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Abstract

This paper is concerned with the application of active contour methods to unsupervised binary

segmentation of high resolution sonar images. First, texture features are extracted from a side scan

image containing two distinct regions. A region-based active contour model of Chan and Vese [1] is

then applied to the vector valued image extracted from the original data. Our implementation includes

a new automatic feature selection step used to readjust the weights attached to each feature in the curve

evolution equation that drives the segmentation. Results are shown on simulated and real data. The

influence of the algorithm parameters and contour initialisation are also analysed.

I. INTRODUCTION

The role of underwater seabed analysis is becoming increasingly important for many applica-

tions including marine science (habitat mapping, environmental monitoring), off-shore industry

and military applications. There are two types of existing approaches to the problem: the first

is based on the analysis of acoustic and geo-acoustic data of the sea bottom(see [2], [3] and
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references therein). The second approach is image based and makes use of, primarily, side-scan

and bathymetric sonar data [4]–[7].

Side-scan sonar systems are used to generate 2-D, high resolution images that represent large

areas of the seabed. They are characterised by an acoustic signal which is emitted from the sides

of the sonar system in a direction perpendicular to the direction of travel. The beam produced

from each pulse is narrow in the horizontal direction and wide in the vertical direction, its

purpose being to insonify a narrow, long strip of the seabed on either side of the platform and

perpendicular to the navigation track. The intensity of the backscattered signal along a strip is

displayed as a function of time corresponding to a row of data in the side-scan image, each

time instant referring to a point in the seabed. The side-scan image is then produced by putting

together a sequence of these signals along the navigation track to create a 2-D representation of

large areas of seabed.

High-resolution side-scan images are characterised by visually distinct areas corresponding

to: objects on the seabed, visualised as high intensity areas caused by the reflection of the

acoustic wave; shadows, visualised as low intensity, textured areas caused by the lack of acoustic

reverberation from areas neighbouring the objects; and background, visualised as distinct areas

with strong texture characteristics. The latter are the result of the backscatter caused by the

seabed, with different types of seabed producing a distinct backscatter response.

Side-scan sonar image analysis is used in a number of applications, from object localisation

and identification to seabed classification and 3-D reconstruction. The analysis falls into two

categories: classification using texture features and supervised learning [4], [5] and unsupervised

segmentation/classification based on Bayesian clustering methods using grey levels or texture

features [6], [7]. The first of these approaches has produced useful results for seabed classification

but existing methods are very sensitive both to training and to the viewpoint in the sonar data [8].

Existing unsupervised segmentation algorithms for side-scan data are largely concerned with

identifying objects on the seabed by segmenting the image in shadow, non-shadow areas ( [6]

and references therein) or into three regions corresponding to shadow, echo and sea-bottom

reverberation ( [7]). The approach used in [6], [7] is based on a novel hierarchical Markov tree

model with prior knowledge being incorporated in the model.

In this paper we concentrate on a different type of segmentation task which has received

very little treatment in the literature, namely that of segmenting a side-scan sonar image in

March 16, 2006 DRAFT



3

different types of seabed in an unsupervised manner. In particular, such an algorithm can be

used to segment the areas of sonar images corresponding to sea-bottom reverberation. This task

is viewed here as an unsupervised texture segmentation problem. In addition, the extra assumption

that the underlying image contains two distinct regions is made.

There is a large literature on unsupervised texture segmentation and a number of different

approaches to the problem. In this paper a variational approach using region based active contours

based on level sets is adopted.

Active contour methods have been extensively used over the past decade for boundary detection

and image segmentation [9]–[18]. Originating from the classical parametric active contours (or

snakes) [9], geometric active contours are represented implicitly as level sets of functions of

two variables. Like the snakes they are usually derived by minimising a suitable data dependent

energy functional, the central idea being that a minimum is attained when the contour optimally

segments the underlying image. Unlike the snakes however they are able to make use of the

level set techniques introduced by Osher and Sethian in [19] to handle topological changes and

convergence problems. Energy functionals may depend on the data in a variety of ways but can

be broadly divided into boundary and region based models depending on the type of information

used to evolve the curve toward the boundary of the distinct regions in the image. Region based

models aim to evolve a curve by dynamically calculating some homogeneity measure over the

entire region to be segmented. They are thus more suitable for images where the different regions

are not defined through strong gradients as, for example, in blurry, noisy or textured images.

One way of using this type of method for texture segmentation is to evolve a curve simul-

taneously over a set of feature images extracted from the original image. Several works based

on this approach exist in the literature mostly using Gabor filters and wavelets as the texture

feature extraction technique( [20]–[24], [25]). Of these works only [24], [25] present unsupervised

segmentation methods and are closely related to the techniques used here. In particular the

active contour model and feature selection method are very similar to those in [25]. The primary

aim of the work in this paper, however, is to apply these techniques referred to sonar data,

and in particular to side-scan sonar images, while taking advantage of the narrower domain of

application in order to improve and refine existing methods.

The active contour model used in this paper was first introduced by Chan and Vese in [14]. It

is obtained as a special case of the Mumford Shah functional [26] and uses the mean intensity
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as a region homogeneity measure. One of the attractive features of this model is that it is free of

any a priori assumptions or statistical modelling of the image. The latter is desirable as textures

present in side-scan images cannot be modelled by one type of distribution. Moreover this model

is robust to noise and holds good regularisation properties, similar to those of a Markov random

field, as a result of the velocity dependence on the global region statistics and the curvature of

the contour. In [1] the model has been extended to include vector-valued images and it is this

form of the model that will be used here for texture segmentation of side-scan images. More

specifically the Chan-Vese vector valued model is combined with the Haralick texture features

calculated from the grey level co-occurrence matrices. The Chan-Vese model is used in a novel

way making use of its ability to perform automatic feature selection. This is implemented by

automatically readjusting the weights of the feature images to ensure that the contour evolution

is driven by those features that are the most discriminant.

The outline of the paper is as follows: In Section 2 we give some necessary background on

level sets and briefly describe a general framework for region based geometric active contours.

The Chan-Vese active contour models (scalar and vector-valued) are then described. In Section 3

the co-occurrence matrices for texture extraction and their relationship with sum and difference

histograms is reviewed and an algorithm for extracting the Haralick features from a sonar image

is described. Finally, in Section 4 the implementation of the segmentation algorithm is described

and several numerical results on simulated and real sonar images are presented.

II. THE CHAN-VESE ACTIVE CONTOUR MODEL FOR BINARY IMAGE SEGMENTATION.

A. Background

Let
�

be an image defined on a domain ������� . It will be assumed throughout this paper

that
�

consists of two homogeneous regions �	� and � � with 
 denoting their common boundary.

Let ������������ ��� � be a closed, simple curve with curve parameter � . The idea behind active

contour segmentation methods is to deform the initial curve �����������! "�$#��%��� in time using a

suitable, data dependent partial differential equation of the form:& ���%���('(�& '  *)+�%���('(�-,. �����/'(� (1)

so that the family of curves 0��������/'(�+�1�324� � �('+2��5�6�87:9;�8< satisfying (1) converges to the

boundary 
 as ' � 7:9 . Here � , ' are the curve and time parameters respectively, ,. stands for
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the inward normal vector of �������/'(� and ) is the speed with which � evolves in the direction

of the vector ,. . The speed ) may depend on many factors (e.g. local or global properties of

the front, image data) but it is assumed that it is independent of the curve parametrisation. It

has to be chosen in such a way that the evolving curve ���%���('(� is attracted by the boundary 

of the two regions and becomes stationary at 
 .

The strength of this approach lies in its ability to make use of the level set methods introduced

by Osher and Sethian in [19] and further developed by several authors over the past decade [27]–

[29]. The level set formulation of equation (1) is given by:&>=& '  *)@?BA = ? (2)

with initial condition
= �DCE�FCE�����G�H� � � � where the initial surface

= �DCE�FCE����� is chosen so that its

zero level set is given by the initial curve �I# in (1), that is0��KJL�NM6�G� = �OJL�NM>�����P Q�R<	 4�S# (3)

The family of curves �@�TCU�('(� , 'V�� satisfying (1) will then be given by the zero level sets of

the surfaces
= �DCE�FCE�/'(� , 'WVX� that satisfy equation (2). In this way any topological changes in the

evolving curve ���DCE�/'(� , as splitting or merging, can be handled naturally and powerful numerical

schemes able to approximate the correct viscosity (weak) solution can be employed. [27], [29]

The velocity function ) is usually derived through minimising a suitable image dependent

energy although it is also possible to synthesise ) directly from the image data [10], [30]. There

are two types of approaches when choosing a velocity ) : boundary-based and region-based.

The former rely on the boundary 
 being described as the points in the image where ?BA � ? is

maximised and therefore tend to depend only on local information [10], [12], [30]. Region-based

methods on the other hand aim to segment the two regions by considering various measures of

homogeneity of each region. In this way global image information can be incorporated in the

velocity function ) [11], [14], [16]–[18]. A review of region-based methods can be found in [18].

A general framework that can unify many of the region-based approaches in the two region

case was presented in [18]. This framework considers energies of the general formY �Z�[�\ ]6^�_5`(a�bdcfe%gihEj �KJL�/Mk��� e%gih �(l�J>l�M	7 ]�^Hmonpbdcrqfstj �KJL�/Mk��� qus �Dl�J>lHM!7 ]wv:bdcuxKj �OJL�NM��DlR� (4)
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where � e�g8h ��� qus denote the outside and inside of the curve � . The kernels
b cfe�g8hEj � b crqfstj play the

role of ”region descriptors” and are modelled as a combination of features globally attached to

the evolving regions � e�g8h ��� qus . The main result in [18] is the computation of the speed ) that

will make a contour obeying equation (1) evolves toward a minimum of the energy
Y �Z�[� in

equation (4).

B. The Chan-Vese model for scalar images.

The approach used in this paper was first introduced in [14] and generalised for vector-valued

images in [1]. It can be seen as a restricted form of the Mumford-Shah functional for segmentation

first proposed in [26]. Alternatively it can be viewed as a special case of the framework in [18].

The general form of the Mumford-Shah functional is given byY �5yL�B�[�p {z Length �Z�[�|7X} ] ^$~ � �KJL�/M�����y-�OJL�NM6� ~ � l�J>lHM!7 ] ^R�Z��~ A$y��KJL�NM6� ~ � l�J>l�M (5)

where y��!�� � � is continuous and piecewise smooth, z and } are positive parameters. The

segmentation problem that the minimisation of (5) is designed to solve can be stated as follows:

Given
�
, find a decomposition � q q���� of � and an optimal approximation y of

�
such that y

varies smoothly within each � q and rapidly or discontinuously across the boundaries of � q . A

minimiser �5yL�B�[� of
Y �5yL�B�[� will be an ”optimal” piecewise-smooth approximation y of the

initial, possibly noisy, image
�

while � will approximate the edges of
�
.

In the case where
�

consists of two distinct regions and when restricting the approximationsy of
�

to piecewise constant functions (functions taking only two values, ��� , � � in the region

inside � and the region outside � respectively), the Mumford Shah functional becomesY �5�t�i�N� � �i�I�p �z Length �Z�[��7 }�� ] qfsBh�c � j ~ � �KJL�/M������F� ~ � l�J>lHM7 } � ]��%� h�c � j ~ � �KJL�NM6����� � ~ � l�J>l�M (6)

In this case the constants �t� , � � are given by�F�� � qus ���I�\ average � � � inside �� �  � e%gih ���[�p average � � � outside �
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This leads to the minimisation problem:���6�v Y ���I�\ ���6�v 0�z Length ���I��7 }�� ] qus�h�c � j ~ � �OJL�NM������ qfs ���[� ~ � l�J>lHM7 } � ]6�5� h�c � j ~ � �OJL�NM������ e�g8h �Z�[� ~ � l�J>lHMd< (7)

for z"��� , }��8�8} � V�� . Now energy (7) is of the form of equation (4) considered in [18].

Following [18] the evolution equation derived from the minimisation of (7) is given by& �& '  40�}��B� � ��� qfs �Z�[�/� � ��} � � � ��� e�g8h ���I�(� � 7�z| �< ,. (8)

where   is the local curvature of the curve � .

Equation (8) can be solved by using a level set method as explained above. Note that in this

case the speed function ) is given by)4 *}���� � ��� qus �Z�[�(� � ��} � � � ��� e�g8h �Z�[�/� � 7�zL  (9)

and can therefore be extended naturally outside the curve � . As demonstrated in [14], this model

has several advantages: ability to detect boundaries with very smooth or blurred boundaries

(boundaries without gradient), automatic change of topology and automatic detection of interior

contours, scale adaptivity (through the parameter z ) and robustness to noise.

The main limitation of the model comes from the fact that it can only discriminate regions

which have different mean intensities. In particular it is, in general, unable to segment images

with strong textures. One way to overcome this is to extract features
� �i� � � �FC�CFC�� � s from the initial

image
�

and apply the above algorithm directly to one of them. An even better segmentation

result can be achieved by combining the information in
� �i� � � �FCFCFCB� � s . This is explained below.

C. Extending the model to vector valued images.

The approach used in this paper to extend the model of the previous section to vector-valued

images is presented follows [1].

Let
�

be as before and let
� ��� � � ��CFCFC�� � s be ¡ feature maps on the domain � that have been

extracted from
�
. For example

� q q£¢ �Z¤¦¥¦¥¦¥ ¤ s may be the output of a filter bank applied on
�
. The

idea is to evolve a curve � in � as before but making use of the information contained in all
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of the images
� q �N§� ©¨ª�FCFCFCB�N¡ . One way to achieve this is to evolve � under equation (1) where

the velocity function ) is given as a weighted average of terms over all images:)4 ¨¡ s« q£¢ � 0�} crqfsFjq ¬ � q ��� crqfstjq  �1��} cue�g8hEjq ¬ � q ��� cue�g8hEjq  �F<�7�zL  (10)

where � crqfstjq �N� cue�g8hEjq
are the mean values of images

� q
inside and outside � . This approach was

first implemented in [1] where it is also shown that the speed ) will evolve � under equation

(1) toward the minimum of the energy

Y ���[�� ¨¡ s« q£¢ � } crqfstjq ] ^Rmon ~ � q �OJL�NM6����� qfsq �Z�[� ~ ��l�J>lHM
7 ¨¡ s« q£¢ � } cue�g8hEjq ] ^�_%`Dak~ � q �KJL�NM6����� e�g8hq ���I� ~ � l�J>l�M	7�z ] v lR� (11)

As in the one-dimensional case this approach also fits into the framework in [18].

The coefficients } crqfstjq �8} cfe�g8hEjq
can be used as weights attached to each image depending on the

amount of information that it contains. In our implementation the weights } c ¥ jq are initially set

equal to ¨ and readjusted automatically as the curve evolve depending on the magnitude of the

quantities
~ � crqfstjq ��� cue�g8hEjq ~

. In this way the active contour also performs a feature selection.

III. FEATURE EXTRACTION

Side-scan sonar images are often characterised by textured regions corresponding to different

types of seabed. Many approaches have been proposed to model texture (filter banks, morphology,

run length encoding, Markov random fields, fractals, co-occurrence) [4]–[7], [21], [31]. The

appropriate choice of feature sets is a complex and largely unresolved problem. Co-occurrences

matrices belong to the statistical representation of textures (fractals, Markov random fields) which

view texture as a stationary random stochastic process. A stochastic model is well adapted to

sonar imagery due to the amount of noise present in the images. Co-occurrences matrices have

been chosen here as they are simple, well-established and fast to calculate. There is also evidence

that they are well adapted to sonar imagery [31]–[33]. The main emphasis of this paper is not

the selection of the best texture feature set but the demonstration that texture features can be

integrated into a curve evolution framework to efficiently segment side-scan sonar images. Other
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feature sets could be readily integrated in the existing scheme if they were better adapted to the

specific nature of the images to be analysed, be they side-scan or other.

The feature set used here is the well known Haralick set [34]. Only a subset of the ¨F®
Haralick features (Energy, Contract, Correlation, Entropy, Homogeneity, Cluster Shade and

Cluster Prominence) representing the most commonly chosen ones is used here. They are

referenced throughout the text as ¯H� to ¯�° . For computational reasons, these features are not

extracted for each pixel of the original image
�

but on a sub-sampled lattice determined by

horizontal and vertical sub-sampling steps ��� � �8��±F� . For each point of the lattice, the features are

extracted using an estimation window of size ² ��³ ²W± . The distance between the couples of

pixels for which the co-occurrence is estimated is denoted l and the orientation of the couples

is denoted ´ . More details on the extraction of Haralick features can be found in [34]. A fast

implementation of an estimate of the Haralick set using sum and differences of histograms

introduced by Unser [35] is used here. Our implementation is based on non-optimised C code

running on a Pentium 1.8GHz, 512MB RAM computer with Linux operating system. In figure VI

an example sonar image and the extracted features ¯��1�;¯�° with � �  µ�F±I "¶ and ´· ¸�º¹�»�¶
is shown. The extraction time for this image ( ®���� ³�¼�½ � pixels) was ®H¾ª� . It is worth noting

however that a local equalisation step used to make the textures more stationary, performed as

a pre-processing stage, takes up about half of this time( ¿À¶�¨�� ).
IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS.

A. Implementation of the segmentation algorithm.

Let
�

be a two-region grey-scale image and let ,�  Á� � �8�FCFCFCB� � s � denote a set of feature images

extracted from
�

and defined on a common domain � . The partial differential equation 12 is

implemented numerically by making use of a level set method as explained in Section 2:& �& '  40 ¨¡ s« q£¢ � 0�} crqfstjq ¬ � q ��� crqfstjq  � ��} cfe�g8hEjq ¬ � q ��� cfe%gihEjq  � <W7�z| �< ,. (12)
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with initial condition �Á ��Â# and where � cuqustjq �/� cfe�g8hEjq
are the mean values of images

� q
inside

and outside � . More precisely the PDE&k=& '  �5)�#-7Ã)\�D� ~ A = ~ (13))�#� ¨¡ s« q£¢ � 0�} crqfstjq ¬ � q ��� crqfstjq  � ��} cfe�g8hEjq ¬ � q ��� cfe%gihEjq  � <
)\�Ä zL + �zLAÆÅ-Ç A =~ A = ~�È

with initial condition
= �KJL�NM>�����\ É��ÊR¡�l>�KJL�/Mk�B�Â#N� is discretized. Here ��ÊR¡�l>�DCE�FCE�B�Â#�� denotes the

signed distance function from the initial curve �I# and is defined by

��ÊR¡�l>�OJL�NMk�i�Â#/�\ ËÌÍ ÌÎ �Ïl�§Z��'B�KJL�/Mk�B�S#8� if �KJL�/M�� lies inside �Â#l�§��F'B�OJL�NM>�B�S#8� if �KJL�NM6� lies outside �Â# (14)

where l�§Z��'B�KJL�NM>�B�[� denotes the Euclidean distance between a point of coordinates �KJL�NM6� and a

curve � .

We have used a first order monotone scheme to approximate the term )\# ~ A = ~ and a first order

central difference approximation to the the curvature term )G� ~ A = ~ . For computational efficiency

the values of
=

are updated only in a narrow band around the zero level set of
=

. To ensure that

the evolving curve remains well within the narrow band domain it is necessary to reinitialise
=

when the zero level set of
=

gets close to the boundary of the band. This is done by resetting=
to be equal to the signed distance from its zero level set using (14). We have found that in

some cases it is necessary to reinitialise more often as the gradient of
=

tends to get very large

affecting the convergence of the numerical solution.

The stopping criterion for the algorithm is formulated in terms of the stationarity of the zero

level set of the solution
=

: If the zero level set of
=

has remained unchanged over a given

number of iterations then the algorithm is declared to have converged. In our implementation,

the algorithms is said to have converged after ¾ª� stationary iterations of the zero level set of
=

.

Convergence of the scheme can also be monitored by calculating the energy (11) and determining

whether it is decreasing over time but has not been used here.

It is important to note that convergence to the global minimum of the energy functional (11)

associated with the speed )1� cannot however be guaranteed. First the proposed method is a

’gradient descent’ technique and will only reach the closest local minimum. Second, such an
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energy has in general more than one local minimum. This makes the algorithm susceptible

to initialisation. Two initialisation schemes have been used here: initialisation with a sequence

of uniformly distributed circles over the entire image and initialisation with a single central

circle (see figures 10. Generally, uniformly distributed circles give better segmentation results

and convergence is faster than when initialising with a single curve. However, for certain types

of images where the object or region in the central part of the image is small relative to the

background region, the final segmentation is better when initialising with a single curve that

intersects with the central region. Generally, it was found that the algorithm was not overly

sensitive to initialisation.

The choice of features and the setting of the coefficients } cuqustjq �8} cue�g8hEjq
is another issue that needs

to be addressed. The parameters } cuqustjq �8} cfe�g8hEjq
determine the degree of contribution of image

� q
in the final result. In [1] the } parameters are used to filter high frequency noise from different

channels. In the case where the
� q

s are the output of feature extraction (e.g. Haralick features)

the level of noise is the same in all channels and the primary role of the parameters is one of

feature selection. Here, as in [25], the automatic feature selection is based on maximising the

difference between the means of a given feature inside and outside the curve. In [25] the number

of features to be selected is fixed a priori and the coefficients } cuqustjq �8} cue�g8hEjq
are set manually. In

our implementation the coefficients } crqfsFjq ��} cue�g8hEjq
are set automatically and the number of selected

features can be indirectly determined via a threshold �IÐ;Ñ�ÒÉ¨ (in our implementation, Ñ is set

at ��Cf¾ ). The parameters } crqfstjq �8} cfe%gihEjq
are initially set to be equal to ¨ for the first

¼ ��� iterations.

They are subsequently reset at regularly following equation:} crqfstjq  Q} cue�g8hEjq  ~ � cuqfsFjq ��� cue�g8hEjq ~Ó (15)

where Ó  *��Ô�J��ZÕ q Õ s ~ � crqfstjq ��� cue�g8hEjq ~ C
Setting the coefficients in this manner ensures that the features with maximum discriminatory

capacity drive the curve evolution. In addition the number of features contributing in the algorithm

can be controlled using the criterion } q �{Ñ . As examples in the next section illustrate this type

of feature selection can greatly improve the segmentation result.

The parameter z controls the smoothness in the contour and thus the sharpness of the bound-

aries of the segmented regions. The setting of z is somehow empirical as it weights the contri-
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bution of the smoothness term against the contribution of the data driven term, the latter being

difficult to bound and depends on the image size. However the results do not seem to be very

sensitive to the value of z and it only needs to be adjusted within the correct operational range

for a given type of images.

B. Experimental results

In the last section of this paper we present numerical results of the proposed method on

synthetic and real sonar images. These were obtained using a Pentium 1.8GHz processor with

512MB of RAM. The code is written in non-optimised C++ compiled with g++.

One of the problems when segmenting sonar images is the noise or other artifacts resulting

from imperfect data acquisition methods. It is thus desirable to first validate the proposed method

on synthetic data. We then present some examples of images which segment well and for which

the segmentation is robust under different initialisation. Finally examples of images which are

difficult to segment with the proposed method are also given.

The choice of the window size used to extract the texture features is ultimately driven by the

scale of the textures to be segmented. Large window sizes will provide good texture features

but blur the edges between texture regions while smaller windows will preserve the edges at the

expense of feature stability. There is also a computational cost to large windows. A compromise

must be found between those parameters. A multi-resolution implementation is always possible

to obtain a fix analysis window size irrespective of the scale of the texture but this has a

high implementation cost and the scale at which the analysis has to be performed needs to be

determine. For those reasons, we have used a fixed window size representing a good compromise

for the textures under analysis in the underwater images of our database.

In the experiments described below the algorithm parameters were chosen as follows: In the

feature extraction algorithm the window sizes ² � �N²W± were set to ² �  Ö²W±I ×¶�¨ . Finally The

step sizes � � �8��± were set to � �  ��F±[ �¶ , the grey levels were quantised to

¼ ¶ and the set of

displacement vectors 0W,l q < for the calculation of the co-occurrence matrices is determined by:~ ,l q ~  �¶ , ´ q 2;0H�Ø¹�»ª¶��F�º¹�»�®������/¹�»�®6< . In the curve evolution scheme parameters } qfsq �8} e%gihq were

chosen as in (15) at iterations ¨t���6��¶ª���6�FC�CFCB��¾ª��� but where we have also set } crqfstjq  Æ} cfe�g8hEjq  ©�
for those indices § where Ù Ú1Û

mrn/ÜmÞÝ Ú1Û
_%`Da Üm Ùß ÐÀÑW�5Ñ� ���Cf¾�� , effectively removing ’bad’ features from

the curve evolution process.
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For sonar images, the value zà Q¾\ÅB¨t� ÝHá Å���¶ª¾�¾�� � , where images were of size ¶�¾ ½â³ ¶�¾ ½Bã §%J>ätå5� ,
was found to be a good compromise between the level of accuracy in boundary detection and

the level of noise or scale of detail within each separate region that needs be left undetected.

The setting of z follows suggestions form [14].

Figures 2, 3 and 4 show the segmentation results for three simulated side scan sonar images.

The images in figures 2 and 3 contain two types of seabed. The image in figure 4 consists of three

types of seabed with the middle and top regions having a higher degree of similarity than any of

the other two pairs. All three segmentation results are robust to different initialisations. Initialising

with an array of circles uniformly distributed over the entire image speeds up convergence by a

factor of two compared to initialising with a curve whose interior consists of a single connected

component (e.g a single circle or rectangle). In figure 4 the two visually more similar regions

(top and middle) have been given the same label. This is an example where the present method

is used to segment a homogeneous region within an image consisting of more than one regions.

In this case a segmentation in three regions could be achieved by re-applying the method on both

regions separately. In general however this is not a robust approach for multi-region segmentation,

at least when the curve evolution is used to minimise the particular energy functional used here.

Initial experiments on real sonar data confirm this.

Figures 5, 7, 8 contain segmentation results on real raw sonar data. As can be seen the data

is noisy and contains various artifacts. These results are robust to initialisation and to feature

selection: running the algorithm with } q  �¨ for all § gives the same segmentation as setting the

coefficients as explained above. The speed of convergence however is greatly reduced when the

feature selection is activated as only a few of the feature images contribute to the calculation of

the curve flow. Figure 6 displays the six most discriminant features extracted from the image in

figure 5 and selected automatically. These correspond to the features ¯ � (contrast) in (VI) in four

different directions ( ´S 4�Ø¹L»�¶��F�º¹�»�®��N�6�/¹�»�® ) and ¯�æ (homogeneity) in the directions ´ 4�Ø¹�»ç®
and ´ �� . Execution time per iteration for an image of ®���� ³è¼ ��� was �6Cu¶��tät� .

Figure 9 shows examples of images for which some feature selection is necessary for correct

segmentation. The images in the middle column were obtained by setting the coefficients } q as

described in the beginning of this section. The images in the right column were obtained by

setting all of the } q equal to ¨ .
Figure 10 contains examples of images that are harder to segment using the proposed algo-
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rithm. The image in the top row can be successfully segmented when initialising with a small

circle (about a third of the image radius) placed in the middle of the image. This result is

shown in the middle column. The result on the right is the one obtained when the initial curve

has a large intersection with the surrounding region. The image in the middle row exhibits the

opposite behaviour: initialising with too small a circle does not allow for region growing in order

to capture the top half of the rippled seabed (middle). Initialising with a

¼é³ ® array of circles

however gives a good segmentation result (right). The difficulties in the last image come from

the vertical line across the middle and the similarity of the two types of seabed present. As in

the top image, initialising with a circle having a small intersection with the coarser texture gives

a good result. In all, for such “harder images” the difficulty seems to come from the lack of

a good initialisation rather than the choice of features. Problems of this type can be addressed

by using a multi-resolution approach. For example evolving a curve on features extracted at a

lower resolution can be used for initialisation. Alternatively a different pixel based segmentation

algorithm can be used after the feature extraction as an initial step –e.g.K-means or fuzzy K-

means– followed by regularisation with the proposed algorithm.

V. CONCLUSIONS AND FUTURE WORK

In this paper an unsupervised binary segmentation algorithm is proposed and applied in

particular to side scan sonar images. It combines the Haralick features for texture and an active

contour model for vector valued images proposed in [1].

The results obtained strongly suggest that the Haralick set of features is suitable for texture

discrimination in side-scan sonar data. In particular, using the automatic feature selection step

in the algorithm, the features contrast and homogeneity turn out to be consistently the most

significant. The algorithm is shown to have good regularisation properties and to be robust to

noise and other artifacts resulting from the data acquisition process.

As a result of the non-convexity of the energy functional one of the limitations of the algorithm

is its sensitivity to initialisation. One way to address this problem is by pre-segmenting the image

at a coarser scale using a pixel-based segmentation method. A multi-resolution approach would

also be beneficial as the value of parameters for the co-occurrence matrices depends on the scale

of the textures in the sonar image. This may be achieved by enlarging the feature set using

different parameters corresponding to different scales and using the feature selection step as a
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means of identifying the most suitable values.

The results obtained so far and presented in this paper suggest that curve evolution is a useful

tool in sonar analysis.

The proposed method can be readily extended to other contexts. Different types of features

may be used. In particular it is possible to “fuse” different feature sets to allow information

not captured by the Haralick features to be considered. By taking a slightly different viewpoint

the method may also be used for sensor fusion (for example bathymetry or video). Finally it

is possible to extend the method to segment sonar images to ¡ classes, ¡�VÉ¶ , by considering

coupled evolutions of several contours. The main difficulty in achieving this is the representation

of different regions through the evolving curves. A number of different approaches exist, such

as [36]–[39]. All of these methods can, in principle, be used in the context of this paper with

suitable adjustments. This is a direction of research that we will pursue in the future.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. From left to right: example of sonar image (a) and extracted Haralick features [energy (b), contrast (c), correlation

(d), entropy (e), homogeneity (f), cluster shade (g) and cluster prominence (h)]. The figure clearly shows that some features are

better suited than other for the segmentation of this example image. Therefore automatic feature selection will be important.
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(a) (b)

Fig. 2. Simulated image (a) and segmentation result (b). The simulated image was realised using a sonar simulator developed

in [40]. It is based on ray-tracing and provides realistic ground-truthed sonar images enabling the validation of the method

proposed.
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(a) (b)

(c) (d)

Fig. 3. Curve evolution on simulated image at iterations ê (a), ë(ê (b), ìNê (c) and íZê(ê (d). Image (a) corresponds to the original

image. Image (b) to the initial curve. The other correspond to the zero level set of î at different stages of the process. The

image here is composed of two distinct textures, one is sand ripples and the other flat seabed. The final curve very precisely

follows the boundary between the two regions without being perturbed by the vertical artifact which locally interferes with the

feature extraction. This example demonstrates the global region-based nature of the technique

March 16, 2006 DRAFT



21

(a) (b)

(c) (d)

Fig. 4. Curve evolution on simulated image (a) containing three types of seabed at iterations ê (b), ë(ê(ê (c) and í�ê/ê(ê (d).

Image (a) corresponds to the initial curve. The other correspond to the zero level set of î at different stages of the process.

The image here is composed of three distinct textures. The algorithm is currently limited to two classes and amalgamates two

classes together. Note that they are perceptively the closest as well.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Contour evolution at êiïñð�ò%ó�íZêBïñô�ò%ó5ë(êiïñõZò%óKì/êBïñöiò%ó5÷/êiï£øDò and ëDê/êiïEùtò iterations. Image (a) corresponds to the initial curve.

The other correspond to the zero level set of î at different stages of the process. The image here is composed of two distinct

textures, one is sand ripples and the other flat seabed. The final curve very precisely follows the boundary between the two

regions.
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Fig. 6. The six most discriminant features selected for segmentation of the image in figure 5. This clearly shows that the

feature selection is effective at identifying the most discriminant features in the feature set.
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(a) (b) (c)

(d) (e)

Fig. 7. Contour evolution at êiïñðBò%óKú/êiïñôZò%óZí�ì/êBïñõ�ò%ó%ëDìNêiïñöiò and ì/÷/êiï£ø(ò iterations. Image (a) corresponds to the initial curve. The

other correspond to the zero level set of î at different stages of the process. The initialisation in this case is a single large circle.

Convergence is still demonstrated showing that the proposed algorithm is not very sensitive to initialisation.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Contour evolution at êiïñð�ò%óKë(êBïñô�ò%ó5û(êiïñõZò%ó%üDêBïñöiò%ó5ý/êiï£øDò and íZë(êiïEùtò iterations. Image (a) corresponds to the initial curve.

The other correspond to the zero level set of î at different stages of the process. The final curve very precisely follows the

boundary between the two regions.
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(a) (b) (c)

(d) (e)

(f)

(g) (h) (i)

Fig. 9. Original images (a,d,g) and corresponding segmentation results with (b,e,h) and without (c,f,i) feature selection. The

results show the importance of feature selection for convergence. Non discriminant features will create extra local minima in

the energy functional.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Original images (a,d,g) and segmentation results when initialising with one circle (b,e,h) and an array circles (c,f,i).

This figure demonstrates the importance of initialisation in specific cases. In the first image, initialisation with a big central

circle outperforms the initialisation with an array of small circles while the situation is inverted for the last two images. There

is no rule as yet to decide on a better initialisation scheme. Prior segmentation using more rudimentary techniques (k-means)

could be used to initialised the curves and improve convergence.
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