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Abstract— This paper presents a unified framework for the
creation of classified maps of the seafloor from sonar imagery.
This is a longstanding problem in underwater imagery with direct
applications to remote sensing. It presents difficult challenges in
photometric correction, classification, navigation and registration
and image fusion, drawing from a wide range of techniques. The
paper uses recently developed methods to pre-process the images
in order to compensate for the beam pattern of sonar devices
and the motion of the acquisition platform. In a second step,
the corrected images are classified using texture descriptors and
standard classifiers. In parallel, the navigation of the sonar device
is processed using Kalman filtering techniques. A Simultaneous
Localisation And Mapping (SLAM) framework is adopted to
improve the accuracy of the navigation. The classified images
are fused within a Markovian framework. Two fusion models
are evaluated. The first model uses a voting scheme regularized
by an isotropic Markov Random Field when the reliability of
each information source is unknown. The Markov model is
also used to inpaint the regions where no final classification
could be reached using pixel level fusion. The second model
introduces formally the reliability of each information source into
a probabilistic model. The performances of the two models are
evaluated on synthetic images and real data. Finally, the system is
demonstrated on a real mission containing hundreds of images
and large scale classification maps are generated. It is shown
that the Markovian fusion framework improves significantly the
quality of the resulting classified maps.

Index Terms— Registration, Classification, fusion, Markov
Random Fields, side-scan sonar, mosaicing

I. I NTRODUCTION

Recent advances in the fields of underwater technologies
and robotics have led to the development of Autonomous
Underwater Vehicles (AUVs). The development of stable
platforms [1]–[3], fitted with high resolution sonars, and
capable of swimming close to the seabed has opened up the
oceans to rapid and high resolution mapping, generating large
volumes of data. These data have many practical scientific
uses including reef management [4], oyster management [5],
trawling impact assessment [6] and mine-counter measures [7].
This paper tackles the difficult problem of generating large
scale accurate maps of the seabed from sonar imagery obtained
using these platforms.

A large body of work on image based classification of sonar
data exists, but the methods used have been based on single
sonar images. The generation of large scale maps raises the
problem of image registration, the difficult related problem of
autonomous navigation in an environment deprived of GPS
(Global Positioning Systems) and the generation of fused
maps from multiple overlapping classified images which may
contain contradictory information.

A. Sensors

In water, acoustics provides the main sensing modality.
Electromagnetic waves attenuate rapidly and their operating
range is limited to well below five meters in normal operating
conditions. Sonar (SOund Navigation And Ranging) offers a
good alternative providing the user with accurate resolution
and long ranges of hundreds of meters. For imaging, side-
scan sonar (SSS) and the emerging synthetic aperture sonar
(SAS) provide very high resolution images of up to centimetric
accuracy at up to 300 meters. These systems use the principle
of a long antenna to generate a narrow acoustic beam [8], [9].
The beams illuminate a narrow stripe of the seabed at any
one time. As the system moves through the water, towed by
a survey vessel or mounted on an AUV, it generates a wide-
area image of the sea bed (obtained as a concatenation of
successive stripes) as shown in Fig. 2. The main parameters
affecting the resolution of the generated images are the length
of the antenna and frequency of the acoustic wave used (these
determine the across track resolution) and the speed of the
platform (AUV or towed body) which determines the along
track resolution.

B. Image Formation Process and Pre-processing

The interpretation of sidescan imagery is a skilled proce-
dure [8], [9]. There are many parameters of the image for-
mation process contributing to intensity variations in recorded
data which are quite separate from the influences of variations
in seabed properties and textures. These are generally well
understood and good models exist which can aid the process of
automated seabed classification [10], [11]. In the current work
the sonar data are preprocessed to correct for the influences
of the sonar beam pattern and time-varying gain (TVG) [12],
[13]. This enables the use of simpler and faster classification
algorithms which is particularly beneficial for application to
large area surveys.

C. Classification

Given the vast quantities of data produced, fast classifica-
tion algorithms are required to produce seabed class maps
representing textural variations and areas of scientific in-
terest. Many supervised techniques have been developed to
tackle this problem. Neural Networks and parametric statisti-
cal classifiers have dominated the scene [14]–[19] and have
been coupled with feature extraction measures including one-
dimensional cepstral and spectral features [20]–[22], fractal
analysis [23], spatial point processes [24], grey level run-
length measures [17], [25] and co-occurrence matrices [26],
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[27]. Fuzzy logic analysis [28] and autoregressive models [29]
have also been investigated for seabed classification.

These image-based techniques consider each image ex-
tracted from the sidescan data in isolation. In this paper a
variant of the power spectrum feature set [21] is used with a
simple parametric classifier for rapid supervised classification
of the individual sidescan sonar images. However, unlike
previous techniques, the classification result for each image is
fused with the results derived from all of the images covering
the same area of seabed.

D. Registration and Mosaicing

In order to produce large scale classified maps of the seabed,
it is first necessary to register the individual sidescan sonar
images. Given the position of the sensor in the world for
each sidescan beam, it is possible to produce a geo-referenced
image of the seabed. This process is called mosaicing [30],
[31]. The quality of the mosaics produced will ultimately
depend on the precision of the position information of each
sonar beam, i.e. the vehicle’s navigation precision. Under-
water, navigation is a difficult problem as conventional GPS
receivers do not operate. Underwater platforms therefore rely
on dead-reckoning sensors which drift over time. To fix this
drift, we propose to use a Simultaneous Localisation And
Mapping (SLAM) technique based on the stochastic map
developed for indoor robotics [32], [33] and adapted to sonar
imagery [31], [34]. This is a solution, based on the use of
landmarks detected in the sonar imagery to help the navigation,
which does not require the addition of additional sensors and
does not interfere with the data acquisition constraints (stable
platform, fixed altitude).

E. Fusion

During a typical survey of the seabed, multiple views of the
same area are normally collected from different view points.
The fusion of these views enables the generation of improved
large scale classified mosaics from the individual classified
sonar images. To date, very little work has been done in
image fusion in the underwater domain [35], [36] and it has
been limited to simple multi-sensor fusion. To the author’s
knowledge, there have been no publications concerning the
fusion of underwater imagery to produce large scale classified
mosaics of the seafloor.

Fusion of multiple sources of information is a well estab-
lished research field. When the information sources produce
the same type of measurements, standard fusion techniques
such as Bayesian theory [37], Fuzzy Logic [38] and Dempster-
Shafer theory [39]–[41] can be used. However, for classifiers
which consider different types of input measurements or
features, it is often not possible to consider the computed
output measurements to be estimates of the same posterior
probability [42], making fusion difficult. When little is known
about the information sources, or when they produce infor-
mation at a high level of abstraction, voting schemes can be
successfully used [25], [43]. This is particularly appealing for
underwater imaging systems which currently favor ‘black box’
approaches to classification.

Fusion for classification within the image domain allows
contextual information to be considered and to date has
been mainly applied to remote sensing [37], [38], [44]. The
fusion of multiple images is generally performed at the pixel
level [41], [45]–[48], allowing information from surrounding
pixels to be considered when classifying each pixel. An
effective method for incorporating this spatial information is
the use of Markov Random Fields(MRF) [49]–[51].

This paper details a fusion model for fusing registered,
classified sidescan sonar images of the seafloor. Fusion is
conducted at the pixel level where each classifier outputs
a single class decision for each pixel. This maintains the
generality of the fusion scheme and allows classified images
from different classifiers to be fused together.

Two separate models are presented: the first model uses a
voting scheme to initialize the fused class map. After, a MRF
model is used to incorporate contextual information, smooth-
ing the final result and ‘inpainting’ regions of pixels whichare
unclassifiedafter the Voting process. This ensures all pixels
within the image, for which there is data, are successfully
classified within the final fused result. The standard Markovian
prior term is altered so that pixels labeled asunclassified
from the Voting scheme, do not contribute to the Markovian
probability. This ensures that only pixels which have been
successfully fused and classified contribute to the fusion
process for the other pixels. The second model considers the
case when the reliability of the classifier is known [52]. This
information is stored using confusion matrices and allows
the Voting Scheme from the first model to be replaced by
a probabilistic, Markovian framework.

Navigation
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Sidescan Data

Pre−Processing
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Fig. 1. Data flow for formation of fully classified fused sidescan mosaics.

Fig. 1 illustrates the progression from the raw sensor and
navigation data through to the fully classified fused sidescan
image mosaics resulting from the processing steps outlinedin
this paper.

F. Layout

The image formation mosaicing and pre-processing of the
sidescan sonar data are discussed in Section II. Supervised
classification using features derived from the sonar swath
power spectra is described in section III. Section IV describes
the SLAM-RTS technique for improving and smoothing the
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navigation solution. Section V details the two models pre-
sented for Fusion of the classified sidescan sonar images.
Results are presented on simulated and MeasTex sample data
to illustrate the differences between the two models and
quantitatively measure the effectiveness of these approaches.
Section VI contains the results of the Fusion model on real,
classified sidescan sonar mosaics. Section VII concludes the
paper and outlines future research plans.

II. SIDE-SCAN SONAR IMAGE FORMATION AND DATA

PRE-PROCESSING

A. Image Formation

A sidescan sonar is an acoustic device comprising a long
horizontal antenna. This antenna forms a narrow beam or-
thogonal to the antenna, along the vehicle track, and a wide
beam across the track. As the antenna is moved forward,
ideally in a straight line, the beam generated covers the seabed
uniformly. The geometry of the sidescan image formation
process is represented in Fig. 2. A sonar image is generated
by concatenating these beams into a 2D image as seen in
Fig. 3 (a). It is important to understand that such images are
not in Cartesian coordinates but in time coordinates. The x
coordinates correspond to the time at which the beam was
emitted from the sonar while the y coordinates corresponds
to the time of flight of the pulse in the across track direction.
Converting these time-time images to images in real-world
coordinates is called geo-referencing or mosaicing and is
critical to our applications. A common feature in all raw
sidescan imagery is the largely black region in the centre of
the image. This corresponds to the transit time of the acoustic
wave through the water before reflection from the seabed and
indicates the altitude of the sensor. More details on the image
formation process can be found in [9].

Fig. 2. Diagram Showing the Assumed Side-scan Sonar Geometry.

B. Preprocessing

In many emerging applications low altitude surveys are
required. In such cases even quite small changes in vehicle
altitude can affect the sonar image dramatically. Prior to classi-
fication the image data used here have been preprocessed using
an advanced radiosity correction algorithm [12]. This is useful
because it treats purely range-dependent artifacts, such as
residual TVG effects separately to angular effects such as the
influence of the sonar beam pattern. Separate correction factors
are calculated for each. Whilst this gives better performance
than standard radiosity correction algorithms in the presence
of sensor altitude changes, platform stability is still assumed
with respect to pitch and roll.
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Fig. 3. (a) sample raw image (1000 scan lines); (b) beam pattern estimate;
(c) residual TVG estimate. Differences in ranges fory-axes derive from
the methods of calculation. Values in (b) are referenced to atarget grey
level, hence range 0–255, values in (c) are referenced to a level of 1.0.

A sample raw image and the estimated beam pattern and
residual TVG profile for these data are shown in Fig. 3.
The complexity of the beam pattern is apparent with four
significant lobes in the port channel and as many as six in
the starboard channel. The differences in the scales of the y-
axes for the beam profiles and TVG estimates result from their
methods of calculation and application within the radiosity
correction algorithm [12].

The corrected image is shown in Fig. 4. In some places the
beam pattern correction has failed, as indicated by the white
arrow. This arises from the behavior of the vehicle, which rolls
on turns. With each course adjustment the small degree of roll
affects the symmetry of the beam pattern on the seabed, so
that it is poorly compensated near the water column. At these
points classification accuracy is affected. However, wherethere
are overlapping images, the data fusion techniques described
below compensate well for any resulting misclassification.

C. Mosaicing

The sonar mosaic algorithm used in this paper assumes the
geometry shown in Fig. 2. Under this assumption each sonar
channel (port and starboard) insonifies a rectangular area on
the sea floor. The length of the rectangle is determined by the
slant range of the sonar (the maximum range of the sonar) and
the height of the vehicle, assuming a flat seabed. The equation
for this length, referred to as horizontal rangerh is:

rh =
√

r2
s − h2 (1)
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Fig. 4. Corrected image. The correction algorithm cannot compensate
for changes in sensor attitude, such as roll on trajectory corrections, see
arrow above.

where the slant rangers is obtained from:

rs = T × c/2 (2)

with c the speed of sound in the water, assumed constant, and
T the time of the last return on each beam. The height of the
vehicleh is found using:

h = tb × c/2 (3)

where tb is the time to the first return of the sonar beam.
The width of the beam is determined by the spacing between
two successive beams, this guarantees that all the mosaic cells
between beams are filled.

The seabed is represented as a flat two dimensional grid
of mosaic cells (see Fig. 2). The resolution of the mosaic
cells can be set by the operator. Using simple geometry both
channels can be superimposed if the orientation and position
of the sonar is known. Each mosaic cell will take the value
of the intensity cell on the beam closest to it. In this paper
if a mosaic cell takes more than one value then, in the case
of the pre-processed image mosaics, the data will be averaged
or, in the case of the classified data, the cell will be left as
unclassified.

An example output from the mosaicing algorithm is given
in Fig. 5 which shows a mosaic obtained from geo-referencing
the data from Fig. 4.

Fig. 5. Sample side-scan mosaic.

III. C LASSIFICATION OF SIDE-SCAN DATA

Three seafloor textures have been identified for segmenta-
tion of the sidescan data, defining three classes: flat sediments,
sand ripples, and complex regions. Suppression of the beam
pattern effects and some of the residual TVG effects, as
described in§II-B above, improves the images to the point
where a fast supervised classification scheme can be combined
with a relatively simple, easily generated feature set.

The features used are based on Pace and Gao’s frequency
based sediment classification scheme [21]. In the current data
the classes have relatively large scale textures, which confines
much of the discriminatory content to relatively low frequency
bands. Overlapping 64-sample Gaussian windowed FFTs are
used to generate the one-dimensional power spectra and this
allows for identification of changes in texture across the sonar
swath.

If sj(t) represents a single line of sonar data andWi(t)
represents the Gaussian window centered at positioni, the
normalized power spectrum can be defined by,

Pi,j(f) = |F [Wi(t)sj(t)]|
2

P̃i(f) =
1

n

n
∑

j=1

Pi,j(f)

PiN (f) = P̃i(f)

/
∫ fmax

0

P̃i(f)df (4)

Spatial frequency bands within the normalized power spec-
tra are identified which give a good separation between the
classes. The training set used for these data comprised three
small sections, one for each texture, of200× 200 pixels. The
training images extracted from the full dataset are shown in
Fig. 6.

(a) (b) (c)

Fig. 6. Training data. Three small images extracted from the full dataset.
Classes are: (a) flat sediment; (b) sand ripples; (c) complextexture.

The averaged normalized spectra for the three training
samples are presented in Fig. 7. The bimodal nature of the
spectrum for the sand ripples class occurs because there are
two dominant scales for the sand ripples. The training image
used has been chosen to be representative of both the large
and small scale ripple textures. It is also possible with this
data set and classification scheme to separate these two ripple
textures and define a four-class training set.

Returning to the three-class problem, three features are de-
fined by the crossing points of the averaged normalized spectra
derived from the training data. These give the proportion of
the spectrum lying in sample bands 1-4, 4-12 and 16-32,
corresponding to crossing points lying atfmax/8, 3fmax/8
andfmax/2.
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Fig. 7. Averaged normalized power spectral densities for the three
training sets. Three features were defined with band limits at 1-4; 4-
12; 16-32. The rippled texture is characterized by two dominant peaks
corresponding to large and small scale ripples which dominate this region.

Df1 =

∫ fmax/8

1

PiN (f)

/
∫ fmax

1

PiN (f)

Df2 =

∫

3fmax/8

fmax/8

PiN (f)

/
∫ fmax

1

PiN (f)

Df3 =

∫ fmax

fmax/2

PiN (f)

/
∫ fmax

1

PiN (f) (5)

In classifying a complete sonar image, the three features
are generated from the averaged normalized spectral density
formed from four successive lines of data. The same 64-
sample sliding Gaussian windowed FFT is used and boundary
problems between sonar channels are minimized by closing up
the water column. This is done simply by shifting the scanlines
on the assumption that there will generally be continuity in
seabed textures between sonar channels.

water column flat sediment
complex rippled

Fig. 8. Classmap generated from the image introduced in Fig. 3. Water
column – black; flat sediment – dark grey; complex – light grey; rippled
– white. Errors are noted where the correction algorithm hasfailed due
to vehicle attitude changes during course corrections and in the transition
regions between textures.

Fig. 8 shows the initial classification result for the image
introduced in Fig. 3 above. Misclassifications are greatestnear
the water column where the correction algorithm has failed.
There are some boundary errors, with pixels classified as com-

plex texture in the transition region between flat sediment and
sand ripples. Misclassification further from the water column
is due primarily to incomplete elimination of the influence
of the surface return and crosstalk from other sensors. These
effects are particularly prominent in this data set and add to
the difficulty of the classification task. These misclassifications
can frequently be rectified by the proposed fusion scheme.

IV. SIMULTANEOUS LOCALISATION AND MAPPING

(SLAM)

In order to create an accurate mosaic of the classified maps,
good navigation is crucial. Conventional GPS and Differential
GPS (DGPS) receivers do not work underwater. Therefore,
when submerged the side-scan sensor must be localized
using dead-reckoning with depth sensors, Doppler Velocity
Logs (DVL), Inertial Navigation Systems (INS) and/or com-
passes [53]–[55]. To correct drift on the dead-reckoning, the
sonar must either be equipped with a GPS/DGPS system and
surface intermittently to get a new fix, thus perturbating the
data acquisition process, or it must be equipped with acoustic
receivers capable of triangulating the position with respect
to either acoustic beacons on the seabed, known as Long
Base Line (LBL) navigation, or to acoustic beacons on a
support vessel, known as Short Base Line (SBL) or Ultra
Short Base Line (USBL) [56]. The costs associated with high
performance INS systems and with setting up acoustic nets
or mobilizing a vessel are considerable and new techniques
have been sought to localize positions underwater. Terrain
matching methods will use known maps of the environment
and data from payload sensors to find the dead-reckoning
drift [57], [58]. The purpose of SLAM is to build a map of
the environment and use that same map to localize [32], [33].
Recently SLAM techniques have been developed to work with
a side-scan sonar [31], [34]. This paper uses this method in
order to geo-reference classified side-scan images. Previous
work has demonstrated the potential of this method when
fusing non-classified data using Gabor wavelets [59].

The data from the navigation sensors is fused in order to
localize the side-scan sonar. The technique used to fuse the
navigation data in this paper is the stochastic map smoothed
using a Rauch-Tung-Striebel (RTS) fixed-interval smoother, it
will be referred to as SLAM-RTS. The stochastic map keeps
the estimates of the position and creates a map of landmarks to
represent the environment. These landmarks are then used to
aid localization of the vehicle. It is a SLAM method that works
iteratively to provide an estimate of the position at the latest
iteration. In order to improve the accuracy of the solution and
to smooth it, post-processing is required. The next two sections
provide a detailed look at the algorithms.

A. The Stochastic Map

The stochastic map is an augmented state Extended Kalman
Filter (EKF) [60], [61]. It adds new states to the state vector
to accommodate new landmarks as they are observed [62]. A
typical stochastic map state vector is of the form:

x = [xvx1 . . .xn]′ (6)
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where ′ is the transpose of a vector or matrix,xv holds the
state of the side-scan sonar andx1, . . . ,xn hold the state of
the n landmarks in the map.

The stochastic map also stores and maintains all the co-
variances and correlations between the states. Furthermore,
it has been proved in [63] that, in the limit as the number
of observations increases, the covariance associated withany
single target location estimate is determined only by the initial
covariance in the vehicle location estimate and, in the limit, all
the target estimates become fully correlated. These properties
make the stochastic map highly desirable. With fully correlated
landmarks, an observation of any of the landmarks will help
correct the whole map. It can also take advantage of the wealth
of literature published on Kalman filters. The update equations
of the stochastic map are the familiar EKF update equations.
To propagate the state:

x̂v(k) = fv[x̂v(k − 1),u(k),0, k] (7)

where x̂v(·) is the side-scan sonar’s estimated state and
fv[x̂v(·),u(k),0, k] is its dynamic model. And its associated
covariance will be propagated thus:

P(k) = Fxv
P(k − 1)FT

xv
+ Fwv

Q(k)FT

wv
(8)

whereFxV
is the Jacobian of the dynamic model with respect

to the side-scan sonar state, used to linearise the state of the
side-scan sonar error̃xv(k − 1), and Fwv

is the Jacobian
of the dynamic model with respect to the process noise. The
corrected state estimate becomes:

x̂(k + 1) = x̂(k) + Ki(k)υi(k) (9)

whereKi is the gain of the filter andυi is the innovation. Its
associated covariance is updated according to:

P(k + 1) = P(k) − Ki(k)Si(k)KT

i
(k) (10)

whereSi(k) is the innovation covariance.
For more details on this implementation of the stochastic

map, the interested reader should refer to [34].

B. SLAM-RTS

The Kalman filter and EKF use all measurements up to the
last iteration to estimate the state at that last iteration.The
RTS smoother uses all measurementsbefore and after each
iteration to estimate the state at each iteration [64]. It isa post-
processing filter that works on the stored outputs of a Kalman
filter by re-processing it. The smoother works by combining a
forward pass Kalman filter with a backward pass filter. It was
originally designed to work with fixed size state vectors. How-
ever, the stochastic map adds new states to the state vector as
it observes new landmarks. The SLAM-RTS algorithm adapts
the RTS fixed-interval smoother to work with the stochastic
map by fixing the size of the state vector to the size of the
stochastic map on the last iteration. The SLAM-RTS algorithm
ensures numerical stability in matrix operations by adjusting
the estimates of the landmarks’ states and covariances at all
iterations before they have been observed to the values when
they are first observed. The output of the SLAM-RTS has
been shown to improve the accuracy of the stochastic map

solution [34], as well as providing trajectories more suitable
for creating and superimposing mosaics [31], [59].

V. FUSION OFMOSAICED CLASSIFICATION DATA

This section presents two pixel level models for the fusion
of multiple classified sidescan sonar mosaics. The first model
fuses classified maps using a simple voting scheme while the
second model integrates class reliability indexes in the fusion
scheme. Both models are formulated within a multi-source
Markovian framework to take advantage of contextual infor-
mation and improve classification accuracy. The Markovian
model is presented first as it is common to both outlined
models. The details specific to each of the two models are
presented later.

A. Markov Model for Image Fusion

Let us assume first that each of the input class maps is
defined on a latticeS where labels specifies a specific
pixel location. Two random fieldsX and W are defined.
X = {Xs, s ∈ S} describes the classification field provided
by each input map andW = {Ws, s ∈ S} describes the
final fused classification map. ForK input class maps,Xs =
(X1

s , . . . , XK
s ) takes its values from the finite set of classes

Ω = {ω1, . . . , ωM , α, γ}. The setΩ containsM recognized
seafloor classes, theunclassifiedlabel α and theunmeasured
label γ. Label α is allocated toXj

s , j ∈ {1, . . . , K} when
data is received regarding pixels in image j but a classifi-
cation based on the data provided is not possible. Labelγ,
unmeasured, is used when no data is received regarding pixel
s, ensuring it is not possible to provide a classificationXj

s .
The distinction between classesα andγ is important during

the fusion process. If all the input class maps provide input
Xj

s = γ, ∀j, then there has been no data retrieved by the sensor
regarding pixels. Therefore, pixels should not be classified
by the fusion process. If all the input class maps provide
input Xj

s = α, ∀j then while none of the input images have
provided a classification for pixels, the sensor has received
data regarding this region of seafloor. In this instance, the
Fusion model will return an output classification for pixels
by considering the pixel classifications within the neighboring
region.

The fusion problem consists of estimating the true classified
mapW = w from the individual classified mapsX = x where
x = xs, s ∈ S areK classified maps of the same scene. The
field W = {Ws, s ∈ S} is said to be Markovian with respect
to neighborhoodη = {ηs, s ∈ S} if its distribution can be
written as

PWs
(Ws = ws|Wr = wr, r 6= s) =

P (Ws = ws|Wr = wr, r ∈ ηs) (11)

This formalizes thatP (W ) is a local probability and that the
fused class labelws for pixel s is dependant only on the class
labels of the pixels within its neighborhoodηs. For simplicity,
the fusion model described in this paper assumes a second
order isotropic neighborhood. This neighborhoodηs for pixel
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Fig. 9. The Markovian prior assumed a second order isotropic
neighborhood. The class of pixels is therefore only dependant on its
8 nearest neighboring pixels.

s can be seen in Fig. 9. Further reading regarding MRF models
can be found in [50], [51], [65], [66].

The Markovian property fieldW allows Prior Probability
P (W ) to be written in the form

PW (w) =
1

Z
exp(−E(w)) (12)

WhereZ is a normalizing constant andE(w) is an energy
term.

For the Fusion model, the problem of maximizing probabil-
ity PW (w) can be re-cast to the local problem of maximizing
energy

U(ws) =
∑

t∈ηs

βδ(ws, wt)[1 − δ(wt, α)][1 − δ(wt, γ)] (13)

for pixel s. In equation 13,δ(.) is the Kronecker Delta sym-
bol andβ controls the importance of the Markovian prior. For
all cases in this paper,β = 1.0. As can be seen from equation
13, neighboring pixels labeled asunclassifiedor unmeasured
(and therefore do not contain any useful information to aid
the fusion process) do not contribute to the Markovian prior.
The minimization ofP (W ) is performed using the Iterated
Conditional Modes method [51]. In this method, a raster scan
is used to iteratively visit all the pixels in fieldW . If ws = γ
unmeasured, the pixel is not considered further and the pixel
remainsunmeasured. Otherwise,ws is allocated to the class
which locally maximizesU(ws). This method of segmentation
produces a local maximum ofP (W ). The ICM procedure is
iterated until there are no pixel changes within a full image
scan. The details of how the energy term described in equation
13 is applied within each of the two Fusion models is provided
in the following sections.

B. The Voting/MRF Fusion Model

The Voting/MRF Fusion Model assumes that each image
j provides a classification result for each pixel labelxj

s. The
fusion field W is initialized by using an adaptation of the
Generalized Majority Voting [43]. In this model, a summed
binary function Ts(ωi) for pixel s, and each recognized
seafloor classesωi, 1 ≤ i ≤ M is specified as

Ts(ωi) =

K
∑

j=1

δ(xj
s, ωi) for 1 ≤ i ≤ M (14)

where the sum is over all the inputted class images and as
before,δ(.) is the Kronecker Delta Function. This function is
not specified for theunclassifiedor unmeasuredclasses.

The initial fusion FieldW is then specified as:

ws = γ if

K
∑

j=1

δ(xj
s, γ) = K

= τ if Ts(τ) = maxTs(ωi) ≥
2

3
Ks

= α otherwise

whereKs is the number of images which do not provide
an unclassifiedor unmeasuredclassification for pixels.

In this model, the adapted voting function first checks to see
whether all the images provide anunmeasuredclassification. If
they do, the pixel is classified asunmeasuredwithin the Fusion
Map. Forws to be allocated a class which is notunmeasured
or unclassified, classτ ∈ {ω1, . . . , ωM} must have the largest
summed binary function with a value greater than or equal to
2

3
Ks. If this rule is not met, the pixel is labeled asunclassified.
Once the voting rule specified in equation 15 has been used

to initialize Fusion FieldW , the Markov Energy termU(ws)
in equation 13 is considered. The ICM technique described in
section V-A is used to locally maximizeU(ws) and complete
the Fusion process.

Using the above fusion approach ensures several points:

• Pixels allocated asunmeasuredin all the images are left
so in the fused image as no measurements have been
obtained regarding these pixels. They are not allocated a
valid seafloor class.

• Pixels initialized asunclassifiedin Fusion FieldW as
a result of the Voting Scheme are always allocated a
seafloor class during the ICM process. In effect, theun-
classifiedregions are eroded away by the Markovian prior
(inpainting). The Markov model allows these regions to
be classified by considering the surrounding classified
regions.

• The ICM process produces a smoothed version of the
initialization produced by the Voting process.

C. The Probabilistic Fusion Model

The Voting scheme used to initialize the Fusion Class Map
in the Voting/MRF model described in section V-B assumes
that each input source is equally reliable. A more balanced
fusion decision should also consider the reliability of each
source. One possible representation of source reliabilityis to
use confusion matrices.

Assume each sourcej ∈ {1, . . . , K} produces an input class
mapXj as well as a Class Confusion matrixCj . This matrix
is obtainable through training (using a supervised system)
and provides a measure of the likelihood termP (xs|ws)
where it is assumed that random variableXs is independently
conditional onW [65]. This assumption is used extensively
in image-based Markov solutions. Using training data, these
matrices can be estimated, specifying the probability of source
j providing a x = τ classification decision given that it is
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known that the actual classification of the decision isws = ǫ.
For pixel s and input sourcej,

P (xj
s = τ |wj

s = ǫ) = Cj
ǫτ (15)

We assume that the Confusion MatrixC considers only
recognized seafloor classesω1, . . . , ωM . Assuming the input
sources are independent (we assume the random variables
X1

s , . . . , XK
s are independent conditionally onW [47]), we

can write that

P (x1

s = τ, . . . , xK = σ|ws = ǫ) = C1

ǫτ × . . . × CK
ǫτ (16)

Using the likelihood term expressed in equation 16, it is
possible to initialize the Fusion FieldW . Instead of initializing
the field using a voting scheme where each source is consid-
ered equally reliable, the model now considers each inputs
reliability. As before, if all the sources provide axs = γ or
α decision,ws is initialized asunmeasuredor unclassified
respectively. Otherwise the label fieldW is initialized by
considering equation 16. Ten samples are drawn from the
class ws = ǫ probability distribution which maximizes the
likelihood value described in equation 16. Pixels is initialized
with classws if the sampled probability compares favorably
to a random number in the range [0,1] for a majority of the
samples. If this criterion is not met, the pixel is labeled as
unclassified. This initialization technique is analogous to the
generalized majority technique used in the Voting/MRF Fusion
model.

After initialization, an iterative process is again carried
out to complete the fusion. Pixels are visited randomly and
allocated a classification which minimizes posterior energy

Upost(ws, x
1

s, . . . , x
K
s ) =

zs[1 − δ(ws, α)] +

β
∑

t∈ηs

δ(ws, wt)[1 − δ(wt, γ)][1 − δ(wt, α)]

where as in the Voting/MRF model, pixels initialized as
ws = γ are not considered or changed. As before,δ(.) is the
Kronecker Delta function and

zs = ln[P (x1

s, . . . , x
K
s |ws)] (17)

As can be seen from equation 17, the likelihood term is
considered only if the pixel is currently not classified as
unclassified. The Markovian term is the same as the one
discussed in equation 13 for the Voting/MRF model. Pixels
are visited randomly rather than using the more deterministic
raster scan to allow more mixing between the classes. The
number of pixel visitations will affect the quality of the final
result. The results provided here used4N pixel visitations
where N is total number of pixels in fieldW .

The probabilistic fusion process is completed by applying
Energy termU(ws) in equation 13 to fieldW in an iterative
manner, again using a raster scan. This was done to again
ensure the final Fusion Classification contained nounclassified
pixels. Unlike the raster scan approach, randomly visitingthe

Classifier % Classification Accuracy
C1 88.65
C2 75.90
C3 74.91
C4 48.66
C5 49.94

TABLE I

THE CLASSIFICATION ACCURACY OF THE 5 CLASSIFIERS USED TO

CLASSIFY THE M EASTEX TEXTURE IMAGE SHOWN IN F IGURE 10

pixels does not ensure that all initiallyunclassifiedpixels are
classified in the final result. The final raster scan considering
only U(ws) ensures that any remainingunclassifiedpixels are
given a recognized seafloor classification in the final, fused
map.

D. Results

1) Comparison of the Models on MeasTex Images:This
section evaluates the Voting/MRF and Probabilistic fusion
model on an image comprised of MeasTex [67] texture sam-
ples. Classification results have been obtained using 5 dif-
ferent classifiers. The first is a parametric linear discriminant
classifier using co-occurrence matrix features(C1). The second
and third consider fractal features using a non-parametric
kNN classifier(C2) and a parametric linear discriminant classi-
fier(C3) respectively. The fourth and fifth classifiers consider
frequency based features, again with the kNN classifier(C4)
and the linear discriminant classifier(C5) respectively. All 5
classifiers are supervised systems. Therefore the confusion
matrices required for the Probabilistic model can be obtained
from the training data. The test image and the corresponding
ground truth result can be seen in Figure 10.

(a) (b)

Fig. 10. (a) A texture image composed of 4 MeasTex textures. (b) The
ground truth of the textured image displayed in (a).

The performance accuracy for each of the 5 classifiers
operating in isolation can be seen below in Table V-D.1.

The classification results for 3 of the classifiers (C1, C2
and C4) are shown in Figure 11 (C3 and C5 are visually quite
similar to C2 and C4 respectively). The figure also contains
the classification result obtained from fusing the C1, C2 and
C4 classifier results using the Probabilistic model. This has
been included for comparison purposes.

The classification accuracy obtained from fusing the differ-
ent classifiers using both the Voting/MRF and the Probabilistic
model can be seen below in Table V-D.1.

Table V-D.1 shows the Probabilistic model outperforming
the MRF/Voting model in all cases as expected. The fusion
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(a) (b)

(c) (d)

Fig. 11. (a) Classification result from (a) classifier C1 (b) Classifier C2
(c) Classifier C3 (d) Fusing C1, C2 and C4 using the Probabilistic model.

Classifiers Fused Voting/MRF Accuracy Probabilistic Accuracy
C1 C2 C3 85.58 91.72

C1 C2 91.29 92.56
C1 C3 89.51 92.09
C2 C3 80.86 82.47

C1 C2 C4 89.08 92.72
C4 C5 62.94 63.50

TABLE II

THE CLASSIFICATION ACCURACY OBTAINED FROM FUSING VARIOUS

CLASSIFIERS USING BOTH THE VOTING /MRF AND PROBABILISTIC

MODELS .

operations containing C2 and C3 can be seen producing lower
classification results than is perhaps expected from considering
2 good classifiers (the Voting/MRF fusion of C1, C2 and C3
is the only example where the final fused result is lower than
any of the classifiers considered in isolation). This is because
C2 and C3 use the same features and so generally classify and
miss-classify the same image regions. Any miss-classifications
present in either of these results are simply reinforced by the
second. This lends strength to the argument that fusion is most
effective when considering results obtained from different
sources. This can be seen in the high classification accuracy
obtained from fusing C1, C2 and C4, even though C4, when
considered in isolation, is a poor classifier.

2) Comparison of the Models on Synthetic Images:This
section evaluates the Voting/MRF and Probabilistic fusion
models on a simulated example. A simulator model was used
to produce classification results with a given classification
accuracy, using the same ground truth image. Figure 12
contains the ground truth image used in this section as well
as a simulated result from hypothetical90%, 70% and 50%
efficient classifiers. As can be seen from Figure 12, the
simulator was developed to produceregionsof miss-classified
pixels, as would be observed from a real classifier.

Simulated classifier output for the ground truth image
shown in Figure 12 was produced for a range of classifier
accuracies. Four different classified images for each tested
input classification accuracy were produced. The four images

(a) (b)

(c) (d)

Fig. 12. (a) The ground truth of the simulated image used to test the
fusion models. (b)-(d) Simulated classification results from a 90%, 70%

and 50% accurate classifier respectively.

Input Image Voting/MRF Probabilistic
Accuracy % Accuracy % Accuracy %

100 99.73 99.75
90 96.70 96.97
80 93.51 94.20
70 91.92 91.94
60 84.21 85.32
50 75.11 76.14

TABLE III

THE CLASSIFICATION ACCURACY OBTAINED FROM FUSING 4

SIMULATED CLASSIFICATION RESULTS OF A GIVEN CLASSIFICATIO N

ACCURACY USING BOTH THE VOTING /MRF AND PROBABILISTIC

MODELS .

were fused using the Voting/MRF and Probabilistic models.
The simulator was set up to ensure that any miss-classified
pixels were spread evenly over the other classes. The results
obtained by the 2 tested models to fuse the 4 images for each
classification accuracy value, can be seen in Table V-D.2.

As Table V-D.2 shows, both fusion models generally pro-
duce a classification result which is better than any of the input
images considered in isolation (the exception is the perfect
input classifiers where the MRF component of the models
has smoothed the final result). The Probabilistic model can
be seen to outperform the Voting/MRF model in all cases,
although both provide good results in all of the examples,
even when the input classification accuracy drops to50%.
Further results could be provided using varying numbers of
input images and different classification accuracies. However,
this study lies out with the scope of this paper. Section V-
D has demonstrated that both of the fusion models presented
produce a final classification result that is generally higher in
accuracy than any of the input images considered individually.

VI. CREATING LARGE SCALE MOSAICS

The following results were obtained by processing data
gathered during the BP’02 experiments carried out by the
SACLANT Undersea Research Centre in La Spezia, Italy. The
side-scan data was gathered by a REMUS AUV [3].
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The navigation output from REMUS and the side-scan data
have already been used to create large scale mosaics of the
observed region [68]. The same navigation solution has been
used to geo-reference the data. The AUV mission lasted for 2
hours, 57 minutes and 8 seconds. It followed a set of parallel,
regularly spaced and overlapping linear tracks (typical for
rapid environmental assessment missions).

The data have been classified using the techniques outlined
in section III.

A. Fusion

The fusion of the classified mosaics was carried out using
the Voting/MRF model. This is because no ground truth
information was available on the data set with which to obtain
classifier reliability information.

Fig. 13 shows four overlapping mosaics of sector 1 (a pre-
defined region) created by geo-referencing 17 linear tracks. All
of the resulting mosaics created using the overlapping tracks
are geo-referenced to the same reference frame (sector 1) and
will constitute an input to the fusion algorithm.

(a) (b)

(c) (d)

Fig. 13. (a)-(d) Show four mosaics displaying 15 side-scan tracks ofthe
REMUS Mission .

The mosaics in Figs. 13 contain a maximum of 5 classes.
Each pixel is considered to belong to the sand, ripple, complex,
unmeasuredor unclassifiedclass. The large light grey regions
areunmeasuredregions over which the AUV has not passed.
The white regions are areas which remainunclassifiedfollow-
ing the geo-referencing process. The geo-referencing process
sometimes stretches or contracts pixels from the individual
input images to allow mosaics of the correct resolution to be
created. The initialization from the Voting Scheme and the
Final Fused Result for these mosaics can be seen in Figs. 14
and 15 respectively.

Both the initialization and the final fused results in Figs. 14
to 15 contain much more information than any of the mosaics
considered in isolation. The initialization result contains large
regions ofunclassifieddata where the voting scheme has failed
to confidently allocate a seafloor class. These regions have
been classified within the final fused result. The regions of
seafloor which are classified asunmeasuredin all the input
mosaics have also been left asunmeasured. The final output

Fig. 14. The Initialization of the Voting/MRF fusion model after
the voting scheme for the Sector 2 mosaics. The white pixels describe
unclassifiedregions.

Fig. 15. The Final Fused result obtained from the Voting/MRF fusion
model for the Sector 2 mosaics. The MRF section of the model has
ensured nounclassifiedpixels remain.

result has fused all the input mosaics to produce a smoothed
map where all the pixels where data of some description has
been received by the AUV have been classified. The fused
map allows a more complete picture of the seafloor to be built
up than is possible by considering a single mosaic in isolation.

The Fusion model has produced a more complete and useful
picture of the seafloor. The information from the individual
mosaics has been fused to produce a smoothed map of the
seafloor region. Allunclassifiedregions from the initialization
result in Fig. 14 have been classified by the Markovian aspect
of the model. The benefits of the Fusion model can be clearly
seen in the example shown in Figs. 15.

VII. C ONCLUSIONS

This paper has presented a method for creating and fus-
ing classified sidescan sonar mosaics of the seafloor. An
introduction to sidescan sonar imagery was first presented.
A normalization and classification model was then detailed
which allowed inherent sidescan sonar problems such as the
beampattern to be considered. This produced robust classifica-
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tion results (segmenting the images into regions of flat seafloor,
sand ripples and complex regions) to be obtained for single
sidescan images.

A mosaicing algorithm was then presented. This used CML
techniques to produce high quality mosaics of the individual
classification maps. The generation of these mosaics, where
the images are geo-referenced in space, allows the possibility
of multi-mosaic fusion.

Two models were then proposed for the fusion of the
classified mosaics. The first used voting schemes to initialize
the fusion map, after which a Markov model was used to both
classify regions previously labeled asunclassifiedand smooth
the final result. The second model adopted a probabilistic
framework and allowed the reliability of each source to be
considered during the fusion process.

The Voting/MRF model was then demonstrated on real
classified sidescan mosaics. These mosaics were first produced
using the classification and mosaicing models presented in the
first section of this paper. Information from the individual
mosaics was fused to produce a Fusion map of the entire
region of seafloor surveyed by the AUV. The Fusion Model
allowed a complete picture of the survey region to be built
which would not have been possible from considering any of
the mosaics in isolation.

Future research will concentrate on automated methods of
obtaining classifier reliability information for the sidescan
sonar sensors. If this is available, the probabilistic Fusion
model may be implemented. One possibility which will be
looked at is whether the result from the MRF/Voting model
can be used as an approximation to the ground truth, allowing
estimates to the reliability information to be automatically
obtained. The mosaicing model will also be enhanced to
include existing object detection techniques [69], [70] and
automatic data association strategies [71] to simplify and
minimize the operators task.
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