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Abstract In this paper we present a system for the au-
tomatic detection and tracking of metallic objects con-
cealed on moving people in sequences of millimetre-wave
(MMW) images. The millimetre-wave sensor employed
has been demonstrated for use in covert detection be-
cause of its ability to see through clothing, plastics and
fabrics.

The system employs two distinct stages: detection
and tracking. In this paper a single detector, for metal-
lic objects, is presented which utilises a statistical model
also developed in this paper. The second stage tracks
the target locations of the objects using a Probability
Hypothesis Density filter. The advantage of this filter
is that it has the ability to track a variable number of
targets, estimating both the number of targets and their
locations. This avoids the need for data association tech-
niques as the identities of the individual targets are not
required. Results are presented for both simulations and
real millimetre-wave image test sequences demonstrating
the benefits of our system for the automatic detection
and tracking of metallic objects.

Key words millimetre-wave, detection, tracking, metal-
lic objects

1 Introduction

1.1 Millimetre-wave Imagery in Security and

Surveillance

We present a system for the automatic detection and
tracking of metallic objects concealed on moving people
in sequences of millimetre-wave (MMW) images, which
can penetrate clothing, plastics and fabrics.

MMW imaging is emerging as an important modal-
ity for security and surveillance thanks to recent ad-
vances in MMW sensing technology. Providing head-to-
toe monochrome images highlighting concealed threats

opens the possibility to locate threats on the body and
analyse their shape, which is far beyond the reach of
conventional metal detection portals. A recently demon-
strated proof-of-concept sensor [1] developed by QinetiQ
provides video-frame sequences with near-CIF resolution
(320 × 240 pixels) and can image through clothing, plas-
tics and fabrics. The combination of image data and
through-clothes imaging offers huge potential for auto-
matic covert detection of weapons concealed on human
bodies via image processing techniques. Previous trials
of the QinetiQ MMW sensor, some involving the De-
partment for Transport and British Airport Authority,
showed potential for passengers screening at airports [2],
public event security [1] and detection of illegal passen-
gers in lorries [3]. All trials involved human operators.

The sequences in this paper are generated by an
electro-optic sensor working between Infra-Red (IR) and
microwave wavelengths. The sensor forms an image of
the temperature received from the scene, which is a stand-
ing human subject turning around slowly. Figure 1 shows
examples of frames from a typical sequence considered
in our work. A person turns around by 360◦ in front of
the sensor and is captured at video rate (12 frames per
second). The temperature (and therefore the pixel in-
tensity) is a function of the reflectivity, emissivity and
transmissivity of the scene surfaces. At the wavelength
used, metallic objects are highly reflective and tend to
appear bright, the human body is partially reflective and
appears less bright and clothes are partially transparent.
An illumination chamber is required for indoor operation
[4] but does not expose the subject to harmful levels of
radiation.

To our best knowledge, very little work has been re-
ported on the automatic analysis of MMW sequences
or images. Basic image segmentation [5,6] has been re-
ported with some success. Shape identification on the
segmented images [7,8] has been investigated and suit-
able shape descriptors proposed. However, the image
quality is poor with a small field-of-view and cannot
be gathered at video frame-rate. Due to these limita-
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Fig. 1 Example MMW image showing a human subject. No-
tice the Speckle noise pattern particularly apparent on the
torso and the substantial smoothing which is applied during
the image formation process to minimise visual artifacts.

tions only a highly constrained stationary scene is con-
sidered. The proposed shape descriptors prove reliable
under the operational constraints. In comparison, the
QinetiQ sensor used in this paper is a real-time, head-
to-toe sensor with considerably improved image quality.
More recently, some work on the detection and segmen-
tation of metallic objects has been proposed [9] for the
QinetiQ sensor. Alternatively, image fusion [10,11] has
been employed on MMW / IR. While this work has pro-
duced visually appealing images for human operators, no
work has been reported on automatic detection in fused
MMW-IR images and it is not clear that there would
be any benefit. The main contribution of our work is
therefore to apply advanced image processing for the au-
tomatic detection of concealed weapons to a new video
imaging technique of high potential for many applica-
tions in public security.

1.2 Target Detection and Tracking

The aim of the target tracking is to improve the ro-
bustness of the estimates of target properties, minimise
the number of detection errors and, importantly for an
operational system, to provide a robust estimate of the
number of threats on a subject. The MMW images have
a relatively low spatial and colour resolution combined
with considerable speckle noise, resulting in a a poor
signal-to-noise ratio (SNR). For these reasons, a signif-
icant number of errors is anticipated within any target
detection with clutter a particular problem. Therefore,
target tracking is required to operate in an environment
with an unknown and changing number of visible targets
and in the presence of clutter. Future work will con-
centrate on providing a complete characterisation of the
object, including areas such as shape identification, for
which accurate target tracking will be important.

Tracking objects in visible-wavelength sequences is a
well-studied problem in image processing and computer
vision [12–17]. Traditional multi-target tracking is based
on coupling trackers such as Kalman filters, extended

Kalman filters or particle filters with a data association
technique (see for example [18]). The aim of the data
association process is to interpret which measurements
are due to the targets and which are due to false alarms.

Particle filter approaches to multiple target tracking
have continued to use data association techniques [19–
21]. This can be partly attributed to well established
techniques for tracking and partly due to a lack of ef-
ficient techniques for modelling multiple targets with
particle filters. In contrast, the PHD Filter is a method
of propagating a multi-modal measure within a unified
framework without associating the measurements and
has the ability to estimate the number and position of
targets in data with clutter. If the identities of the tar-
gets are not required then avoiding data association has
a significant computational advantage. Furthermore, the
PHD Filter provides a natural fusion framework to com-
bine multiple detectors therefore increasing reliability
and robustness in the detection of concealed weapons.

Particle filter methods for the PHD filter have been
devised by Vo [22] and Zajic [23]. Practical applications
of the filter include tracking vehicles in different terrains
[24], tracking targets in passive radar located on an el-
lipse [25] and tracking a variable number of targets in
forward scan sonar [26].

In this paper the PHD Filter is presented in a system
with a single detector, which provides the position, area
and scene intensity of any likely metallic objects in the
scene. The combined detection and tracking of metal-
lic objects is tested across a range of different MMW
sequences of real people carrying concealed objects. An
implementation of a particle filter tracking system is also
presented for comparison on these real sequences.

1.3 Paper Organisation

This paper is organised as follows: Section 2 presents
a statistical mixture model. The mixture model is then
used in Section 3 to develop a classification strategy for
millimetre wave images. The classification first examines
the sequence, then individual frames and finally regions
of a frame to identify possible threats. In Section 4 tar-
get tracking is presented that addresses the problem of
estimating the number of targets and tracking multiple
targets simultaneously, with the aim of improving the ro-
bustness of the threat detection and providing extended
information on the position of the threat on the sub-
ject. Results are presented in Section 4.8 on real MMW
sequences.

2 Mixture Models for MMW Images

MMW images offer good data for material discrimina-
tion as different materials yield, generally speaking, dif-
ferent image properties. In analysing the image statistics
it would be desirable to have an understanding of the
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physical process which could be incorporated in a model
for the MMW image formation process. However, given
the complexity of the MMW imager and the extensive
amount of hardware calibration, software equalisation
and interpolation undertaken to produce a MMW im-
age, this is a non-trivial task.

In this paper we adopt an approach modelling the dif-
ferences in image properties statistically, using a weighted
mixture model in which each PDF, fi, is associated to a
specific material:

fmix =
N
∑

i=1

αifi(θ) (1)

where αi is a weight and θ a vector of parameters.
To identify the best-fitting PDF for each material

(incl. background, i.e., non-figure pixels), we built a num-
ber of mixture models made by combinations of standard
distributions (e.g. Gaussian, Rayleigh, Laplacian), opti-
mised the parameters with a standard Maximum Like-
lihood (ML) algorithm and picked the best fitting com-
bination for the observed image histograms using a Chi-
Square test. We started with background-only sequences
(no subject) to identify the background distribution. We
then moved to sequences of scenes with a subject but no
threats, then with a subject carrying threats (metallic
objects). The final result is a best-fitting mixture model
for each material (types of component distributions, and
parameters). As an example, Figure 2 shows histograms
and results of the ML distribution fit for a scene contain-
ing a subject carrying no threats. Here, a two-component
mixture model is used: two Gaussians, leading to poor
fit, and Laplacian-Rayleigh, showing good fit and little
overlap between component distributions.

3 Classification for MMW Images

3.1 Identifying sequences containing threats

The presence of metallic objects changes the maximum
temperature recorded significantly, providing a good cri-
terion to identify frames containing threats. Within a
sequence, the range of variation of the maximum image
temperature provides a reliable measure of the presence
of a threat when compared to a normalised threshold.
However, detecting which frames in the sequence con-
tain objects is more difficult.

3.2 Identifying frames containing threats

To solve the problem of identifying individual frames
containing metallic objects we trained a standard Hid-
den Markov Model (HMM) to detect significant changes
in maximum temperatures (i.e., image intensities). The
advantage to employing a HMM in contrast to relying
on a set of defined rules is that it will detect any type of
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Fig. 2 Example of PDF fitting with a subject but no objects
in the scene. The top picture shows the output of the ML
algorithm for a mixture of 2 Gaussians while the bottom
picture is obtained for a Laplacian and a Rayleigh.

anomaly between the observed data and the training set.
The training set can be extended to deal with any spe-
cific problem or threat encountered. Ideas such as motion
compensated filtering from the visible-wavelength image
processing domain would not be appropriate due to the
high levels of image speckle noise and shallow depth of
field in the MMW images.

In our HMM implementation, the data is first quan-
tised into 10 levels and the hidden field is composed of
2 states (threat, no threat). A Baum-Welch algorithm
[27] is used for parameter estimation, and a Viterbi al-
gorithm to determine the optimal state sequence. As an
example, Figure 3 shows the maximum temperature sig-
nal for a sequence of 180 frames, and the corresponding
frame classification.

3.3 Locating threat regions within frames

We now turn to the problem of locating the image region
corresponding to a metallic object in frames classified
as containing threats. We use Expectation-Maximisation
(EM) to perform the necessary unsupervised clustering.
The EM algorithm [28] uses ML to iteratively compute
the PDF parameters until a convergence criterion is met.
We initialise the mixture model to the one containing the
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Fig. 3 An example of the HMM model being applied to a
sequence of 180 frames. In the top row the maximum image
intensity is shown for each frame in the sequence. In the
bottom row the HMM state (1=object present, 2=no object)
is shown across the sequence.

Fig. 4 Expectation-Maximisation classification (right) of a
scene containing potential targets in a MMW image (left).
The subject is carrying three small metal objects and the
classification performs well in this example.

best-fitting distributions for the background-body-metal
case (as defined in Section 2) with default parameters.
Notice that this is not necessary for the EM algorithm,
but improved the convergence speed significantly in our
experiments. An example of threat location is shown in
Figure 4, where the estimated threat regions are high-
lighted in white.

4 Tracking Threat Regions

4.1 Problem Definition

To make inference about a dynamic system, two models
are needed: the system model which describes the evo-
lution of state with time and the measurement model
which relates the measurements to the state.

In the case where a target estimate is required every
time a measurement is received, a recursive filtering ap-
proach is taken where these two models correspond to
a prediction stage and a data update stage respectively.
The prediction stage uses the system model to predict
the state probability density function in the next time
step and the update stage uses the measurement model
to modify this density function using Bayes’ Law.

4.2 Single Target Tracking

Let x0..t be the state sequence (xt is a random vector
representing the target state at time t) and z1..t be the
sequence of measurements obtained. The tracking prob-
lem is governed by two functions:

xt = Ft(xt−1, vt−1) (2)

zt = Ht(xt, nt) (3)

where v1..t is the process noise sequence from the sys-
tem model and n1..t is the measurement noise sequence.
The process noise reflects the unknown target motion
and the measurement noise reflects the sensor errors.
The process and measurement noises are uncorrelated.
Function Ft is a Markov Process on the state of the
system and Ht is a function related to observing xt. In
Bayesian terms, the problem is to recursively calculate
the belief of state xt at time t given observations z1..t.

The prior distribution pt|t−1(xt|z1:t−1) of the target
being in state xt based on previous observations is:

pt|t−1(xt|z1:t−1) =
∫

ft|t−1(xt|xt−1)pt−1|t−1(xt−1|z1:t−1)dxt−1, (4)

where ft|t−1(xt|xt−1) represents the motion of the
target and pt−1|t−1(xt−1|z1:t−1) is the posterior distri-
bution at time t− 1.

When zt has been observed, the posterior distribu-
tion at time t is obtained by Bayes’ Law:

pt|t(xt|z1..t) ∝ gt(zt|xt)pt|t−1(xt|z1..t−1), (5)

where gt(zt|xt) is the likelihood of observing zt given
target state xt.
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4.3 Multiple Target Tracking

The multiple target tracking problem is to estimate the
positions of an unknown varying number of targets, based
on observations which may also include false alarms due
to erroneous measurements.

The multiple target state at time t is represented by
random-set Xt = {xt,1, ..., xt,Tt

}, where xt,i represents
the state of an individual target and Tt is the number
of targets at time t. The multiple target measurement
at time t is given by Zt = {zt,1, ..., zt,mt

}, where zt,j
represents a single target measurement or false alarm
and mt is the number of observations at time t.

The tracking problem is then to estimate the unob-
served states of the targets X0:t = {X0, ..., Xt} based
on observations Z1:t = {Z1, ..., Zt}, i.e. to obtain X̂t =
{x̂t,1, ..., x̂t,T̂t

}, where x̂t,i are the individual target esti-

mates and T̂t is the estimate of the number of targets at
time t.

Analogous equations to the single-target tracking re-
cursion can be found for the multiple-target model by
using Finite Set Statistics [17].

4.4 PHD Filter

Instead of propagating the posterior distribution, as in
Bayesian target tracking, the PHD (Probability Hypoth-
esis Density) filter propagates the first-order moment of
a multiple-target posterior distribution [17]. This prop-
erty represents the expectation, whose integral over the
state space is the expected number of targets. This has
a significant computational advantage over propagating
the multiple-target posterior as the time-complexity of
calculating multiple-target likelihoods [29] grows expo-
nentially with the number of targets whereas only single-
target likelihoods are computed with the PHD filter.
The PHD posterior is a multi-modal distribution whose
modes represent the targets; these can be found by ex-
tracting the peaks of this distribution. In a similar man-
ner to Bayesian tracking, we have prediction and update
equations. These are given by

Dt|t−1(x|Z1:t−1) (6)

= γt(x) +
∫

φt|t−1(x, xt−1)Dt−1|t−1(xt−1|Z1:t−1)dxt−1,

Dt|t(x|Z1:t) (7)

=
[

ν(x) +
∑

z∈Zt

ψt,z(x)
κt(z)+〈Dt|t−1,ψt,z〉

]

Dt|t−1(x|Z1:t−1),

where φt|t−1(x, xt−1) = PS(xt−1)ft|t−1(x|xt−1) +
bt|t−1(x|xt−1), ν(x) = 1 − PD(x), κt(z) = λtct(z) and
ψt,z = PD(x)g(z|x).

In the prediction equation, γt is the PHD for spon-
taneous birth of a new target at time t, bt|t−1 is the
PHD of a spawned target, PS is the probability of target

survival and ft|t−1(xt|xt−1) is the single target motion
distribution. In the data update equation, g is the sin-
gle target likelihood function, PD is the probability of
detection, λt is the Poisson parameter specifying the ex-
pected number of false alarms and ct is the probability
distribution over the state space of clutter points. The
〈., .〉 notation is defined as the inner product 〈Dt|t, ϕ〉 =
∫

Dt|t(xt|Z1:t)ϕ(xt)dxt.

4.5 Particle PHD Filter Algorithm

The implementation of the PHD Particle filter used is
an adaptation of the method described by Vo [22] based
on a sequential Monte Carlo algorithm for multi-target
tracking.
The algorithm can be informally described by the follow-
ing stages: In the initialisation stage, particles are uni-
formly distributed across the field of view. The particles
are propagated in the prediction stage using the dynamic
model with added process noise and, in addition, parti-
cles are added to allow for incoming targets. When the
measurements are received, weights are calculated for
the particles based on their likelihoods determined by
the distance of the particles to the set of observations
(the sum of the weights gives the estimated number of
targets). Particles are then resampled from the weighted
particle set to give an unweighted representation of the
PHD. Target locations are found by clustering the data
using the estimated number of targets as the number of
clusters and taking the centroids of the clusters.

The technical description of the algorithm is given
here. The algorithm is initialised in Step 0 and then it-
erates through Steps 1 to 4.
At time t = 0:
Step 0:Initialisation

The filter is initialised with N0 particles drawn from a
prior distribution. The number of particles is adapted at
each stage so that it is proportional to the number of
targets, let N be the number of particles per target. The
mass associated to each particle is T̂0/N , where T̂0 is the
expected initial number of targets (this will be updated
after an iteration of the algorithm).

•∀i = 1, .., N0 sample x
(i)
0 from D0|0, set N1 = N0 and

t = 1.
At time t ≥ 1:
Step 1:Prediction Step

In the prediction step, the previous particles are moved
using the transition function.

•∀i = 1, .., Nt, sample x̃
(i)
t from proposal density qt(.|x

(i)
t−1, Zt).

•∀i = 1, .., Nt, evaluate the predicted weights ω̃
(i)
t|t−1:

ω̃
(i)
t|t−1 =

φt(x̃
(i)
t , x

(i)
t−1)

qt(x̃
(i)
t |x

(i)
t−1, Zt)

ω̃
(i)
t−1 (8)

Mt new-born particles are also introduced from the spon-
taneous birth model to detect new targets entering the
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state space.

•∀i = Nt+1, .., Nt+Mt, sample x̃
(i)
t from proposal den-

sity pt(.|Zt).
•∀i = Nt + 1, .., Nt + Mt, compute the weights of new

born particles ω̃
(i)
t|t−1:

ω̃
(i)
t|t−1 =

1

Mt

γt(x̃
(i)
t )

pt(x̃
(i)
t |Zt)

(9)

Step 2:Update Step

After the new measurements are obtained, the weights
are recalculated using the likelihood function g(.|.) to
update the distribution based on new information.
Let Rt = Nt +Mt.
•∀z ∈ Zt, compute:

〈ω̃t|t−1, ψt,z〉 =

Rt
∑

i=1

ψt,z(x̃
(i)
t )ω̃

(i)
t|t−1. (10)

•∀i = 1, .., Rt, update weights:

ω̃
(i)
t =

[

ν(x̃
(i)
t ) +

∑

z∈Zt

ψt,z(x̃
(i)
t ))

κt(z) + 〈ω̃
t|t−1, ψt,z〉

]

ω̃
(i)
t|t−1.

(11)

Step 3:Resampling Step

The particles are resampled to obtain an unweighted rep-
resentation of Dt|t.
• Compute mass of particles:

T̂t =

Rt
∑

i=1

ω̃
(i)
t (12)

• Resample

{

ω̃
(i)
t

T̂t

, x̃
(i)
t

}Rt

i=1

to get

{

ω
(i)
t

T̂t

, x
(i)
t

}Rt

i=1

.

Step 4:Target Extraction

To find the target locations, an EM algorithm is used to
fit a Gaussian Mixture Model of T̂t components to the
particle data. The estimated target locations are taken
to be the means of the T̂t Gaussians and Nt+1 = NT̂t.

4.6 Time Complexity of PHD filter Tracker

The algorithm is initialised withN0 particles drawn from
a prior distribution, which requires O(N0) calculations.
In the prediction step, Nt particles are sampled from
one proposal distribution and Mt from a birth proposal
distribution, which requires O(Nt+Mt) calculations. In
the update step, the weights are recalculated, requiring
O((Nt + Mt)|Zt|) calculations. The resampling step re-
quires O(Nt+1) calculations, where Nt+1 = NT̂t which
depends on the estimated number of targets T̂t. We have

used the EM algorithm here to estimate the target loca-
tions, which has quadratic time complexity in the esti-
mated number of targets: O(T̂ 2

t Nn), where n is the num-
ber of iterations for the EM algorithm. Our experiments
have shown that the k-means algorithm provides reliable
results for target extraction [30] with a time complexity
of O(T̂tNn), which is linear in the number of targets.
The overall complexity of the algorithm we have used in
this paper at each iteration is then O(|Zt|

2Nn), as the
estimated number of targets is bounded by the number
of measurements. Mathematical proofs of convergence
for the particle PHD filter indicate that the empirical
measures represented by the particles converge to their
true measures [31,32].

In comparison, the time complexity for T̂t particle
filters working independently would require O(T̂tN) cal-
culations plus the additional complexity of a pre-filter
data association technique. Assuming the number of iter-
ations for the PHD clustering algorithm, is not too large
then the complexity of the PHD filter and multiple Par-
ticle Filters are theoretically comparable. Furthermore,
the PHD filter represents a significant improvement on
calculating the joint multi-target likelihoods whose com-
plexity increases exponentially with the number of tar-
gets [29]. Therefore, from the perspective of time com-
plexity, the PHD filter is a good choice for our applica-
tion which, if deployed, would require real-time opera-
tion.

4.7 Data Association

The advantage of the PHD filter is that it has the ability
to track a variable number of targets, estimating both
the number of targets and their locations. It avoids the
need for data association techniques as the identities of
the individual targets are not required. Our purpose here
is to identify the possible threat regions and not neces-
sarily the same target throughout a sequence, although
techniques for data association with the PHD filter have
been developed recently and could be incorporated into
this application. The first of these, by Panta et al. [33],
used the PHD filter for pre-filtering the data as input to
a Multiple Hypothesis Tracker, which is known to have a
high time and space complexity. Another technique, by
Lin [34], associated the estimated targets between frames
by using a Kalman filter to estimate the target state
in the next iteration and only considers existing targets
but this relies on the linear Gaussian assumptions of
the Kalman filter. New techniques have been developed
specifically for the particle PHD filter [35] which require
only the output of the PHD filter and the clustering al-
gorithms to determine the target locations and do not
rely on the linear assumptions of the Kalman filter, these
will be presented in full in the near future.
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4.8 Dynamic and Observation models

Using the current classification scheme (Section 3) the
state vector can contain any of the following: centroid
(position) (x), velocity (ẋ), area (φ) and average gray-
level (intensity) (I). The selection of the state vector is
investigated in Section 5 but as an example, assuming
use of position and area, the state vector contains the
position, velocity and area of the target:

xt =
(

xt ẋt yt ẏt φt
)T
. (13)

For simplicity, we use a linear Gaussian dynamic model
using the following standard state space model for a con-
stant velocity model and random walk model for the area
(see Bar-Shalom et al [18], for example):

xt =













1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1













xt−1+













T 2/2 0 0
T 0 0
0 T 2/2 0
0 T 0
0 0 T













vt−1, (14)

and observation model:

zt =





1 0 0 0 0
0 0 1 0 0
0 0 0 0 1



xt + nt. (15)

vt and nt are the process and measurement noises
respectively, which are uncorrelated. Noises are assumed
Gaussian for simplicity but this is not a restriction of
the algorithm as a Monte-Carlo Method is used. These
models are used during both simulation and real MMW
test sequences.

4.9 Simulation Results

We tested 3 sequences of 120 frames using the PHD filter
with 2000 particles (ρ). All components of the process
noise and observation noise were assumed to be indepen-
dent with a process noise variance of 2 and observation
noise variance of 60 employed in the filter. The results
are shown in Figure 5, in which lines are real trajectories,
dots measurements and circles estimated targets. Due to
the nature of the simulations only positions and veloci-
ties are accounted for in the state vector which becomes
4-dimensional. In each case the Root Mean Squared Er-
ror (RMSE) and the error in the estimated number of
targets are calculated. We also assume that the data as-
sociation is always successful (in RMSE calculations, es-
timated targets are then compared to the nearest ground
truth).

Numerical results can be seen in Table 1. In the first
sequence the PHD Filter is used as a Particle Filter, i.e.
there is one measurement per frame and Probability of
Birth (PB) of 0 and Probability of Survival (PS) of 1.
Deaths and births are then considered. A target vanishes

Table 1 Results of PHD Filter tracking on simulated data

Sequences RMSE < Tt > < Tt − T̂t >

Single, no clutter 6.64 1 0
Multi, with clutter 8.82 2 0.02

Single, deaths & births 7.16 0.75 0.77

3 times for 10 iterations. PB = 0.1 and PS = 0.9 are
chosen. In the third sequence targets are always detected
and in the presence of clutter (3 false measurements on
average generated by a Poisson process). PB = 0 and
PS = 1.

It can be seen from the results (Table 1) that the
PHD filter performs obviously well in very different situ-
ations. However, the tracker needs to be tuned carefully.
In the three examples shown settings were chosen to op-
timise the performances. A trade-off that can cope with
any tracking situation and be reasonably accurate must
then be chosen.

5 Results on MMW Images

5.1 MMW Application

The PHD Filter developed in Section 4 is now applied
to the output of the MMW classification process devel-
oped in Section 3. The classification process identifies,
using the statistical model, all possible metallic objects
in the scene. The centroid, area and average grey-level
of each metallic object is then passed on to the PHD
tracker. Due to the motion of the subject in the sensor
the metallic objects are visible for an undefined but gen-
erally short period of time. It is, therefore, vital that the
tracker is capable of rapidly detecting births and deaths
within the set of tracked targets.

To evaluate our system, eleven real test sequences
were employed, four with a subject without a threat
(Clean), four with a subject carrying a single threat (Sin-
gle) and three with a subject carrying multiple threats
(Multi); providing a total of 3697 frames, including 656
frames where a threat was visible. Table 2 summarises
the details of the test sequences. To allow comparison of
accuracy for the PHD Filter, the ground truth for each
sequence was manually tracked to an accuracy of ap-
proximately ±2-pixels. A simple nearest-neighbour data
association stage has been employed for the accuracy
calculations. For inclusion in a complete system, a more
complex data association stage would be required. This
will be investigated in future work.

The evaluation of results is divided into 5 subsections
looking at classification (5.2), PHD tuning (5.3), PHD
state vector selection (5.4) and finally PHD robustness
(5.5).
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Fig. 5 Simulated tracking of targets using the PHD Filter. Lines are real trajectories, the dots are the measurements and the
circles are the estimated targets. The left hand figure shows a simple case of a single target with no clutter. The centre figure
shows two targets being tracked with clutter. The right hand target shows a single target disappearing and reappearing over
time.

Table 2 Test Sequences Employed

Sequence Frames Threats Threat Frames

Clean01 211 No —
Clean02 252 No —
Clean03 218 No —
Clean04 236 No —
Single01 242 1 24
Single02 155 1 27
Single03 179 1 56
Single04 136 1 30
Multi01 752 2 132
Multi02 731 2 206
Multi03 585 3 181

Total 3697 7/11 656

5.2 Classification Results

Table 3 shows the results of the sequence and frame
threat identification algorithms described in Subsections
3.1 and 3.2, giving percentage error in classified frames
(Error) with a breakdown of target frames missed (Emiss)
compared to false alarms (Efalse). The results clearly
show that both stages of the threat identification per-
form very effectively. The missed target frames were pri-
marily in situations where the target was identified through
a combination of shape and intensity rather intensity
alone. Shape-based targets can not be detected with the
single intensity-based detector employed. However, fu-

Table 3 Threat Identification

Sequence Threat? Error Efalse Emiss

Clean01 No — — —
Clean02 No — — —
Clean03 No — — —
Clean04 No — — —
Single01 Yes 8% 0% 100%
Single02 Yes 3% 0% 100%
Single03 Yes 5% 22% 78%
Single04 Yes 8% 0% 100%

ture work is planned to address this, with the introduc-
tion of multiple detectors.

It should be noted that threat identification also worked
for all three multi-target sequences. However, given mul-
tiple targets there is a much greater chance of at least
one target presenting a metallic face perpendicular to
the image plane, which produces the maximum image
intensity. The task of identifying target frames is, there-
fore, considerably simpler and calculation of the Error
metrics does not yield useful information.

After review of the classification output, illustrated
by Figure 4, it is possible to identify a number of noise
sources within the classification process. This is impor-
tant to allow accurate PHD Filter set-up. The first noise
source is inaccuracy within the classification with the
low SNR of the system a major cause of this error. Fur-
ther complexity is added by the rotating subject who
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Fig. 6 Weapon tracking on a MMW image. The centroids
of all possible metallic objects are shown as a “+” and es-
timated targets from the PHD Filter are shown as circles.
Notice the considerably amount of clutter from the single-
frame classification process.

produces dynamic lighting effects from the illumination
chambers spot-lighting (discussed in Section 1). The sec-
ond noise source is clutter, where bright spots caused,
again, by the spot-lighting effect are mistaken for metal-
lic objects and segmented. The position of this clutter
moves unpredictably. An example of the clutter can be
seen in Figure 6.

5.3 PHD Filter Parameter Tuning

The selection of the state vector and tuning of the sub-
sequent noise covariances for the specific application is
very important. Reviewing the dynamics and noise sources
from the classification stage, presented in previous sub-
sections, the PHD Filter is operating in a system with:

– Frequent target birth and death
– Average target lifespan of a few seconds (<50 frames)
– Uniform and slow target motion (<3 pixels / frames)
– Rapid and unpredictable changes in target area
– Significant false alarm rate

Using the current classification scheme the state vec-
tor can contain any of the following: centroid (position)
(x), velocity (ẋ), area (α) and average grey-level (in-
tensity) (I). Due to the difficulty in assessing accurate
ground-truth values, these components are investigated
empirically in the following subsection (5.4). The noise
covariance settings also have strong effects on both ac-
curacy and flexibility of the filter. To summarise:

– The prediction covariance (Cvt) determines how far
particles are propagated on average thanks to the dy-
namics equation. The goal is to keep all particles in
bounded regions around measurements but neverthe-
less to avoid the phenomenon of degeneracy.

– The observation covariance (Cnt) determines the se-
lectivity of the particle filter since its values appears
in the computation of particle likelihoods. If the fil-
ter is too discriminative (i.e., a few particles get very
high weights compared to others) degeneracy may
occur.

The final covariance matrices were chosen, through
detailed testing, to provide optimal performance across
all test sequences. However, as a starting point for posi-
tion and velocity using the knowledge of slow, uniform
motion (<3 pixels / frame) the corresponding prediction
variances were set to 10. Similarly, it is important that
the peaks of targets do not overlap; so the minimum sep-
aration between targets was assumed to be 7 pixels and
the corresponding observation variances were set to 50.
The intensity changes were minimal and a constant state
assumption proved sufficient. Finally, it is important to
allow for the rapid and unpredictable area changes, forc-
ing the related covariance components to be significantly
greater than those of position and velocity.

As an example, suitable covariances matrices Cvt and
Cnt of noises vt and nt for a state vector (x, ẋ, α)T in
our experiments:

Cvt =





10 0 0
0 10 0
0 0 100



 (16)

Cnt =





50 0 0
0 50 0
0 0 1000



 (17)

It was also empirically determined that the following
parameters were suitable for the PHD Filter: ρ = 2000,
PB = 0.1 and PS = 0.9. The robustness of the PHD
tracking is crucial for the target application. For this
reason, the effect on the PHD Filter to changes within
the tuning parameters is investigated in Subsection 5.5.

An initial evaluation into the performance of the PHD
Filter was carried out through comparison with a simi-
larly set-up Particle Filter (PF). The results are shown
for the four single-target sequences in Table 4. While it
is possible to operate the PHD identically to the PF
(Section 4) this has not been done in this case; this
can be seen by the slight degradation in results. How-
ever, the PHD Filter is tracking accurately across the
four single target scenes. At this stage no further com-
parison of the PHD filter’s tracking accuracy can easily
be presented. Any alternative multi-target tracking filter
would be heavily dependent on the target estimation and
data association steps, which would need to be specially
developed for the target system. However, recent liter-
ature [24] has demonstrated the significant advantages
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Table 4 PF / PHD Comparison

Sequences PF RMSE PHD RMSE

Single01 8.1 9.3
Single02 8.5 8.7
Single03 5.1 7.2
Single04 5.5 7.1

of the PHD Filter for both target estimation and track-
ing accuracy. It is hoped that an alternative method of
estimating the number of targets can be presented for
comparison.

5.4 Investigation of the PHD State Vector

The output from the current detection algorithm is the
position, area and average intensity for each segmented
region. It is important to determine the value of each
of these pieces of information to the tracking filter. Ta-
ble 5 shows four different combinations employed in the
PHD state vector, giving the RMSE (in pixels). While it
can be seen that using position and velocity leads to the
most accurate results overall it also produces greatest
error in the predicted number of targets. Introduction
of area constrains the systems producing a minor reduc-
tion in accuracy but a significant improvement in target
estimation. Figure 7 shows an example of four frames
where area can improve target estimation. Finally, it can
be seen that the inclusion of all three measures (fourth
column of results) over-constrains the system leading a
number of frames where no target is predicted, resulting
in a negative ET value.

For future practical applications, an accurate esti-
mate of the number of targets will be extremely impor-
tant to the overall function and computational perfor-
mance. This is not apparent in our RMSE calculation
using nearest-neighbour data association. It would be-
come apparent in a threat decision / identification stage.
For this reason, the chosen state vector at this stage is
(x, ẋ, α)T . In the future, with the inclusion of multiple
detectors, the choice of state vector will have to be re-
examined.

5.5 PHD Robustness to Parameter Variation

To test the robustness of the PHD tracking filter to pa-
rameter values two experiments are run on the obser-
vation and prediction covariance matrices, respectively.
The sequence Single04 has been chosen as a represen-
tative example containing some typical difficulties. It
should be noted that the observation and prediction co-
variances used in other experiments were selected to per-
form well across all test sequences but are not optimal
for this particular sequence.

Table 6 shows the tracking accuracy (RMSE) and
target identification accuracy (i.e. percentage of frames

Fig. 7 Example frames demonstrating a situation where in-
clusion of area (α) in the state vector can provide a significant
advantage.

Table 6 PHD Robustness - Observation Covariance

RMSE var x

Frames% 25 50 100 200

va
r

α

500 7.1 60% 7.3 80% 8.4 83% 8.4 93%
1000 6.1 73% 7.1 97% 8.0 90% 8.3 97%
2000 5.0 90% 6.1 90% 5.7 97% 6.7 97%
4000 3.9 73% 4.0 90% 4.7 97% 5.5 97%

Table 7 PHD Robustness - Prediction Covariance

RMSE var x

Frames% 5 10 20 40

va
r

α

50 7.1 97% 7.3 97% 7.2 97% 6.5 97%
100 6.7 97% 7.1 97% 7.0 97% 6.3 97%
200 6.7 97% 6.7 97% 6.1 97% 5.8 97%
400 6.1 97% 5.9 97% 5.9 97% 5.7 97%

the target was correctly identified in - Frames%) for the
PHD Filter using the state vector (x, ẋ, α)T across a
range of values for the observation covariance compo-
nents. It can be seen that the tracking accuracy remains
excellent throughout despite a 64-fold change in the ratio
of the observation covariance components. The effect on
target identification accuracy shows a greater variation
but has minimal effect on the tracking accuracy. This
demonstrates that the overall tracking accuracy is good
even in situations where the PHD filter is not optimally
tuned and is missing targets in some frames.

Similarly, Table 7 shows the tracking accuracy and
target identification accuracy for the PHD Filter across a
range of values for the prediction covariance components.
It can be seen that both the tracking accuracy and target
identification accuracy remain excellent throughout with
very little change in overall performance.

5.6 MPEG Video Results

Three MPEG video sequences showing the completed
system operating on test sequences Single03, Single04
and Multi03 have been provided. The video sequences
show the incoming MMW video sequence, on the right,
and the classified image sequence, on the left. The border
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Table 5 Selection of the PHD state vector, where x is the position, ẋ is the velocity, α is the area and I is the intensity. The
RMSE is in pixels and is calculated between the ground truth and the estimated target. The average error in the estimated
number of targets (Tt) is given by ET .

(x, ẋ)T (x, ẋ, α)T (x, ẋ, I)T (x, ẋ, α, I)T

Sequence RMSE ET RMSE ET RMSE ET RMSE ET

Single01 t1 6.9 1.4 9.3 0.0 7.0 1.3 9.3 -0.3
Single02 t1 7.5 1.4 8.7 -0.3 6.8 1.3 8.4 -0.4
Single03 t1 7.3 0.2 7.2 0.0 7.4 0.2 7.6 0.0
Single04 t1 4.1 0.1 7.1 0.0 4.1 0.1 7.4 -0.1

Multi01 t1 6.0
0.4

4.3
0.2

5.9
0.4

4.6
0.2

t2 5.3 4.7 5.5 4.7
Multi02 t1 4.7

0.1
5.2

0.0
4.7

0.1
5.1

0.0
t2 2.0 1.6 2.1 1.7

Multi03 t1 4.2
0.3

4.6
-0.1

4.2
0.3

4.7
-0.1

t2 5.2 8.1 5.1 8.9
t3 3.0 5.1 3.1 5.7

P

RMSE,
P

‖ET ‖ 5.6 0.5 7.0 0.1 5.6 0.4 7.3 0.1

colour changes from black to white to indicate when a
possible target has entered the scene. All material classi-
fied as as metal has the centroid marked as a blue cross
(+). The output from the PHD Filter is then overlaid
back onto the original MMW video sequence, with each
detected target being shown as a red circle.

The video sequences demonstrate the excellent per-
formance of the system and are indicative of the com-
plete data test set. The round object present in the clas-
sified images (left) for sequences Single03 and Single04
is part of the MMW sensor accidentally placed close to
the field-of-view.

For these MPEG video sequences, the average pro-
cessing time per frame, calculated across all sequences
containing threats, was 0.90 seconds per frame on a In-
tel Pentium 4 (2.66GHz) running Fedora Core 4. This
breaks down to 0.79 seconds for classification and 0.11
seconds for PHD filter tracking. For comparison, the
Regularised PF took an average of 0.04 seconds for a
single target. The complete system was written in C++
but no attempt has been made to optimise the compu-
tational performance of the code. Real-time operation of
this system, with the MMW imager working at 12 fps,
would be possible given suitable optimisation of the soft-
ware and selection of an appropriate hardware platform.

6 Conclusions and future work

We have presented a novel system for the automatic de-
tection and tracking of metallic objects concealed under
clothes using MMW sequences. The recent emergence
of MMW video imaging for security and surveillance
applications makes our work very timely. To the best
of our knowledge, the only previous system attempting
employ image processing for automatic threat detection
in MMW [8] used static images in a highly restricted
environment. We have demonstrated a system employ-
ing advanced image processing on images from a real-

time head-to-toe MMW imager. The system is capable
of automatically detecting the presence of metallic ob-
jects within the scene, classifying the materials in the
scene and tracking any targets detected in the scene.

Our metallic object detection, employing a HMM,
has proved reliable on the current data test set. While
the material classification has performed accurately and
robustly across the data test set, with no target missed
due to classification errors. The PHD multi-target track-
ing filter has proved reliable both in detecting the num-
ber of targets in the scene and tracking the targets po-
sition. The PHD Filter also provides a natural fusion
framework to combine multiple detectors therefore in-
creasing reliability and robustness in the detection of
concealed weapons. The selection of the PHD filter has
been justified from a theoretical time complexity view-
point and its suitability for real-time software implemen-
tation demonstrated.

Future work will extend our approach to multiple-
detectors designed to operate on a wider range of target
materials and to incorporating human body models to
improve tracking and provide 3-D visualisation. There
are significant concerns over privacy protection issues
related to the use of MMW imagers and similar tech-
nologies. The combination of human body model and
the automatic system presented in this paper could en-
able public use of the system in the future. Preliminary
work has also been undertaken [9] on a model of MMW
image formation and further work will be reported on
this in the future.
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pleby, P. Coward, A. Harvey, K. Lebart, Y. Petillot,
and E. Trucco, “Image analysis for object detection
in millimetre-wave images,” in Passive Millimetre-wave
and Terahertz Imaging and Technology (R. Appleby,
J. M. Chamberlain, and K. A. Krapels, eds.), vol. 5619,
pp. 117–129, SPIE, 2004.

10. P. K. Varshney, H.-M. Chen, L. C. Ramac, M. Uner,
D. Ferris, and M. Alford, “Registration and fusion of in-
frared and millimeter wave images for concealed weapon
detection,” in Proceedings of the International Confer-
ence on Image Processing, vol. 3, (Kobe, Japan), pp. 532–
536, IEEE, October 1999.

11. Z. Xue and R. S. Blum, “Concealed weapon detection
using color image fusion,” in Proceedings of the 6th In-
ternational Conference on Information Fusion, vol. 1,
(Queensland, Australia), pp. 622–627, IEEE, July 2003.

12. E. Trucco and K. Plakas, “Video tracking: a concise
survey,” IEEE Journal of Oceanic Engineering, vol. 30,
p. (to appear), 2005.

13. M. S. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp, “A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking,” IEEE Trans-
actions on Signal Processing, vol. 50, pp. 174–188, Febru-
ary 2001.

14. T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto,
“Making good features track better,” in Proceedings of
the International Conference on Computer Vision and
Pattern Recognition, pp. 178–183, IEEE, June 1998.

15. D. Comaniciu and P. Meer, “Mean shift: A robust ap-
proach toward feature space analysis,” IEEE Transaction
on Pattern Analysis and Machine Intelligence, vol. 24,
pp. 603–619, May 2002.

16. D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based
object tracking,” IEEE Transaction on Pattern Analy-
sis and Machine Intelligence, vol. 25, pp. 564–577, May
2003.

17. R. P. S. Mahler, “Multitarget Bayes filtering via first-
order multitarget moments,” IEEE Transaction on
Aerospace and Electronic Systems, vol. 39, pp. 1152 –
1178, October 2003.

18. Y. Bar-Shalom and T. E. Fortmann, Tracking and Data
Association. Academic Press, 1988.

19. C. Hue, J.-P. L. Cadre, and P. Perez, “Tracking multiple
objects with particle filtering,” in IEEE Transactions on
Aerospace and Electronic Systems, vol. 38, pp. 791 – 812,
IEEE, July 2002.

20. R. Karlsson and F. Gustafsson, “Monte Carlo data as-
sociation for multiple target tracking,” Target Tracking:
Algorithms and Applications (Ref. No. 2001/174), IEE,
vol. 1, pp. 13/1– 13/5, 2001.

21. D. Schulz, W. Burgard, D. Fox, and A. B. Cremers,
“People tracking with a mobile robot using sample-based
Joint Probabilistic Data Association Filters,” Interna-
tional Journal of Robotics Research, pp. 99–116, 2003.

22. B. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo
Implementation of the PHD filter for Multi-target Track-
ing.,” Proc. FUSION 2003, pp. 792–799, 2003.

23. T. Zajic and R. Mahler, “A particle-systems implemen-
tation of the PHD multitarget tracking filter,” SPIE Vol.
5096 Signal Processing, Sensor Fusion and Target Recog-
nition, pp. 291–299, 2003.

24. H. Sidenbladh, “Multi-target particle filtering for the
probability hypothesis density,” in Sixth International
Conference on Information Fusion, (Cairns, Australia),
pp. 800–806, 2003.

25. M. Tobias and A. D. Lanterman, “A Probability Hy-
pothesis Density-based multitarget tracker using multi-
ple bistatic range and velocity measurements,” in Pro-
ceedings of the Thirty-Sixth Southeastern Symposium on
System Theory, pp. 205–209, March 2004.

26. D. Clark and J. Bell, “Bayesian Multiple Target Tracking
in Forward Scan Sonar Images Using the PHD Filter,”
IEE Radar, Sonar and Navigation, vol. 152, pp. 327–334,
October 2005.

27. L. R. Rabiner, “A tutorial on Hidden Markov Models and
selected applications in speech recognition,” Proceedings
of the IEEE, vol. 77, pp. 257–285, February 1989.



Detection and Tracking of Multiple Metallic Objects in Millimetre-wave Images 13

28. K. N. Choi, M. Carcassoni, and E. R. Hancock, “Re-
covering facial pose with the EM algorithm,” Pattern
Recognition, vol. 35, pp. 2073–2093, 2002.

29. D. Hall and J. Llinas, eds., Handbook of Multisensor Data
Fusion, ch. 7. CRC Press, 2001.

30. D. E. Clark, J. Bell, Y. de S.-Pern, and Y. Petillot, “Phd
Filter Multi-target Tracking in 3D Sonar,” in Oceans Eu-
rope Conference, (Brest), IEEE, June 2005.

31. D. E. Clark and J. Bell., “Convergence Results for the
Particle PHD Filter,” Accepted to appear in IEEE Trans-
actions on Signal Processing.

32. A. M. Johansen, S. S. Singh, A. Doucet, and B.-N.
Vo, “Convergence of the SMC implementation of the
PHD filter,” Technical Report CUED/F-INFENG/TR-
517, University of Cambridge, 2005.

33. K. Panta, B. Vo, S. Singh, and A. Doucet, “Probabil-
ity hypothesis density filter versus multiple hypothesis
tracking,” in Signal Processing, Sensor Fusion, and Tar-
get Recognition XIII (I. Kadara, ed.), vol. 5429, pp. 284–
295, SPIE, August 2004.

34. L. Lin, “Parameter estimation and data association for
multitarget tracking,” PhD Thesis, The University of
Connecticut, 2004.

35. D. E. Clark and J. Bell., “Data Association for the PHD
Filter,” Accepted to appear in ISSNIP 2005, 5-8 Decem-
ber, Melbourne.


