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� Introduction

Many commercial systems exist for �nding the absolute position of a submersible
vehicle� these include acoustic positioning systems� acoustic super short� short and
long baseline navigation� The two former methods are only suitable for local area
positioning� over relatively short distance� less than one nautical mile� Long baseline
provides positioning to within one to ten meters and covers an area of up to seven
nautical miles� The need for the submersible to be within an envelope covered by the
above mentioned systems makes them unsuitable for exploration of new terrain using
AUVs� Standard practice has been to achieve positioning by means of integrating the
inertial navigation readings with an absolute positioning measurement provided by
an acoustic positioning system which communicates with a surface vessel� The use
of such system involves a considerable cost� The development of an inexpensive and
yet reliable positioning system is therefore desirable� to achieve this goal one must
break the existing link between surface vessels and UVs� We propose a system that
builds a map of features in the environment� localises it�self with respect to these
features� and avoids obstacles� The system uses standard dead�reckoning sensors and
a mechanical forward looking sonar�

Our previous research ��� �� �� 	� 
� presented di�erent approaches for tracking returns
from a forward looking sonar� for the purpose of classi�cation and obstacle avoidance�
Our current research tracks the position of objects in the environment and that of the
vehicle itself� with respect to the world reference frame� to build an stochastic map �
�
and allow the vehicle to navigate in this map whilst avoiding obstacles� The returns
from the sonar are used to build images� standard image processing techniques are
used to segment these images and extract the position w�r�t� to the vehicle of possible
obstacles� These obstacles are used to create a local map of the environment that
will be used by the obstacle avoidance algorithm to plan a trajectory� They will also
be used to �nd an absolute position estimate of the vehicle which will be integrated
with the vehicle�s dead�reckoning sensors�



� Principles

The following section will describe the theoretical principles used by the underlying
algorithms� The potential �eld approach used for avoiding obstacles has been widely
used in the �eld of robotics for obstacle avoidance and path planning ��� �� �� ��� and
will be brie�y outlined in section ���� The following section ��� describes the theory
behind simultaneous localisation and mapping�

��� Arti�cial potential �eld

Obstacle avoidance can be broadly divided into two classes of techniques� global and
local� global methodologies rely on the description of the obstacles in the con�guration
space of the vehicle ��� while local techniques generally uses arti�cial potential �eld or
related techniques ����� Global techniques reduce the problem of planning the motion
for a manipulator or vehicle to a problem of planning the motion of points representing
the con�guration of the vehicle�manipulator in the proper con�guration space �which
takes into account all the constraints of the vehicle�manipulator�� Therefore such
algorithm have two main steps� The �rst step consists in transforming the available
description of the obstacles in the real world �Cartesian coordinates� to a suitable
representation in the con�guration space� The second step consists in determining the
free space of the con�guration space and to search for the optimal path �with respect
to a given criterion� i�e� time to goal� energy minimisation������ These algorithms
produce a collision free path if one exists� However� they are computationally intensive
and require a priori knowledge of the environment�

Local techniques rely on the use of arti�cial potential functions and provide a fast
and viable option to global techniques� especially for real�time applications and for
applications where the environment can change rapidly or is only partially known�
In local techniques� the obstacles are represented by a repulsive potential while the
goal point is represented by an attractive potential� The super�imposition of the two
potential provides the desired workspace energy topology� For any starting point in
the modeled workspace it is possible to follow a path decreasing the potential and
reaching the goal� However� the workspace created can present local minima and a
robust algorithm should be able to escape local minima while still avoiding obstacles�
In order to do that the navigation function as described in ��� is used�

����� The potential model

The potential model is generated in two stages� The �rst stage consists in de�ning
the attractive well which draws the robot towards the goal point� The next stage is
the de�nition of the repulsive �eld� which pushes the robot away from the obstacles�
The potential �eld is represented as a discrete approximation of the analog �eld� This
approximation is not a limitation as the data representing the objects is in general
discrete and the discretisation process can be tailored to match the resolution needed
by a given application�

The attractive �eld should have only one minimum point� the goal� A standard way



of de�ning it is to use a parabolic well de�ned as�

Uatt�q� �
�

�
��q � qgoal�

� ���

where q is a point of the workspace and � a scaling factor�

The force applied to the robot at any point q of the space driving it towards the goal
is therefore�

Fatt�q� � ���q � qgoal� ���

This form of potential has some useful properties as the force derived from it converges
linearly to zero� Hence� the robot can be made to decelerate smoothly as it approaches
the goal point�

The repulsive potential is de�ned as�
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�
�
�
�

�
��q�

�
�

��q��

��
if ��q� � ��

� otherwise
���

where � is a positive scaling factor and ��q� is the smallest distance between the
con�guration q and any obstacle� �� is a positive constant de�ning the distance of

in�uence of the obstacle� It can be seen that the force exerted by the obstacle is
zero when the robot con�guration lies outside the distance of in�uence and tends to
in�nity as the robot approaches the obstacle preventing any collisions�

����� Planning algorithm

The classical technique uses standard gradient descent� Starting from the current
robot con�guration� the neighbour with the smallest potential amongst the ones hav�
ing a smaller potential than the current con�guration is selected� The process is
iterated until the goal is reached or no neighbour can be selected� In the latter case�
the current con�guration is a local minimum�

In order to avoid the local minimumproblem� we use a tree searching algorithm which
is complete� It is guaranteed to �nd a path in the free space if one exists� Again it
operates by examining the neighbours of the current con�guration with the following
assumptions�

� A path between adjacent con�gurations lies in the free space�

� The con�guration space lies in a bounded rectangular area�

A tree T of possible paths is built with the starting con�guration qinit as the root of
the tree� At every iteration� the leaf of T with the lowest potential is selected� The
neighbours of that con�guration whose potential are less than a given threshold �high
in general but less than inside any object� and which are not already in the tree are
selected� They are installed in the tree as successors of the current leaf� The algorithm
terminates when qgoal has been reached or any attainable con�guration from qinit has
been installed in the tree� If qgoal has been found� a path can be tracked back from
qgoal to qinit� E�ectively it is the same as following the gradient descent technique
until a local minimum has been found� in which case the algorithm acts by �lling the
well of the local minimum until a saddle point is found�



��� Simultaneous localisation and mapping

The �rst consistent solution to the simultaneous localisation and mapping problem
was put forward by Smith et al �
�� The research presented by Smith et al has been
extensively used by other researches� leading to exciting new developments ���� ���
�	� �
�� In ��
� a thorough explanation on the underlying fundamentals is given� The
algorithm is an augmentation on the extended Kalman �lter ���� ���� The �lter now
holds the relevant states of the vehicle and that of the features used in the mapping
and localisation process� The new state vector x��� assumes the following form�

x�k� �
�
xv�k� x��k� x��k� � � � xn�k�

�T
�	�

where xv�k� holds the state of the vehicle and x��k��x��k�� � � � �xn�k� hold the states
of the n features� The estimated error covariance �approximated mean�square error�
for this system�

P�k� �

�
������
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where the sub�matrices Pv v�k�� Pv i�k� and Pi i�k� are the vehicle�to�vehicle� vehicle�
to�feature and feature�to�feature covariances respectively�

The di�erent steps followed by the algorithm are now summarised�

����� Propagate the vehicle state

Stochastic mapping assumes �xed features and the resulting state propagation will
become�

�xv�k� � fv��xv�k � ���u�k���� k� �
�

where �xv��� is the vehicle�s state and fv��xv����u�k���� k� is the vehicle�s dynamic
model� Its associated covariance� strictly speaking the approximated mean�square
error as �x�k� is not the exact conditional mean� is obtained as follows�
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where fxV is the Jacobian of the vehicle model with respect to the vehicle state� used
to linearise the state of the vehicle error �xv�k � ��� and fwv is the Jacobian of the
vehicle model with respect to the process noise�



����� Predict position of features w�r�t� the vehicle frame

For a vehicle using a range sensor returning range and angle w�r�t� the vehicle frame
the observation vector for a single feature will be zi�k� � �r ��T � the full feature vector
will be of the form�

z�k� �
�
z��k� z��k� � � � zn�k�

�T
���

The prediction for feature xi�k� will be�

�zi�k� �

� p
�xi�k�� � �yi�k��

tan����yi�k���xi�k�� � �v�k�

�
���

where �v��� is the orientation of the vehicle w�r�t� the world frame and �xi���� �yi��� are
respectively

�xi�k� � xi�k�� xv�k� ����

�yi�k� � yi�k�� yv�k� ����

The coordinates w�r�t� to the world frame of feature i and of the vehicle being
�xi�k� yi�k�� and �xv�k� yv�k�� respectively�

����� Find features w�r�t� the vehicle frame

Not all features will be observed by the vehicle at each iteration� Those which are
observed must be associated to the features in the stochastic map state vector x�k��
This is known as data association� Data association has been a subject of major
research� A good description of various methods can be found in ����� The sim�
plest method is the gated nearest neighbour approach� This method is performed
in innovation space and takes into account the uncertainty in both the sensor and
the stochastic map state� Each observed feature is associated to an already existing
feature if the following criteria is satis�ed�

�i
TSi

���i � 	 ����

where the innovation �i is de�ned as

�i � �zi�k�� zi�k� ����

with innovation covariance matrix Si and 	 is the threshold parameter obtained from
the 
� distribution�

If more than one observation meets this criteria� with respect to the same feature�
than the one with the lowest value� i�e� the most probable will be chosen� Once all
measurements have been associated the stochastic map can be corrected� Observa�
tions that are not associated to any objects will be added to the map as explained in
section ����
�



����� Correct the position of the vehicle and features w�r�t� the world

frame

The new set of measurements is used to update the state of the stochastic map and its
associated covariance� The algorithm maintains the correlations between the errors
of the vehicle and all the features� The state is updated according to the following
equation

�x�k � �� � �x�k� �K�k���k� ��	�

where K�k� is found to be

K�k� � P�k�HT �k�S���k� ��
�

The innovation matrix� S�k�� is de�ned as

S�k� � H�k�P�k�HT �k� �R�k� ��
�

whereH�k� is a matrix that stacks the Jacobians of the observed features and R�k� is
a stack matrix of the measurement error covariances� The stochastic map�s covariance
will be updated according to

P�k � �� � P�k��K�k�H�k�P�k� ����

����	 Add new features to the map in the world frame

Observations that were not associated to an existing feature will be added to the
stochastic map state and covariance� The new observation znew � �r ��T is estimated
with respect to the vehicle�s reference frame�

xn���k� �

�
xv�k� � r cos��� ��
yv�k� � r sin��� ��

�
����

The new map state and associated covariance will be

x�k��

�
x�k�

xn���k�

�
����

Pn��n���k� � LxvPv v�k�Lxv

T � LznewR�k�Lznew

T

Pn�� v�k� � Pv n��
T �k� � LxvPv v�k� ����

where Lxv and Lznew are the Jacobian of equation �� with respect to the robot vehicle
state �xv evaluated at �xv�k� and to the new observation znew evaluated at znew�

� Navigation

The system has been designed with RAUVER in mind� RAUVER is an ROV designed
by the Ocean Systems Laboratory as a testbed for algorithm development� The aim



is to develop a suitable algorithm which will than be easily integrated onto an existing
AUV framework� The motivation for using a mechanically scanned sonar lies in its
proven reliability� low cost and above all compact size and light weight� The Tritech
DFS forward looking sonar presents itself as a versatile option and has been integrated
into our framework� The obstacle avoidance algorithm will also be integrated in the
ARAMIS skid� ARAMIS is a European Commission Directorate General XII funded
project� This skid will be mounted onto ROMEO ����� supplied by CNR�IAN� and
VICTOR 
��� ����� supplied by IFREMER�

The operation of the system will now be described� Section ��� presents an overview�
and the following sections will look at each building block in closer detail�

��� Overview

The overview of the system can be seen Figure �� The data from the sonar is seg�
mented and the obstacles are fed into the stochastic map� the dead�reckoning sensors
are used to improve the accuracy of the map� The obstacle avoidance algorithm is
fed with a binary map where the regions that are occupied� and therefore must be
avoided� are represented as ones and the empty regions are represented as zeros� The
output from the obstacle avoidance algorithm is a path� this path is fed into the ve�
hicle controller� The vehicle controller will in turn feed the stochastic map with the
thrust values used at each iteration�

Dead-reckoning

Sensor Data Controller

Vehicle

Forward Looking

Sonar Input

Process &

Segment Data

Update Map &
Vehicle Position

Algorithm
Obstacle Avoidance

x�k � ��

zINS�k�

x�k � ��zsonar�k�

u�k� ��

Figure �� Overview of the System

��� Forward looking sonar input

The Tritech DFS has two possible operating frequencies� the chosen frequency for the
algorithm is ��
 kHz� Which is a good compromise between resolution and speed�
Typical working ranges will be �
 and a sector of size 
�o will be scanned�



��� Data processing and segmentation

As the TRITECH sonar has a ��o vertical beamwidth� in typical operation� � to 

meters above the seabed� the seabed is in its �eld of view� The returns from the
bottom should be removed to avoid high false alarm rates� In order to do that� the
�rst signi�cant returns are detected for each sonar beam and the bottom mean and
variance is estimated� This estimate is continuously updated using a sliding window�
If the parameters of the sonar are changed� the estimation is restarted from the �rst
next image� A threshold is then derived from the mean and variance of the bottom�
Meanbottom � � � V arbottom� The image is then segmented using this threshold� If an
object is in the part of the image where the bottom estimation is performed �close
to the object��� its e�ect will be minimal because of the sliding window used in the
bottom estimation� Once the image has been segmented the range and angle of the
obstacles w�r�t� to the vehicle is extracted and fed to the mapping and localisation
module� Knowledge of the obstacles predicted position can also be used to relax the
image processing constraints� as was done in �	��

��� Dead
reckoning sensor data

The sensor suite will mainly consist of o��the�shelf products� Some of these have not
been purchased at the time of writing� The sensors that have been purchased are�

� AOSI EZ�COMPASS��� Tilt compensated magnetometer compass

� muRata Piezoelectric vibrating gyroscope� Single axis gyroscope

Other sensors that will be included are�

� Depth pressure sensor

� Echosounder

� Two Flowmeters

� Shatf Encoders for the thrusters

The data from these sensors will be integrated and used to update the vehicle state
in the Stochastic map� The system will bene�t from better sensor technology� Inte�
gration of further sensors is made easy under the Kalman �lter structure�

��	 Updating map and vehicle position

The stochastic map� as explained in section ���� holds the state of the vehicle and
obstacles� The Laboratory is in the process of developing a dynamic model of RAU�
VER� this model will be integrated in the stochastic map� In the mean time a linear
model is used� This model has been found to work well and can be used with any
vehicle� The state of the vehicle takes the following form�

xv�k� �
�
x �x �x y �y �y � �� ��

�T
����

with the following dynamic model�

Fv�k� �

�
�Fvx�k� � �

� Fvy �k� �

� � Fv�
�k�

�

 ����



where

Fvx�k� � Fvy �k� � Fv�
�k�

�
�� T �

�T
�

� � T
� � �

�

 ����

Each obstacle has a state vector with states for its position and size�

xo�k� �
�
x y s

�T
��	�

The updating of the state is done according to the procedure outlined in section ����

��� Obstacle avoidance algorithm

All obstacles are stored in a global map referenced to a known starting position of
the vehicle or any georeferenced position� The �rst step of the obstacle avoidance
algorithm is to update the map of obstacles based on new data coming from the
sonar� Once the data has been segmented as described above� each beam position is
calculated using�

� The time when the beam was collected�

� The stored timestamped positions of the vehicle during data collection�

The two closest positions of the vehicle at the time the beam was collected are com�
puted and interpolated to give the best estimate of the real position when the beam
was emitted� The new data is then added to the global map� The new global map
can now be used for path planning� If the positioning system of the vehicle is not
accurate� the relative position between obstacles detected during di�erent sonar scans
will drift in time and eventually become meaningless� It is an option of the system
to clean the map of objects detected in previous scans� It is even possible to use only
the last scan when no positioning system is available�

The global map consist of a collection of points belonging to obstacles in the real
world reference frame� The workspace is then discretised using a given cell resolu�
tion� In each cell� the number of obstacles points is counted and if this number is
above a threshold �corresponding at a number of points per square meter�� the cell
is considered as a obstacle and creates a repulsive potential around it as explained in
section ����

The attractive map is added to the repulsive map and the algorithm described in
section ��� is applied to derive the path�

��� Vehicle controller

Once a path has been derived it is fed into the vehicle controller which in turn will
output the thruster values required to follow the desired path� These values� along
with RAUVER�s dynamic model� will be used in the future by the stochastic mapping
algorithm�



� Results

The obstacle avoidance system has been tested in the Oceans Systems Laboratory�s
tank� Figure � shows the true dimensions of the tank� The obstacle avoidance al�
gorithm starts operation� Figure �� and builds a local map of the environment� The
image on the right shows a grid where each element is a meter square in size� The
sonar is in the middle of the image� The goal is two meters to the left and three
meters forwards� The image in the left are the actual returns from the sonar� The
map is updated and the obstacles are found as the sonar moves� Figure 	� Figure 

shows the full map of the tank and the path which will be fed to the vehicle controller�

Figure 
 shows the output from the stochastic mapping� The sequence of sonar
scans� displayed on the top of the image� was generated using a forward�looking
sonar simulator ���� generated in Heriot�Watt as an extension to previous work which
created a realistic sidescan simulator ����� The bottom image shows the map as
it is being created� The sector of seabed observed by the sonar� the positions of
the features and the vehicle and the certainty �covariance� on these results are all
displayed� Figure � shows the outcome of the algorithm for an eighty meter mission�
The average position error for the vehicle in x is of ���
 meters� equivalent to ����
of the distance traveled� and the average position error for the vehicle in y is of ����
meters� equivalent to ���� of the distance traveled� To obtain these results the sonar
was aided by a compass simulation of the AOSI EZ�COMPASS���

	 Conclusions

The potential of the navigation algorithm has been demonstrated by the results�
The obstacle avoidance algorithm is a promising tool that will allow for a degree of
automatisation even in controlled ROV missions� The stochastic map o�ers accurate
position �xes of both the obstacles and the vehicle itself� These results should be
expected to improve as further sensors and a vehicle model are integrated in the
system� A limitation of the algorithm which needs to be addressed is the fact that
the maps grow without bounds� Future work will consider the structure of these maps
in closer detail�
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Figure �� Tank used for obstacle avoidance experiments

Figure �� First iteration of the obstacle avoidance algorithm

Figure 	� Obstacle has been found by the obstacle avoidance algorithm

Figure 
� Full map of the tank



Figure 
� Simulateneous mapping and localisation

Figure �� Estimated vs� true trajectory


