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1 Introduction

Many commercial systems exist for finding the absolute position of a submersible
vehicle, these include acoustic positioning systems; acoustic super short, short and
long baseline navigation. The two former methods are only suitable for local area
positioning, over relatively short distance, less than one nautical mile. Long baseline
provides positioning to within one to ten meters and covers an area of up to seven
nautical miles. The need for the submersible to be within an envelope covered by the
above mentioned systems makes them unsuitable for exploration of new terrain using
AUVs. Standard practice has been to achieve positioning by means of integrating the
inertial navigation readings with an absolute positioning measurement provided by
an acoustic positioning system which communicates with a surface vessel. The use
of such system involves a considerable cost. The development of an inexpensive and
yet reliable positioning system is therefore desirable, to achieve this goal one must
break the existing link between surface vessels and UVs. We propose a system that
builds a map of features in the environment, localises it-self with respect to these
features, and avoids obstacles. The system uses standard dead-reckoning sensors and
a mechanical forward looking sonar.

Our previous research [1, 2, 3, 4, 5] presented different approaches for tracking returns
from a forward looking sonar, for the purpose of classification and obstacle avoidance.
Our current research tracks the position of objects in the environment and that of the
vehicle itself, with respect to the world reference frame, to build an stochastic map [6]
and allow the vehicle to navigate in this map whilst avoiding obstacles. The returns
from the sonar are used to build images, standard image processing techniques are
used to segment these images and extract the position w.r.t. to the vehicle of possible
obstacles. These obstacles are used to create a local map of the environment that
will be used by the obstacle avoidance algorithm to plan a trajectory. They will also
be used to find an absolute position estimate of the vehicle which will be integrated
with the vehicle’s dead-reckoning sensors.



2 Principles

The following section will describe the theoretical principles used by the underlying
algorithms. The potential field approach used for avoiding obstacles has been widely
used in the field of robotics for obstacle avoidance and path planning [7, 8, 9, 10] and
will be briefly outlined in section 2.1. The following section 2.2 describes the theory
behind simultaneous localisation and mapping.

2.1 Artificial potential field

Obstacle avoidance can be broadly divided into two classes of techniques: global and
local. global methodologies rely on the description of the obstacles in the configuration
space of the vehicle [7] while local techniques generally uses artificial potential field or
related techniques [11]. Global techniques reduce the problem of planning the motion
for a manipulator or vehicle to a problem of planning the motion of points representing
the configuration of the vehicle/manipulator in the proper configuration space (which
takes into account all the constraints of the vehicle/manipulator). Therefore such
algorithm have two main steps. The first step consists in transforming the available
description of the obstacles in the real world (Cartesian coordinates) to a suitable
representation in the configuration space. The second step consists in determining the
free space of the configuration space and to search for the optimal path (with respect
to a given criterion, i.e. time to goal, energy minimisation,...). These algorithms
produce a collision free path if one exists. However, they are computationally intensive
and require a priori knowledge of the environment.

Local techniques rely on the use of artificial potential functions and provide a fast
and viable option to global techniques, especially for real-time applications and for
applications where the environment can change rapidly or is only partially known.
In local techniques, the obstacles are represented by a repulsive potential while the
goal point is represented by an attractive potential. The super-imposition of the two
potential provides the desired workspace energy topology. For any starting point in
the modeled workspace it is possible to follow a path decreasing the potential and
reaching the goal. However, the workspace created can present local minima and a
robust algorithm should be able to escape local minima while still avoiding obstacles.
In order to do that the navigation function as described in [8] is used.

2.1.1 The potential model

The potential model is generated in two stages. The first stage consists in defining
the attractive well which draws the robot towards the goal point. The next stage is
the definition of the repulsive field, which pushes the robot away from the obstacles.
The potential field is represented as a discrete approximation of the analog field. This
approximation is not a limitation as the data representing the objects is in general
discrete and the discretisation process can be tailored to match the resolution needed
by a given application.

The attractive field should have only one minimum point, the goal. A standard way



of defining it is to use a parabolic well defined as:
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where ¢ is a point of the workspace and n a scaling factor.

Uatt(Q) =

The force applied to the robot at any point ¢ of the space driving it towards the goal
is therefore:

Fatt(Q) = —U(q - ngal) (2)

This form of potential has some useful properties as the force derived from it converges
linearly to zero. Hence, the robot can be made to decelerate smoothly as it approaches
the goal point.

The repulsive potential is defined as:

Uren(q) = {

where 1 is a positive scaling factor and p(¢) is the smallest distance between the
configuration ¢ and any obstacle. pg is a positive constant defining the distance of
influence of the obstacle. It can be seen that the force exerted by the obstacle is
zero when the robot configuration lies outside the distance of influence and tends to
infinity as the robot approaches the obstacle preventing any collisions.
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2.1.2 Planning algorithm

The classical technique uses standard gradient descent. Starting from the current
robot configuration, the neighbour with the smallest potential amongst the ones hav-
ing a smaller potential than the current configuration is selected. The process is
iterated until the goal is reached or no neighbour can be selected. In the latter case,
the current configuration is a local minimum.

In order to avoid the local minimum problem, we use a tree searching algorithm which
is complete. It is guaranteed to find a path in the free space if one exists. Again it
operates by examining the neighbours of the current configuration with the following
assumptions:

o A path between adjacent configurations lies in the free space.
e The configuration space lies in a bounded rectangular area.

A tree T of possible paths is built with the starting configuration ¢;,;; as the root of
the tree. At every iteration, the leaf of T' with the lowest potential is selected. The
neighbours of that configuration whose potential are less than a given threshold (high
in general but less than inside any object) and which are not already in the tree are
selected. They are installed in the tree as successors of the current leaf. The algorithm
terminates when ¢4, has been reached or any attainable configuration from ¢;,;; has
been installed in the tree. If g4, has been found, a path can be tracked back from
Ggoal t0 Qinie. Effectively it is the same as following the gradient descent technique
until a local minimum has been found, in which case the algorithm acts by filling the
well of the local minimum until a saddle point is found.



2.2 Simultaneous localisation and mapping

The first consistent solution to the simultaneous localisation and mapping problem
was put forward by Smith et al [6]. The research presented by Smith et al has been
extensively used by other researches, leading to exciting new developments [12, 13,
14, 15]. In [16] a thorough explanation on the underlying fundamentals is given. The
algorithm is an augmentation on the extended Kalman filter [17, 18]. The filter now
holds the relevant states of the vehicle and that of the features used in the mapping
and localisation process. The new state vector x(-) assumes the following form,

x(k) = [xy(k) xa(k) x2(k) ... xa(k)]" (4)

where x, (k) holds the state of the vehicle and x5 (k), x2(k),...,xn(k) hold the states
of the n features. The estimated error covariance (approximated mean-square error)
for this system,

Pov(k) Pyi(k) Pya(k) ... Pyn(k)
Piv(k) Ppi(k) Piz(k) ... Pin(k)

P(k) = Poy(k) Pai(k) Paa(k) ... Pay(k) (5)
_Pn;(k) Pn;(k) Pn;(k) Pn;(k)_

where the sub-matrices Py (k), Pyi(k) and P;;(k) are the vehicle-to-vehicle, vehicle-
to-feature and feature-to-feature covariances respectively.

The different steps followed by the algorithm are now summarised:

2.2.1 Propagate the vehicle state

Stochastic mapping assumes fixed features and the resulting state propagation will
become,

)A(v(k) = fv[f(v(k - 1)7u(k)707 k] (6)

where Xy(-) is the vehicle’s state and fy[Xy(-),u(k),0, k] is the vehicle’s dynamic
model. Its associated covariance, strictly speaking the approximated mean-square
error as X(k) is not the exact conditional mean, is obtained as follows,

fo Pyy(k)f,” £ Pyi(k) ... £, Pyulk) fo,Q(k)fw,” 0 ... 0O
P, (k). T P.i(k) ... Py.lk 0 0 ... 0
p(y— | T e Pl : o
Pov(B)fe,”  Pui(k) ... Pua(k) 0 0 ... 0

where fy,, is the Jacobian of the vehicle model with respect to the vehicle state, used
to linearise the state of the vehicle error Xy(k — 1), and fy, is the Jacobian of the
vehicle model with respect to the process noise.



2.2.2 Predict position of features w.r.t. the vehicle frame

For a vehicle using a range sensor returning range and angle w.r.t. the vehicle frame
the observation vector for a single feature will be z; (k) = [r 0]7, the full feature vector
will be of the form,

a(k) = [21(k) za(k) ... za(k)] (8)

The prediction for feature x;(k) will be,
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where ¢,(+) is the orientation of the vehicle w.r.t. the world frame and z;(-), y;(-) are

respectively

zi(k) = 2i(k) — o (k) (10)

yi(k) = yi(k) — yo (k) (11)

The coordinates w.r.t. to the world frame of feature : and of the vehicle being

[2:(k) yi(k)] and [z,(k) y.(k)] respectively.
2.2.3 Find features w.r.t. the vehicle frame

Not all features will be observed by the vehicle at each iteration. Those which are
observed must be associated to the features in the stochastic map state vector x(k).
This is known as data association. Data association has been a subject of major
research. A good description of various methods can be found in [18]. The sim-
plest method is the gated nearest neighbour approach. This method is performed
in innovation space and takes into account the uncertainty in both the sensor and
the stochastic map state. Each observed feature is associated to an already existing
feature if the following criteria is satisfied,

vl 8 My <y (12)
where the innovation v; is defined as
Vi = il(k) — Zi(k) (13)

with innovation covariance matrix S; and ~ is the threshold parameter obtained from
the y? distribution.

If more than one observation meets this criteria, with respect to the same feature,
than the one with the lowest value, i.e. the most probable will be chosen. Once all
measurements have been associated the stochastic map can be corrected. Observa-
tions that are not associated to any objects will be added to the map as explained in
section 2.2.5.



2.2.4 Correct the position of the vehicle and features w.r.t. the world
frame

The new set of measurements is used to update the state of the stochastic map and its
associated covariance. The algorithm maintains the correlations between the errors
of the vehicle and all the features. The state is updated according to the following
equation

X(k+1) = %(k) + K(k)v(k) (14)
where K (k) is found to be
K(k) = P(k)H"(k)S™! (k) (15)
The innovation matrix, S(k), is defined as
S(k) = H(k)P(E)H" (k) + R(k) (16)

where H(k) is a matrix that stacks the Jacobians of the observed features and R(k) is
a stack matrix of the measurement error covariances. The stochastic map’s covariance
will be updated according to

P(k + 1) = P(k) — K(k)H(k)P(k) (17)

2.2.5 Add new features to the map in the world frame

Observations that were not associated to an existing feature will be added to the
stochastic map state and covariance. The new observation zyew = [r (9]T is estimated
with respect to the vehicle’s reference frame,

_ao(k) +rcos(¢+0)
Xapa(k) = [yv(k) +rsin(é+ 0) (18)
The new map state and associated covariance will be
x(k)
k) + 19
) [ 0] (19)
Putinti(k) = Ly, Pyo(k)Ly,” + L, R(k)L,,.."
Pn-l—l v(k) = Pv n-I—lT(k) = vava(k) (20)

where Ly, and L, are the Jacobian of equation 18 with respect to the robot vehicle
state Xy evaluated at X(k) and to the new observation zyew evaluated at Zpew.

3 Navigation

The system has been designed with RAUVER in mind. RAUVER is an ROV designed
by the Ocean Systems Laboratory as a testbed for algorithm development. The aim



is to develop a suitable algorithm which will than be easily integrated onto an existing
AUV framework. The motivation for using a mechanically scanned sonar lies in its
proven reliability, low cost and above all compact size and light weight. The Tritech
DF'S forward looking sonar presents itself as a versatile option and has been integrated
into our framework. The obstacle avoidance algorithm will also be integrated in the
ARAMIS skid. ARAMIS is a Furopean Commission Directorate General XII funded
project. This skid will be mounted onto ROMEO [19], supplied by CNR-IAN, and
VICTOR 6000 [20], supplied by IFREMER.

The operation of the system will now be described. Section 3.1 presents an overview,
and the following sections will look at each building block in closer detail.

3.1 Overview

The overview of the system can be seen Figure 1. The data from the sonar is seg-
mented and the obstacles are fed into the stochastic map, the dead-reckoning sensors
are used to improve the accuracy of the map. The obstacle avoidance algorithm is
fed with a binary map where the regions that are occupied, and therefore must be
avoided, are represented as ones and the empty regions are represented as zeros. The
output from the obstacle avoidance algorithm is a path, this path is fed into the ve-
hicle controller. The vehicle controller will in turn feed the stochastic map with the
thrust values used at each iteration.
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;\
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Dead-reckoning Update Map & Vehicle
Sensor Data ) zins (k) Vehicle Position u(k+1) Controller
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Obstacle Avoidanc
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Figure 1: Overview of the System

3.2 Forward looking sonar input

The Tritech DFS has two possible operating frequencies, the chosen frequency for the
algorithm is 325 kHz. Which is a good compromise between resolution and speed.
Typical working ranges will be 25 and a sector of size 60° will be scanned.



3.3 Data processing and segmentation

As the TRITECH sonar has a 30° vertical beamwidth, in typical operation, 1 to 5
meters above the seabed, the seabed is in its field of view. The returns from the
bottom should be removed to avoid high false alarm rates. In order to do that, the
first significant returns are detected for each sonar beam and the bottom mean and
variance is estimated. This estimate is continuously updated using a sliding window.
If the parameters of the sonar are changed, the estimation is restarted from the first
next image. A threshold is then derived from the mean and variance of the bottom,
Meanpotiom + 2 * Varytom. The image is then segmented using this threshold. If an
object is in the part of the image where the bottom estimation is performed (close
to the object)?, its effect will be minimal because of the sliding window used in the
bottom estimation. Once the image has been segmented the range and angle of the
obstacles w.r.t. to the vehicle is extracted and fed to the mapping and localisation
module. Knowledge of the obstacles predicted position can also be used to relax the
image processing constraints, as was done in [4].

3.4 Dead-reckoning sensor data

The sensor suite will mainly consist of off-the-shelf products. Some of these have not
been purchased at the time of writing. The sensors that have been purchased are,

o AOSI EZ-COMPAGSS-3: Tilt compensated magnetometer compass

e muRata Piezoelectric vibrating gyroscope: Single axis gyroscope
Other sensors that will be included are,

e Depth pressure sensor

e Echosounder

o Two Flowmeters

e Shatf Encoders for the thrusters

The data from these sensors will be integrated and used to update the vehicle state
in the Stochastic map. The system will benefit from better sensor technology. Inte-
gration of further sensors is made easy under the Kalman filter structure.

3.5 Updating map and vehicle position

The stochastic map, as explained in section 2.2, holds the state of the vehicle and
obstacles. The Laboratory is in the process of developing a dynamic model of RAU-
VER, this model will be integrated in the stochastic map. In the mean time a linear
model is used. This model has been found to work well and can be used with any
vehicle. The state of the vehicle takes the following form,

xolb)=[x & & y 5§ ¢ ¢ ¢ (21)

with the following dynamic model,

F. (k) 0 0
Fo(k)=| 0 F, (k) 0 (22)
0 0 Fu,(k)



where
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Each obstacle has a state vector with states for its position and size,

xolk) =[x y s]" (24)

The updating of the state is done according to the procedure outlined in section 2.2.

3.6 Obstacle avoidance algorithm

All obstacles are stored in a global map referenced to a known starting position of
the vehicle or any georeferenced position. The first step of the obstacle avoidance
algorithm is to update the map of obstacles based on new data coming from the
sonar. Once the data has been segmented as described above, each beam position is
calculated using:

e The time when the beam was collected.
e The stored timestamped positions of the vehicle during data collection.

The two closest positions of the vehicle at the time the beam was collected are com-
puted and interpolated to give the best estimate of the real position when the beam
was emitted. The new data is then added to the global map. The new global map
can now be used for path planning. If the positioning system of the vehicle is not
accurate, the relative position between obstacles detected during different sonar scans
will drift in time and eventually become meaningless. It is an option of the system
to clean the map of objects detected in previous scans. It is even possible to use only
the last scan when no positioning system is available.

The global map consist of a collection of points belonging to obstacles in the real
world reference frame. The workspace is then discretised using a given cell resolu-
tion. In each cell, the number of obstacles points is counted and if this number is
above a threshold (corresponding at a number of points per square meter), the cell
is considered as a obstacle and creates a repulsive potential around it as explained in
section 2.1.

The attractive map is added to the repulsive map and the algorithm described in
section 2.1 is applied to derive the path.

3.7 Vehicle controller

Once a path has been derived it is fed into the vehicle controller which in turn will
output the thruster values required to follow the desired path. These values, along
with RAUVER’s dynamic model, will be used in the future by the stochastic mapping
algorithm.



4 Results

The obstacle avoidance system has been tested in the Oceans Systems Laboratory’s
tank. Figure 2 shows the true dimensions of the tank. The obstacle avoidance al-
gorithm starts operation, Figure 3, and builds a local map of the environment. The
image on the right shows a grid where each element is a meter square in size. The
sonar is in the middle of the image. The goal is two meters to the left and three
meters forwards. The image in the left are the actual returns from the sonar. The
map is updated and the obstacles are found as the sonar moves, Figure 4. Figure 5
shows the full map of the tank and the path which will be fed to the vehicle controller.

Figure 6 shows the output from the stochastic mapping. The sequence of sonar
scans, displayed on the top of the image, was generated using a forward-looking
sonar simulator [21] generated in Heriot-Watt as an extension to previous work which
created a realistic sidescan simulator [22]. The bottom image shows the map as
it is being created. The sector of seabed observed by the sonar, the positions of
the features and the vehicle and the certainty (covariance) on these results are all
displayed. Figure 7 shows the outcome of the algorithm for an eighty meter mission.
The average position error for the vehicle in x is of 0.16 meters, equivalent to 0.2%
of the distance traveled, and the average position error for the vehicle in y is of 0.08
meters, equivalent to 0.1% of the distance traveled. To obtain these results the sonar

was aided by a compass simulation of the AOSI EZ-COMPASS-3.

5 Conclusions

The potential of the navigation algorithm has been demonstrated by the results.
The obstacle avoidance algorithm is a promising tool that will allow for a degree of
automatisation even in controlled ROV missions. The stochastic map offers accurate
position fixes of both the obstacles and the vehicle itself. These results should be
expected to improve as further sensors and a vehicle model are integrated in the
system. A limitation of the algorithm which needs to be addressed is the fact that
the maps grow without bounds. Future work will consider the structure of these maps
in closer detail.
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Figure 2: Tank used for obstacle avoidance experiments

Figure 3: First iteration of the obstacle avoidance algorithm

Figure 4: Obstacle has been found by the obstacle avoidance algorithm

Figure 5: Full map of the tank



Figure 6: Simulateneous mapping and localisation

Figure 7: Estimated vs. true trajectory



