the antenna, along the vehicle track, and a wide
beam across the track. As the antenna is moved forward,
ideally in a straight line, the beam generated covers thieeskba
uniformly. The geometry of the sidescan image formation
process is represented in Fig. 2. A sonar image is generated c)
by concatenating these beams into a 2D image as seen in
Fig. 3 (a). It is important to understand that such images are
not in Cartesian coordinates but in time coordinates. The x
coordinates correspond to the time at which the beam was
emitted from the sonar while the y coordinates corresponds °° e mn we o meo wo 70 meo so wom
to the time of flight of the pulse in the across track direction
Convertng these time:time images {0 images in real-wof, . () STl 2 a0 (000 o e e et e
coordinates is called geo-referencing or mosaicing and tﬁl% methods of calculatioﬁ. Values in (b) are graeferer?(/:ed to target grey
critical to our applications. A common feature in all rawevel, hence range 0-255, values in (c) are referenced to aéé of 1.0.
sidescan imagery is the largely black region in the centre of
the image. This corresponds to the transit time of the a@oust ) )
wave through the water before reflection from the seabed and® Sample raw image and the estimated beam pattern and

indicates the altitude of the sensor. More details on thegemal€Sidual TVG profile for these data are shown in Fig. 3.
formation process can be found in [9]. The complexity of the beam pattern is apparent with four

significant lobes in the port channel and as many as six in

the starboard channel. The differences in the scales of-the y
axes for the beam profiles and TVG estimates result from their
e methods of calculation and application within the radipsit
— correction algorithm [12].

The corrected image is shown in Fig. 4. In some places the
beam pattern correction has failed, as indicated by theewhit
arrow. This arises from the behavior of the vehicle, whidtsro
on turns. With each course adjustment the small degree lof rol
affects the symmetry of the beam pattern on the seabed, so
that it is poorly compensated near the water column. At these
points classification accuracy is affected. However, whiszee
are overlapping images, the data fusion techniques destrib

In many emerging applications low altitude surveys afigelow compensate well for any resulting misclassification.
required. In such cases even quite small changes in vehicle

altitude can affect the sonar image dramatically. Priolassi- ¢ Mosaicing
fication the image data used here have been preprocessgd usi
an advanced radiosity correction algorithm [12]. This isfuk

because it treats purely range-dependent artifacts, sach
residual TVG effects separately to angular effects suclhas
influence of the sonar beam pattern. Separate correctitoréac
are calculated for each. Whilst this gives better perforrean
than standard radiosity correction algorithms in the prese
of sensor altitude changes, platform stability is stilllased

with respect to pitch and roll. rn =+/1T2 — h? Q)

Fig. 2. Diagram Showing the Assumed Side-scan Sonar Geometry

B. Preprocessing

Yhe sonar mosaic algorithm used in this paper assumes the
geometry shown in Fig. 2. Under this assumption each sonar
Rannel (port and starboard) insonifies a rectangular anea o
he sea floor. The length of the rectangle is determined by the
slant range of the sonar (the maximum range of the sonar) and
the height of the vehicle, assuming a flat seabed. The equatio
for this length, referred to as horizontal ranggis:
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IIl. CLASSIFICATION OF SIDE-SCAN DATA

Three seafloor textures have been identified for segmenta-
tion of the sidescan data, defining three classes: flat sedisme
sand ripples, and complex regions. Suppression of the beam
pattern effects and some of the residual TVG effects, as
described in§ll-B above, improves the images to the point
where a fast supervised classification scheme can be codthbine
with a relatively simple, easily generated feature set.

The features used are based on Pace and Gao’s frequency
based sediment classification scheme [21]. In the curreat da
the classes have relatively large scale textures, whicfirem
much of the discriminatory content to relatively low freqog
bands. Overlapping 64-sample Gaussian windowed FFTs are

used to generate the one-dimensional power spectra and this
Fig. 4. Corrected image. The correction algorithm cannot compens  5)|o\ys for identification of changes in texture across theaso
for changes in sensor attitude, such as roll on trajectory cwections, see
arrow above. swath.

If s;(t) represents a single line of sonar data afglt)
represents the Gaussian window centered at positiche
normalized power spectrum can be defined by,

where the slant range, is obtained from:

rs =T X c/2 (2) 2
: : Pii(f) = [F[Wi(t)s;(1)]]
with ¢ the speed of sound in the water, assumed constant, and 1
T the time of the last return on each beam. The height of the P(f) = = Z Pi;i(f)
vehicle h is found using: i
. fmax
h=tyx o2 Q ret) = 0/ [Rr @
0

wheret;, is the time to the first return of the sonar beam.

The width of the beam is determined by the spacing betweenspatial frequency bands within the normalized power spec-

two successive beams, this guarantees that all the modsic aea are identified which give a good separation between the

between beams are filled. classes. The training set used for these data comprisee thre
The seabed is represented as a flat two dimensional ggi@lall sections, one for each texture,200 x 200 pixels. The

of mosaic cells (see Fig. 2). The resolution of the mosajgaining images extracted from the full dataset are shown in
cells can be set by the operator. Using simple geometry b(pilg_ 6.

channels can be superimposed if the orientation and positio
of the sonar is known. Each mosaic cell will take the value @ (b) ©
of the intensity cell on the beam closest to it. In this paper ‘ 2

if a mosaic cell takes more than one value then, in the case
of the pre-processed image mosaics, the data will be avérage
or, in the case of the classified data, the cell will be left as
unclassified.

. An examF"e output from th_e mos.alcmg algorithm is glve_nn—ig. 6. Training data. Three small images extracted from the full ddaset.
in Fig. 5 which shows a mosaic obtained from geo-referencingsses are: (a) flat sediment; (b) sand ripples; (c) completexture.
the data from Fig. 4.

The averaged normalized spectra for the three training
samples are presented in Fig. 7. The bimodal nature of the
spectrum for the sand ripples class occurs because there are
two dominant scales for the sand ripples. The training image
used has been chosen to be representative of both the large
and small scale ripple textures. It is also possible witls thi
data set and classification scheme to separate these twe ripp
textures and define a four-class training set.

Returning to the three-class problem, three features are de
fined by the crossing points of the averaged normalized spect
derived from the training data. These give the proportion of
the spectrum lying in sample bands 1-4, 4-12 and 16-32,
Fig. 5. Sample side-scan mosaic. corresponding to crossing points lying #tax/8, 3fmax/8

and fiax/2.
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plex texture in the transition region between flat sedimaut a

0.11r ——flat

- - - rippled sand ripples. Misclassification further from the water cofu

complex

is due primarily to incomplete elimination of the influence
of the surface return and crosstalk from other sensors.elThes
effects are particularly prominent in this data set and add t
the difficulty of the classification task. These misclasatfiins
can frequently be rectified by the proposed fusion scheme.

‘ —s IV. SIMULTANEOUS LOCALISATION AND MAPPING
5 10 15 20 25 30 (SLAM)

Frequency band

fa 7 A J ived wral densities for the th In order to create an accurate mosaic of the classified maps,

ig. 7. wveraged normalized power spectral densities for the three TSR . - e .

training sets. Three features were defined with band limits & 1-4; 4- good navigation is c_;ruual. Conventional GPS and Diffeiggnt

12; 16-32. The rippled texture is characterized by two domiant peaks GPS (DGPS) receivers do not work underwater. Therefore,

corresponding to large and small scale ripples which domin this region. when Submerged the side-scan sensor must be localized
using dead-reckoning with depth sensors, Doppler Velocity
Logs (DVL), Inertial Navigation Systems (INS) and/or com-
passes [53]-[55]. To correct drift on the dead-reckonihg, t

fmax/8 fmax sonar must either be equipped with a GPS/DGPS system and
Dp = /1 PiN(f)//l Bin(f) surface intermittently to get a new fix, thus perturbating th
3 o /8 Funa data acquisition process, or it must be equipped with a@oust
Dy = / PiN(f)// Pin(f) receivers capable of triangulating the position with respe
fr;ax/ fl to either acoustic beacons on the seabed, known as Long
max max Base Line (LBL) navigation, or to acoustic beacons on a
Dys = /frm/2 P“V(f)//1 Pin(f) ®) support vessel, known as Short Base Line (SBL) or Ultra

" ) Short Base Line (USBL) [56]. The costs associated with high

In classifying a complete sonar image, the three featur§s formance INS systems and with setting up acoustic nets
are generated from the averaged normalized spectral Yengit mopilizing a vessel are considerable and new techniques
formed from four successive lines of data. The same 64aye heen sought to localize positions underwater. Terrain
sample sliding Gaussian windowed FFT is used and bound@fyching methods will use known maps of the environment
problems between sonar channels are minimized by closing 48y data from payload sensors to find the dead-reckoning
the water column. This is done simply by shifting the scasin i [57], [58]. The purpose of SLAM is to build a map of
on the assumption that there will generally be continuity ifha environment and use that same map to localize [32], [33].
seabed textures between sonar channels. Recently SLAM techniques have been developed to work with

a side-scan sonar [31], [34]. This paper uses this method in
- order to geo-reference classified side-scan images. Rievio
work has demonstrated the potential of this method when
fusing non-classified data using Gabor wavelets [59].

The data from the navigation sensors is fused in order to
localize the side-scan sonar. The technique used to fuse the
navigation data in this paper is the stochastic map smoothed
using a Rauch-Tung-Striebel (RTS) fixed-interval smoqtter
will be referred to as SLAM-RTS. The stochastic map keeps
the estimates of the position and creates a map of landnarks t
represent the environment. These landmarks are then used to
aid localization of the vehicle. It is a SLAM method that werk
' iteratively to provide an estimate of the position at thedat

I ater column [ flat seciment iteration. In order to improve the accuracy of the solutiod a
complex [ rippled . . . . .

to smooth it, post-processing is required. The next twacest

Fig. 8. Classmap generated from the image introduced in Fig. 3. Wate Provide a detailed look at the algorithms.

column - black; flat sediment — dark grey; complex — light grey rippled

— white. Errors are noted where the correction algorithm hasfailed due .

to vehicle attitude changes during course corrections anchithe transition ~ A. The Stochastic Map

fegions between textures. The stochastic map is an augmented state Extended Kalman
Filter (EKF) [60], [61]. It adds new states to the state vecto

Fig. 8 shows the initial classification result for the imagg0 accommodate new landmarks as they are observed [62]. A
introduced in Fig. 3 above. Misclassifications are greateat glpical stochastic map state vector is of the form:

the water column where the correction algorithm has failed.
There are some boundary errors, with pixels classified as com X = [XyX1...Xn] (6)
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where’ is the transpose of a vector or matrix, holds the solution [34], as well as providing trajectories more dhiéa
state of the side-scan sonar arg, ..., x, hold the state of for creating and superimposing mosaics [31], [59].
the n landmarks in the map.

The stochastic map also stores and maintains all the co- v Fysion OFMOSAICED CLASSIFICATION DATA
variances and correlations between the states. Furthermor _ ) i )
it has been proved in [63] that, in the limit as the number This section presents two pixel level models for the fusion
of observations increases. the c,ovariance associatedawith of multiple classified sidescan sonar mosaics. The first inode
single target location estimate is determined only by thtein [US€S classified maps using a simple voting scheme while the
covariance in the vehicle location estimate and, in thet)iedi seﬁond moder: mtegralltes clafss rel:ablllty |_ng_exes n tltmﬁu
the target estimates become fully correlated. These |drieperSC eme. Both models are formulated within a m“t"SP“rce
make the stochastic map highly desirable. With fully cted Markovian framework to take advantage of contextual infor-
landmarks, an observation of any of the landmarks will heﬁi'atlon _and improve (_:Iassmcgtlpn accuracy. The Marko_vlan
correct the whole map. It can also take advantage of the wedff04€! iS_presented first as it is common to both outlined
of literature published on Kalman filters. The update eaqunesti models. TTe details specific to each of the two models are
of the stochastic map are the familiar EKF update equatiorpéfasemed ater.
To propagate the state:

%o (k) = £o[&y (k — 1), u(k), 0, k] ) A. Markov Model for Image Fusion

) ) ) , ) Let us assume first that each of the input class maps is
where %, () is the side-scan sonars estimated state apglfined on a latticeS where labels specifies a specific

fy[%v (), u(k), 0, k] is its dynamic model. And its associatedyixe| |ocation. Two random fieldX and W are defined.
covariance will be propagated thus: X = {X,,s € S} describes the classification field provided
P(k) = Fy , P(k — 1)FY +F,, Q(k)FT 8) lgy each input map _an(W = {Wst € S} describes the
v v final fused classification map. F@ input class mapsX; =
whereFy, is the Jacobian of the dynamic model with respegty! XK takes its values from the finite set of classes
to the side-scan sonar state, used to linearise the stateofd — {wi,...,wn, o~} The setQ containsM recognized
side-scan sonar errat,(k — 1), and Fyw, is the Jacobian seafloor classes, thenclassifiedabel o and theunmeasured
of the dynamic model with respect to the process noise. Thgel ~. Label « is allocated toX7,j € {1,...,K} when
corrected state estimate becomes: data is received regarding pixelin imagej but a classifi-
2(k + 1) = %(k) + Ki(k)v; (k) 9) cation baseq on the data prowdeq is nqt pOSS|bIe..La/I;)e.I
unmeasuredis used when no data is received regarding pixel
whereK; is the gain of the filter and; is the innovation. Its s, ensuring it is not possible to provide a classificatigp.

associated covariance is updated according to: The distinction between classaesand+y is important during
- e ) T the fusion process. If all the input class maps provide input
Pk +1) = P(k) — Ki(k)S: (k)K" (F) (10) XJ = 4,Vj, then there has been no data retrieved by the sensor
whereS; (k) is the innovation covariance. regarding pixels. Therefore, pixels should not be classified
For more details on this implementation of the stochastity the fusion process. If all the input class maps provide
map, the interested reader should refer to [34]. input XJ = «,Vj then while none of the input images have
provided a classification for pixel, the sensor has received
B. SLAM-RTS data regarding this region of seafloor. In this instance, the

The Kal il d EKF I ¢ ; tFusion model will return an output classification for pixel
€ Kaman Hiter an use all measurements up 1o %?/ considering the pixel classifications within the neigtibhg
last iteration to estimate the state at that last iteratidme

region.
RTS smoother uses all measurem reand after each The fusion problem consists of estimating the true claskifie

|terat|on.to e§t|mate the state at each iteration [64]. & jmst- maplV’ = w from the individual classified maps = « where
processing filter that works on the stored outputs of a Kalm%n: 2.,5 € S are K classified maps of the same scene. The
filter by re-processing it. The_smoother works by cpmbmmg@eld W — {W.,s € S} is said to be Markovian with respect
forward pass Kalman filter with a backward pass filter. It w

% neighborhood; = if its distribution can be

originally designed to work with fixed size state vectorsw-o _ . 9 h = {nss €5}
X written as

ever, the stochastic map adds new states to the state vector a
it observes new landmarks. The SLAM-RTS algorithm adapts
the RTS fixed-interval smoother to work with the stochastic Py, (Wy = ws|W, = w,, 7 # 5) =
map by _flxmg the size of _the s_tate vector to the size of_ the P(W, = w,|Wy = wy, 7 € 15) (11)
stochastic map on the last iteration. The SLAM-RTS algarith
ensures numerical stability in matrix operations by adligst  This formalizes thaP(V) is a local probability and that the
the estimates of the landmarks’ states and covariances atfased class labeb, for pixel s is dependant only on the class
iterations before they have been observed to the values whedpels of the pixels within its neighborhoad. For simplicity,
they are first observed. The output of the SLAM-RTS habe fusion model described in this paper assumes a second
been shown to improve the accuracy of the stochastic mamer isotropic neighborhood. This neighborhogdor pixel
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where the sum is over all the inputted class images and as
Mg | before,é(.) is the Kronecker Delta Function. This function is
.......... ; not specified for theinclassifiedor unmeasureclasses.
The initial fusion FieldW is then specified as:

Xs
____________________ K
: ] j=1
Fig. 9. The Markovian prior assumed a second order isotropic = 7if To(7) = max Ti(w;) > 3
neighborhood. The class of pixels is therefore only dependant on its — o otherwise

8 nearest neighboring pixels.

where K* is the number of images which do not provide
an unclassifiedor unmeasuredlassification for pixels.
€ . : L
n this model, the adapted voting function first checks to see
whether all the images provide anmeasuredlassification. If
they do, the pixel is classified ammeasuredvithin the Fusion
Map. Forw; to be allocated a class which is nomtmeasured
or unclassifiedclassr € {w1,...,wa } must have the largest
VA summed binary function with a value greater than or equal to
5 : . L o
Where Z is a normalizing constant anél(w) is an energy sK*. If this ruIe_ is not met, th(—_} p|>§el is Iab_eled asclassified
term. Once the voting rule specified in equation 15 has been used
For the Fusion model, the problem of maximizing probabif® initialize Fusion Field/V’, the Markov Energy tern/ (w; )

ity Py (w) can be re-cast to the local problem of maximizind’ equation 13 is considered. The ICM technique described in
energy Section V-A is used to locally maximiz€(ws) and complete

the Fusion process.
Using the above fusion approach ensures several points:

U(ws) = Z B(ws, we)[L = d(we, )][t = d(we, )] (13) | pixels allocated asnmeasuredn all the images are left
tene so in the fused image as no measurements have been
for pixel s. In equation 13§(.) is the Kronecker Delta sym- obtained regarding these pixels. They are not allocated a
bol andg controls the importance of the Markovian prior. For  valid seafloor class.
all cases in this papef, = 1.0. As can be seen from equation « Pixels initialized asunclassifiedin Fusion FieldW as
13, neighboring pixels labeled amclassifiedor unmeasured a result of the Voting Scheme are always allocated a
(and therefore do not contain any useful information to aid seafloor class during the ICM process. In effect, time
the fusion process) do not contribute to the Markovian prior  classifiedregions are eroded away by the Markovian prior
The minimization of P(W) is performed using the Iterated (inpainting). The Markov model allows these regions to
Conditional Modes method [51]. In this method, a raster scan be classified by considering the surrounding classified

s can be seen in Fig. 9. Further reading regarding MRF mod
can be found in [50], [51], [65], [66].

The Markovian property fieldV allows Prior Probability
P(W) to be written in the form

Py (w) = L exp(—FE(w)) (12)

is used to iteratively visit all the pixels in field. If w, = regions.
unmeasuredthe pixel is not considered further and the pixel « The ICM process produces a smoothed version of the
remainsunmeasuredOtherwise,w; is allocated to the class initialization produced by the Voting process.

which locally maximized/ (w;). This method of segmentation
produces a local maximum d?(W). The ICM procedure is _ .
iterated until there are no pixel changes within a full imagg' The Pr.obab|I|st|c Fusion Mc.)d.etl _ .

scan. The details of how the energy term described in equatio The Voting scheme used to initialize the Fusion Class Map
13 is applied within each of the two Fusion models is providédl the Voting/MRF model described in section V-B assumes

in the following sections. that each input source is equally reliable. A more balanced
fusion decision should also consider the reliability of leac
B. The Voting/MRF Fusion Model source. One possible representation of source relialiditp

. . . use confusion matrices.
The Voting/MRF Fusion Model assumes that each image

Jj provides a classification result for each pixel labél The map X’ as well as a Class Confusion matfi¥. This matrix
fusion field W' is initialized by using an adaptation of theig gpainable through training (using a supervised system)
G_enerahzed.Ma]onty \oting [43]. In this model, a summeqmd provides a measure of the likelihood ted{z|ws)
binary  function Ts(wi)‘ for p|.er 5 _qnd each recognlzedwhere it is assumed that random varialllg is independently
seafloor classes;, 1 < i < M is specified as conditional onW [65]. This assumption is used extensively
K in image-based Markov solutions. Using training data, ¢hes
Ty(wi) = Z S(zd,w;) for 1<i<M (14) matrices can be estimated, specifying the probability afce
=1 j providing ax = 7 classification decision given that it is

Assume each sourgec {1,..., K'} produces an input class
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known that the actual classification of the decisiomis= e. C'a(s;'f'er % Class'f'%a;gg Accuracy
For pixel s and input sourcg, C2 75.90
C3 7491
Pla =7lw] =) = CL (15) o 1558
We assume that the Confusion MatriX considers only TABLE |
recognized seafloor classes,...,wy. Assuming the input  THE CLASSIFICATION ACCURACY OF THE 5 CLASSIFIERS USED TO

sources are independent (we assume the random variabl@s assiFy THE MEASTEX TEXTURE IMAGE SHOWN IN FIGURE 10
X! ..., XK are independent conditionally oV [47]), we
can write that

) K ) K pixels does not ensure that all initiallynclassifiedpixels are
Play=r1,...,2" =olws =€) =C.. x...xCcr  (16) classified in the final result. The final raster scan congideri

Using the likelihood term expressed in equation 16, it Ig_nly Ulws) ensures that any remaini_m;glglas_sifiecbix_els are
possible to initialize the Fusion Field’. Instead of initializing 9'Ve" recognized seafloor classification in the final, fused

the field using a voting scheme where each source is condi¢P-

ered equally reliable, the model now considers each inputs
reliability. As before, if all the sources provideaa = v or D. Results
« decision,w; is initialized asunmeasuredor unclassified
respectively. Otherwise the label field” is initialized by
considering equation 16. Ten samples are drawn from t

1) Comparison of the Models on MeasTex Imag&sis
ﬁection evaluates the Voting/MRF and Probabilistic fusion
€ . ;
model on an image comprised of MeasTex [67] texture sam-

classws; = € probability distribution which maximizes the N : . .

L ) . X L ples. Classification results have been obtained using 5 dif-

likelihood value described in equation 16. Pixak initialized . oo L S
ferent classifiers. The first is a parametric linear disanamnit

with classw; if the sampled probability compares favorabchlassifier using co-occurrence matrix features(C1). Tleorse

to a random number in the range [0,1] for a majority of thgmd third consider fractal features using a non-parametric

samples_._ I thlfc’ criterion Is not met, thg pixel is labeled NN classifier(C2) and a parametric linear discriminanssia

unclass_lﬂed Th|§ |_n|t|aI|zat|.on technlque IS anfilogous to thef\ier(C3) respectively. The fourth and fifth classifiers cdesi

generalized majority technique used in the Voting/MRF Basi frequency based features, again with the kNN classifier(C4)

model. L . . . . ._and the linear discriminant classifier(C5) respectivelil. ;A
After initialization, an iterative process Is again Ca‘““ecl ssifiers are supervised systems. Therefore the confusio

out to complete .the f-u3|on. _P|xel_s are visited rgndomly anr%itrices required for the Probabilistic model can be olein

allocated a classification which minimizes posterior eperg from the training data. The test image and the corresponding

ground truth result can be seen in Figure 10.

x

post 1
UP** (ws, zy, . - -

):
zs[l — 6(ws, )] +
1 _

B3 8wewn)]

teENs

K
s

S(we, ML = 0(wr, )]

where as in the Voting/MRF model, pixels initialized as
ws = are not considered or changed. As befaif) is the
Kronecker Delta function and

(b)
25 = ln[P(J:i, . $f|wé)] (17) Fig. 10. (a) A texture image_ compo_sed of 4 _MeasTex textures. (b) The
ground truth of the textured image displayed in (a).

As can be seen from equation 17, the likelihood term is
considered only if the pixel is currently not classified as The performance accuracy for each of the 5 classifiers
unclassified The Markovian term is the same as the oneperating in isolation can be seen below in Table V-D.1.
discussed in equation 13 for the Voting/MRF model. Pixels The classification results for 3 of the classifiers (C1, C2
are visited randomly rather than using the more deterniinisand C4) are shown in Figure 11 (C3 and C5 are visually quite
raster scan to allow more mixing between the classes. Téigilar to C2 and C4 respectively). The figure also contains
number of pixel visitations will affect the quality of the &ih the classification result obtained from fusing the C1, C2 and
result. The results provided here uséd pixel visitations C4 classifier results using the Probabilistic model. This ha
where N is total number of pixels in field/. been included for comparison purposes.

The probabilistic fusion process is completed by applying The classification accuracy obtained from fusing the differ
Energy termU (w;) in equation 13 to field? in an iterative ent classifiers using both the Voting/MRF and the Probatailis
manner, again using a raster scan. This was done to agaiodel can be seen below in Table V-D.1.
ensure the final Fusion Classification containedinolassified  Table V-D.1 shows the Probabilistic model outperforming
pixels. Unlike the raster scan approach, randomly visitmgy the MRF/\Voting model in all cases as expected. The fusion
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(d)

Fig. 11. (a) Classification result from (a) classifier C1 (b) ClassifieC2  Fig. 12. (a) The ground truth of the simulated image used to test the
(c) Classifier C3 (d) Fusing C1, C2 and C4 using the Probabilic model.  fusion models. (b)-(d) Simulated classification results &m a 90%, 70%
and 50% accurate classifier respectively.

Classifiers Fused| Voting/MRF Accuracy | Probabilistic Accuracy _ .
Cl1C2C3 85.58 91.72 Input Image | Voting/MRF Probabilistic
cicC2 91.29 92.56 Accuracy % | Accuracy % | Accuracy %
C1C3 89.51 92.09 100 99.73 99.75
C2C3 80.86 82.47 90 96.70 96.97
ClC2C4 89.08 92.72 80 93.51 94.20
C4 C5 62.94 63.50 70 91.92 91.94
60 84.21 85.32
TABLE II 50 75.11 76.14
THE CLASSIFICATION ACCURACY OBTAINED FROM FUSING VARIOUS TABLE I
CLASSIFIERS USING BOTH THE VOTING/MRF AND PROBABILISTIC THE CLASSIFICATION ACCURACY OBTAINED FROM FUSING 4
MODELS . SIMULATED CLASSIFICATION RESULTS OF A GIVEN CLASSIFICATIO N

ACCURACY USING BOTH THE VOTING/MRF AND PROBABILISTIC
MODELS.

operations containing C2 and C3 can be seen producing lower

classification results than is perhaps expected from ceriaigl i ) _

2 good classifiers (the Voting/MRF fusion of C1, C2 and c¥/ére fused using the Voting/MRF and Probabilistic models.
is the only example where the final fused result is lower thérr_he simulator was set up to ensure that any miss-classified
any of the classifiers considered in isolation). This is beea p|xel_s were spread evenly over the other clas_ses. The sesult
C2 and C3 use the same features and so generally classify BHE?'T‘?d t_)y the 2 tested models to fuse the_ 4 images for each
miss-classify the same image regions. Any miss-classificst classification accuracy value, can l_)e seen in Table V-D.2.
present in either of these results are simply reinforcechiey t AS Table V-D.2 shows, both fusion models generally pro-
second. This lends strength to the argument that fusion & m@uce & classification result which is better than any of tpeiin
effective when considering results obtained from differef"a9es copgldered in isolation (the exception is the perfec
sources. This can be seen in the high classification accuréﬁ@/Ut classifiers where the MRF_component of the models

obtained from fusing C1, C2 and C4, even though C4 whd&i@s smoothed the final result). The Probabilistic model can
considered in isolation. is a poor classifier. " be seen to outperform the Voting/MRF model in all cases,

2) Comparison of the Models on Synthetic Imag@is although both provide good results in all of the examples,
ven when the input classification accuracy dropss@go.

section evaluates the Voting/MRF and Probabilistic fusio% rther result Id be orovided using varving numbers of
models on a simulated example. A simulator model was used e resufts cou’d be provided using varying numbers o

to produce classification results with a given classificmtio'npUt images and different classification accuracies. Hewe

acctracy, using the same ground uth image. Figure [ ST T8 L A S L e resentec
contains the ground truth image used in this section as well P

as a simulated result from hypotheticl%, 70% and 50% produce a final classificat.ion rgsult that is general!y hlig'he
efficient classifiers. As can be seen from Figure 12, gRgedracy than any of the inputimages considered indiviglual
simulator was developed to produegionsof miss-classified
pixels, as would be observed from a real classifier. VI. CREATING LARGE SCALE MOSAICS

Simulated classifier output for the ground truth image The following results were obtained by processing data
shown in Figure 12 was produced for a range of classifigathered during the BP'02 experiments carried out by the
accuracies. Four different classified images for each desteACLANT Undersea Research Centre in La Spezia, Italy. The
input classification accuracy were produced. The four imagside-scan data was gathered by a REMUS AUV [3].
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The navigation output from REMUS and the side-scan data
have already been used to create large scale mosaics of the
observed region [68]. The same navigation solution has been
used to geo-reference the data. The AUV mission lasted for 2
hours, 57 minutes and 8 seconds. It followed a set of parallel
regularly spaced and overlapping linear tracks (typical fo
rapid environmental assessment missions).

The data have been classified using the techniques outlined
in section IlI.

A. Fusion

The fusion of the classified mosaics was carried out using
the Voting/MRF model. This is because no ground truth
information was available on the data set with which to abtai
classifier reliability information. Fig. 14.  The Initialization of the Voting/MRF fusion model after

Fig. 13 shows four overlapping mosaics of sector 1 (a pree voting scheme for the Sector 2 mosaics. The white pixelsescribe
defined region) created by geo-referencing 17 linear tratks unclassifiedregions.
of the resulting mosaics created using the overlappindsrac
are geo-referenced to the same reference frame (sectodl) an
will constitute an input to the fusion algorithm.

74

;5% |
\\\ (@) \\\ (b)

\ Fig. 15. The Final Fused result obtained from the Voting/MRF fusion

model for the Sector 2 mosaics. The MRF section of the model ba
\\ (C) \ (d) ensured nounclassifiedpixels remain.

Fig. 13. (a)-(d) Show four mosaics displaying 15 side-scan tracks dlfie
REMUS Mission . result has fused all the input mosaics to produce a smoothed
map where all the pixels where data of some description has

E T?]e Ir)r(ltnlsla|csr]|nldF|gr:jsd t13bccl)nrt]a|rt1 a:hmamrr:jurrrll 0]; 5 Classleoeen received by the AUV have been classified. The fused
ach pixetis considered to belong to the sa pple, Cermp map allows a more complete picture of the seafloor to be built

unmeasurear unclassifiecclass. The large light grey regions p than is possible by considering a single mosaic in ismati
areunmeasuredegions over which the AUV has not passed.
The Fusion model has produced a more complete and useful
The white regions are areas which remaictlassifiedollow-
plcture of the seafloor. The information from the individual

ing the geo-referencing process. The geo-referencingepenc mosaics has been fused to produce a smoothed map of the
sometimes stretches or contracts pixels from the indiVidua
inout images to allow mosaics of the correct resolution to beaﬂoor region. Alunclassifiedregions from the initialization

P 9 Yesult in Fig. 14 have been classified by the Markovian aspect

created. The initialization from the Voting Scheme and th
he model. The benefits of the Fusion model can be clearly
Final Fused Result for these mosaics can be seen in F|gs
seen in the example shown in Figs. 15.

and 15 respectively.

Both the initialization and the final fused results in Fig4. 1
to 15 contain much more information than any of the mosaics
considered in isolation. The initialization result contaiarge  This paper has presented a method for creating and fus-
regions ofunclassifieddata where the voting scheme has failethg classified sidescan sonar mosaics of the seafloor. An
to confidently allocate a seafloor class. These regions hamtoduction to sidescan sonar imagery was first presented.
been classified within the final fused result. The regions éf normalization and classification model was then detailed
seafloor which are classified asmimeasuredn all the input which allowed inherent sidescan sonar problems such as the
mosaics have also been left asmeasuredThe final output beampattern to be considered. This produced robust ctassifi

7

”

-

VIlI. CONCLUSIONS
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tion results (segmenting the images into regions of flateeafl [5]
sand ripples and complex regions) to be obtained for single
sidescan images. [6]

A mosaicing algorithm was then presented. This used CML
techniques to produce high quality mosaics of the indivliduzr7
classification maps. The generation of these mosaics, wh é
the images are geo-referenced in space, allows the pdysibil
of multi-mosaic fusion. (8]

Two models were then proposed for the fusion of theg
classified mosaics. The first used voting schemes to izigali
the fusion map, after which a Markov model was used to bot}f!
classify regions previously labeled anclassifiedand smooth
the final result. The second model adopted a probabilistia]
framework and allowed the reliability of each source to b[?z]
considered during the fusion process.

The Voting/MRF model was then demonstrated on real
classified sidescan mosaics. These mosaics were first mdst%]
using the classification and mosaicing models presentdtkin
first section of this paper. Information from the individual
mosaics was fused to produce a Fusion map of the entitd
region of seafloor surveyed by the AUV. The Fusion Model
allowed a complete picture of the survey region to be built
which would not have been possible from considering any 8f!
the mosaics in isolation.

Future research will concentrate on automated methods[ts
obtaining classifier reliability information for the sides
sonar sensors. If this is available, the probabilistic &wsi (7
model may be implemented. One possibility which will be
looked at is whether the result from the MRF/Voting mod ls]
can be used as an approximation to the ground truth, allowing
estimates to the reliability information to be automafigal [19]
obtained. The mosaicing model will also be enhanced to
include existing object detection techniques [69], [7O0Han
automatic data association strategies [71] to simplify and
minimize the operators task. (21]
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