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ABSTRACT

In this paper we present a system for the automatic
detection and tracking of metallic objects concealed
on moving people in sequences of millimetre-wave
images, which can penetrate clothing, plastics and
fabrics. The system employs two distinct stages: de-
tection and tracking. In this paper a single detector,
for metallic objects, is presented which utilises a sta-
tistical model also developed in this paper. Target
tracking is performed using a Particle Filter. Results
are presented on real millimetre-wave image test se-
quences.

1 INTRODUCTION

We present a system for the automatic detection and
tracking of metallic objects concealed on moving peo-
ple in sequences of millimetre-wave (MMW) images,
which can penetrate clothing, plastics and fabrics.

MMW imaging is emerging as an important
modality for security and surveillance thanks to
recent advancements in MMW sensing technology.
Providing full monochrome images highlighting con-
cealed threats opens the possibility to analyse shape
and locate threats on the body, which is far be-
yond the reach of conventional metal detection por-
tals. A recently demonstrated proof-of-concept sen-
sor [1] developed by QinetiQ provides video-frame se-
quences with near-CIF resolution (320 × 240 pixels)
and can image through clothing, plastics and fabrics.
The combination of image data and through-clothes
imaging offers huge potential for automatic covert
detection of weapons concealed on human bodies
via image processing techniques. Previous trials of
the QinetiQ MMW sensor, involving the Department
of Transport and British Airport Authority (BAA),
showed potential for passenger screening at airports
[2], public event security [1] and detection of illegal
passengers in lorries. All trials involved human op-
erators.

The sequences in this paper are generated by
an electro-optic sensor working between IR and mi-
crowave wavelengths. The sensor forms an image
of the temperature received from the scene, which
is a standing human subject turning around slowly.
Figure 1 shows examples of frames from a typical

Figure 1: Example MMW image showing a human sub-
ject. Notice the Speckle noise pattern particularly appar-
ent on the torso and the substantial smoothing which is
applied during the image formation process to minimise
visual artifacts.

sequence considered in our work. A person turns
around by 360◦ in front of the sensor and is captured
at video rate (12 frames per second). The tempera-
ture (and therefore the pixel intensity) is a function
of the reflectivity, emissivity and transmissivity of
the scene surfaces. At the wavelength used, metallic
objects tend to appear bright as they are highly re-
flective, the human body less bright as it is partially
reflective, and clothes partially transparent. An il-
lumination chamber is required for indoor operation
[3] but does not expose the subject to harmful radi-
ations.

To our best knowledge, very little work has been
reported on the automatic analysis of MMW se-
quences or images with most authors focusing on
very basic segmentation [4, 5] or image fusion [6].
In a related application, shape identification on seg-
mented images [7] has been investigated and suit-
able shape descriptors proposed. More recently, ba-
sic work on object detection has been proposed [8].
The main contribution of our work is therefore to ap-
ply advanced image processing techniques to a new
video imaging technology of high potential for public
security.

This paper is organised as follows: Section
2 presents a statistical mixture model, Section 3
presents work on classifying the millimetre wave im-
ages, Section 4 presents work on target tracking and
Section 5 presents results on real MMW sequences.



2 MIXTURE MODELS FOR MMW

IMAGES

MMW images offer good data for material discrim-
ination as different materials yield, generally speak-
ing, different image properties. We model such dif-
ferences statistically using a weighted mixture model
in which each pdf, fi, is associated to a specific ma-
terial:

fmix =

N
∑

i=1

αifi(θ) (1)

where αi is a weight and θ a vector of parameters.

To identify the optimal pdf for each material
(incl. background, i.e., non-figure pixels), we built
a number of mixture models made by combina-
tions of standard distributions (e.g. Gaussian,
Rayleigh, Laplacian), optimised the parameters with
a standard Maximum Likelihood (ML) algorithm
and picked the best fitting combination for the ob-
served image histograms using a Chi-Squared test.
We started with background-only sequences (no sub-
ject) to identify the background distribution. We
then moved to sequences of scenes with a subject
but no threats, then with a subject carrying threats
(metallic objects). The final result is an optimal
mixture model for each material (types of compo-
nent distributions, and parameters). As an example,
Figure 2 shows histograms and results of the ML
distribution fit for a scene containing a subject car-
rying no threats. Here, a two-component mixture
model is used: two Gaussians, leading to poor fit,
and Laplacian-Rayleigh, showing good fit and little
overlap between component distributions.

3 CLASSIFICATION OF MMW IMAGES

3.1 Identifying sequences containing threats

The presence of metallic objects changes the maxi-
mum temperature recorded significantly, providing a
good criterion to identify frames containing threats.
Within a sequence, the range of variation of the max-
imum image temperature provides a reliable measure
of the presence of a threat when compared to a nor-
malised threshold. However, detecting which frames
in the sequence contain objects is more difficult.

3.2 Identifying frames containing threats

To solve the problem of identifying individual frames
containing metallic objects we trained a standard
Hidden Markov Model (HMM) to detect significant
changes in maximum temperatures (i.e., image in-
tensities). The data is first quantised into 10 levels
and the hidden field is composed of 2 states (threat,

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

z

P
ro

ba
bi

lit
y 

D
en

si
ty

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

z

P
ro

ba
bi

lit
y 

D
en

si
ty

Figure 2: Example of PDF fitting with a subject but no
objects in the scene. The top picture shows the output of
the ML algorithm for a mixture of two Gaussians while
the bottom picture is obtained for a Laplacian and a
Rayleigh.

no threat). A Baum-Welch algorithm [9] is used for
parameter estimation, and a Viterbi algorithm to de-
termine the optimal state sequence. As an exam-
ple, Figure 3 shows the maximum temperature signal
for a sequence of 180 frames, and the corresponding
frame classification.

3.3 Locating threat regions within frames

We now turn to the problem of locating the image
region corresponding to a metallic object in frames
classified as containing threats. We use Expectation
Maximisation (EM) to perform the necessary unsu-
pervised clustering. The EM algorithm uses ML to
recompute the pdf parameters until a convergence
criterion is met. We initialise the mixture model
to the one containing the optimal distributions for
the background-body-metal case (as defined in Sec-
tion 2) with default parameters. Notice that this is
not necessary for the EM algorithm, but improves
the convergence speed significantly. An example of
threat location is shown in Figure 4, where the esti-
mated threat region is highlighted in white.

4 TRACKING THREAT REGIONS

The results of the classification stage applied to
sequences of persons carrying metallic threats is
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Figure 3: An example of the HMM model being applied
to a sequence of 180 frames. In the top row the maximum
image intensity is shown for each frame in the sequence.
In the bottom row the HMM state (1=object present,
2=no object) is shown across the sequence.

Figure 4: Expectation-Maximisation segmentation
(right) of a scene containing a potential target in a MMW
image (left).

twofold: a set of frames showing metal threats, plus,
in each such frame, the regions corresponding to
threats. Such regions are characterised by frame
number, centroid, and area. The problem is now
to track such regions throughout a sequence for as
long as the region remains visible, with birth, death
and temporary occlusion common. The problem is
made more difficult by the noisy nature of the MMW
images making accurate segmentation difficult.

Tracking objects in visible-wavelength sequences
is a well-studied problem in image processing and
computer vision [10]. Particle filters (PF) [11] are a
powerful class of algorithms removing the Gaussian-
distribution constraint typical of Kalman filters.
They also provide robustness against clutter, a sig-
nificant problem in MMW images given the noise
characteristics. A common problem with PF is the
degeneracy problem where after several iterations all
but a few particles have negligible weights. For this

Table 1: Test Sequences Employed
Sequence Frames Threat No. Threat Frames
Plain01 211 No —
Plain02 252 No —
Plain03 218 No —
Plain04 236 No —
Threat01 242 Yes 24
Threat02 155 Yes 27
Threat03 179 Yes 56
Threat04 136 Yes 30
Total 1629 4/8 137

Table 2: Threat Identification
Sequence Threat? Error Efalse Emiss

Plain01 No — — —
Plain02 No — — —
Plain03 No — — —
Plain04 No — — —
Threat01 Yes 8% 0% 100%
Threat02 Yes 3% 0% 100%
Threat03 Yes 5% 22% 78%
Threat04 Yes 8% 0% 100%

reason we chose to employ a Regularised PF (RPF)
[11] which has an improved re-sampling stage, help-
ing to avoid the degeneracy problem.

The tracking filter was employed with a state vec-
tor containing the position, velocity and area of the
target: (x, ẋ, y, ẏ, φ)T . Suitable values for the pre-
diction and observation covariance matrices were de-
termined empirically. Due to the nature of the seg-
mentation, it is necessary to allow greater variance
within the area measurements than for the position
estimate.

5 EXPERIMENTAL RESULTS

To evaluate our system, eight test sequences were
employed, four with subjects without a threat and
four with subjects carrying a threat, giving a total of
1629 frames and including 137 frames where a threat
is visible. Table 1 summarises the details of the test
sequences.

Table 2 shows the results of the sequence and
frame threat identification algorithms described in
Subsections 3.1 and 3.2, giving percentage error in
classified frames (Error) with a breakdown of tar-
get frames missed (Emiss) compared to false alarms
(Efalse). The results clearly show that both stages
of the threat identification perform very effectively.
The missed target frames was primarily in situations
where the target was identified through shape rather
than intensity.

Finally Table 3 shows results for the EM classifi-
cation and RPF target tracking, giving the average



Table 3: Target Tracking
Sequence Average Targets RMSE
Threat01 2.4 8.07
Threat02 2.1 11.61
Threat03 1.3 5.05
Threat04 1.1 5.46

number of targets (true target + clutter) per frame
for the sequence and RMSE of the tracked position.
The ground truth for the target position was man-
ually tracked and is accurate to ±2 pixel.s It can
clearly be seen that excellent target tracking results
have been achieved, even in the sequences with con-
siderable clutter (Threat01, Threat02). The com-
paratively poorer tracking results seen in Threat02
are due to the very short time span over which the
threat is visible (approx. 9 frames on each occas-
sion compared to an average of 15 frames for other
sequences). In this instance, the particle filter does
not have enough time to converge.

6 CONCLUSIONS

We have presented a novel system for the automatic
detection and tracking of metallic objects concealed
under clothes using MMW sequences. The recent
emergence of MMW video sensors makes our work
very timely. To the best of our knowledge, no pre-
vious system combining MMW video imaging and
advanced image processing techniques has been re-
ported to date. Results have proven reliable on the
current data test set. Future work will extend our ap-
proach to a wider range of materials, more complex
tracking scenarios, and incorporating human body
models to improve tracking and provide 3-D visuali-
sation preserving privacy.
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