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Abstract— This paper describes a new obstacle avoid-
ance and path planning system for underwater vehicles
based on a multi-beam forward looking sonar sensor. The
real-time data flow (acoustic images) at the input of the
system is first processed (segmentation and feature ex-
traction) to create a representation of the workspace of
the vehicle. This representation uses constructive solid
geometry (CSG) to create a convex set of obstacles defin-
ing the workspace. We also take advantage of the real-
time data stream to track the obstacles in the subsequent
frames to obtain their dynamic characteristics. This will
also allow us to optimise the preprocessing phases in seg-
menting only the relevant part of the images as well as to
take into account obstacles which are no longer in the field
of view of the sonar in the path planning phase. A well
proven nonlinear search (sequential quadratic program-
ming) is then employed, where obstacles are expressed
as constraints in the search space. This approach is less
affected by local minima than classical methods using po-
tential fields. The proposed system is not only capable
of obstacle avoidance but also of path planning in com-
plex environments which include fast moving obstacles.
Preliminary results obtained on real data are shown and
discussed.
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I. Introduction

We address here the general path planning and obsta-
cle avoidance problem for an underwater vehicle using
high resolution real-time sonar sensory data.

Although related problems such as 2D map build-
ing, environment modeling [1], [2] and motion estima-
tion could be tackled in the framework of the presented
system, we will focus on obstacle avoidance.

Until recently, most obstacle avoidance systems used
low resolution or low frame rate sonar sensors yielding in-
accurate estimations of the obstacles positions and move-
ment. These systems were suitable for reactive obstacle
avoidance ('reflex behaviour’) but not for real path plan-
ning in a complex and changing environment.

With the recent development of reliable high resolu-
tion multi-beam sonars, a new range of methods have
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emerged which allow for a more detailed description of
the environment and has broaden the spectrum of tech-
niques that can be used [3], [4], [5], [6], [7]-

A. Target application

Our aim is to develop an obstacle avoidance system
for the ARAMIS (Advanced ROV Package for Automatic
Mobile Investigation of Sediments) tool-skid, where ROV
stands for Remotely Operated Vehicles. ~ARAMIS
(MAST-CT97-0083) provides a geological/scientific tool-
skid which will be mourted on two different ROVs,
VICTOR from IFREMER (France) and ROMEO from
CNR-IAN (Italy), operating at a close distance from the
seabed (2 meters) at depths ranging from 50 meters to
2000 meters. The cruising speed for both ROVs is around
1 knot and the movements of the ROVs are measured by
several on-board sensors feeding the obstacle avoidance
system with position, speed and orientation of the vehi-
cle in world coordinates.

B. Obstacle avoidance system overview

The system we are currently designing (see figure 1)
is modular in nature. Each module performs a distinct
function :

B.1 Segmentation:

Considering the very nature of multi-beam sonar im-
ages, we have decided to discard the certainty grid ap-
proach [8] often used in air ultrasonic sensor based mo-
tion planning and to focus on an object oriented descrip-
tion of the workspace.

B.2 Feature extraction:

Once the image has been segmented, the visible obsta-
cles with their main features (position, moments, area,
...) are identified. These features will be used later to
discard false alarms and track the obstacles and the ve-
hicle.

1194



B.3 Tracking:

This is one of the most important part of the system
as it provides a dynamic model of the obstacles. More-
over, considering the amount of data to be processed, the
tracking drives the segmentation and reduce the compu-
tational cost. It also enables us to create a world coordi-
nates map of the obstacles surrounding the ROV includ-
ing those that are no longer in the field of view of the
sonar.

B.4 ROV dynamic modeling:

We have a dynamic and kinematic model of Angus 002,
an ROV developed in Heriot-Watt University [9]. This
model takes into account any type of sea current. It will
be used until we have a model of the ROVs used in the
project. In any case, the Angus model gives a realistic
description of the behaviour of a typical ROV.

B.5 Workspace representation:

From the extracted obstacles and features of the cur-
rent image, we can build an intra-frame workspace
(frozen in time). Combining this intra-frame workspace
with previous instances of intra-frame workspaces, a new
dynamic workspace is built and constantly updated. It
forms the basis for the path planning algorithm.

B.6 Path planning;:

A nonlinear programming technique based on a con-
structive solid geometry representation of the obstacles
is used for the path planning. Each obstacle in the
workspace is represented as a constraint that has to be
met in the search space (path not crossing the obsta-
cle) while optimizing the Euclidean distance to the goal.
This approach is based on our previous work [5], [6].

Each module will now be detailed and its main char-
acteristics explained. Results will be presented for each
module and the general path planner will be demon-
strated in section V on real data.

II. Segmentation

Multi-beam sonar images are generally noisy and need

to be filtered. A common segmentation procedure con-
sists of median filtering followed by thresholding. The
filtering part is generally very time-consuming. We have
tried several techniques and found out that a good com-
promise between quality and speed was reached using
the following scheme:
« Filtering: The filter used to remove the backscatter
noise is a 7 x 7 mean filter which yields results almost as
good as the median filter even on noisy images but at a
reduced computational cost [10].
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Fig. 1: Principle of sonar based real time path planning.

o Threshold : A single fixed threshold generally gives
results which are highly dependent on the background
level. We have used an adaptive thresholding technique
based on the image histogram which is independent of
the actual signal level. The idea is to estimate the noise
probability density function assuming that the histogram
of the studied image is a good estimate of it (thus as-
suming that obstacles are small in the image). The false
alarm rate (FAR) is then fixed and used in conjunction
with the histogram to derive the threshold value. Special
cases where the images are mainly composed of obstacles
(with high returns) or with a lot of backscatter noise
from the seabed can easily be detected as they show a
high variance. The process can then be adapted to these
special cases. Although not as good as a real adaptive
filter where the threshold value is locally derived with
respect to the surrounding pixels, this techniqlie gives
results which match the real-time constraints. In the fu-
ture, this scheme will be used on a subsampled image to
detect potential obstacles in the scene while the track-
ing will allow the use of more elaborate techniques on
selected parts of the scene.

Two examples of the same segmentation process on a
clear and a noisy images are given in figure 2. It should
be noted that no tuning parameter is needed and that
the process is fully automatic.

ITI. Feature extraction and Tracking

Once segmented, the different regions representing the
obstacles in the image are labeled using a standard label-
ing algorithm, and the major features of each obstacle are
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Fig. 2: Segmentation of multi-beam high-resolution sonar
images containing pier legs and a diver with a clear
image (top) and a noisy image (bottom). Scans were
obtained from a Seabat 6012 from Reson.

extracted (area, perimeter, moments). In order to track
the obstacles in a sequence of images, the first step is to
associate the new observations (obstacles) of the image
under study with the tracks of the previously identified
obstacles. This is known as the data association phase.
We employ a nearest neighbour algorithm to associate
the predicted position of the tracked obstacles with the
new observations. Three cases are then possible :

- There is a new observation matching the predicted posi-
tion. A Kalman filter is then applied, a new state vector
derived and new internal values computed.

- No new observation matches the prediction. The ob-
stacle prediction is then updated using the Kalman filter
internal values which are not updated. If no match is
found between the observations and a given tracked ob-
stacle on a predefined number of frames, the obstacle is
discarded as a false alarm.

- An observation is not associated to any prediction, a
new obstacle is created and its corresponding Kalman
filter initialized.

This scheme has been successfully tested on simulated
data but not yet on real segmented data. This will be
done in the near future. For real data, the extracted fea-
tures will be used as a consistency test in the data asso-
ciation algorithm. Obstacles will also be merged if they
appear to be the result of several returns from the same
obstacle, a very common situation with moving obsta-
cles when using multi-beam sonars(see figure 2(b)). We
are currently developing and testing standard Kalman
filter and extended Kalman filters for tracking realistic
underwater targets. More details on tracking and data
association schemes can be found in [11].

IV. Workspace representation and path
planning

The choice of a workspace representation is intimately
linked with the path planning technique which will be
applied. Most path planning algorithms assume a con-
vex representation of the obstacles to ensure that the
goal will be reached. When dealing with a changing en-
vironment which is sensed on the fly, it is better to use a
reactive path planning technique which does not need a
complete description of the workspace from the current
position to the goal for:

- Only partial information is available (due to the limi-
tations of the sensor).

- New obstacles can appear in the workspace at any time.
- The precision in the representation of the obstacles will
change with their respective distance to the vehicle.
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Global path planning techniques need a complete de-
scription of the workspace as they define the complete
path from the start to the goal while local path plan-
ning ones define a partial path towards the goal given a
possibly incomplete representation of the neighbouring
workspace. Global path planning is therefore not advis-

able here as the enviroment is sensed while moving and -

therefore the Workspace is continuously changing.

‘We have chosen to use a local path planning technique
based on some of our previous work [5], [6] where only
the next step of the path leading towards the goal is cal-
culated. The central idea of the method is to represent
the free space of the workspace as a set of inequality con-
straints of a nonlinear programming problem. The goal
point is designed as a unique global minimum of the ob-
jective function. The initial configuration of the vehicle
is treated as the starting point of the nonlinear search.
Constructive Solid Geometry (CSG) is used to represent
the free space of the robot as a set of inequalities.

A. Workspace representation using CSG

In the following, we operate in the configuration space
of the vehicle. It means that in this space, which inte-
grates both the kinematics and the link geometry of the
vehicle, the vehicle can be represented as a point.

The choice of CSG to represent obstacles is driven by
the fact that classical surfaces such as spheres, cylinders,
and half-spaces are CSG primitives that can be very eas-
ily combined.

Each obstacle in the workspace is given a mathemati-
cal representation. Let S be the 2D or 3D surface of an
Euclidean space E representing the obstacle, and let’s
denote its interior points by I, its boundary points by B
and its exterior points by T in a topological sense:

ITUBUT=E

1
INB=BNT=INnT=190 (1)

The non-negative function f on E is called a defining
function (in the CSG sense) of the obstacle S if:

Vpel, 0< f(p)<1,
VpeB, f(p)=1, (2)
VpeT, f(p)>1.

As an example, the defining function of an ellipse when
E=Ris:

Vpe R, f(p)=(z/a)’+ (y/b)? ®3)

where a and b are the half-axes of the ellipse and p is the
point of coordinates (z,y) in the plan.

One of the major interest of CSG lies in the fact that
complex objects can easily be constructed from simple

canonical objects using the union and intersection oper-
ations:

VPG E; fj(p) :maz(fl(p)‘wf2(p)>'-~afn(p)) (4)

defines the intersection of n objects whose respective
defining functions are fi, fo, ..., fn While

VpeE, fUp)=min(fi(p),a®),.falp) (5

defines the union of the same objects. These functions
are difficult to obtain in practice and are replaced by the
following approximation:

=l + g+ +fm= (6)

approximates the intersection of n objects whose respec-
tive defining functions are fy, fa, ..., fr while

U=+ ™ M (7)

approximates the union of the same objects. m is any
positive real number. m can be used to control the ac-
curacy of the smooth approximation and can be used to
obtain convex unions and intersections [5].

Here, for the sake of simplicity and without loss of gen-
erality, we have decided to represent the obstacles as el-
lipses. More general representation are possible, includ-
ing polygonal ones [6]. From the real obstacles contours,
their convex hull is extracted and an optimal elliptic fit-
ting algorithm is applied to obtain the representation of

a given obstacle.

B. Path planning algorithm

All obstacles O; (i € [1,n]) of the workspace are de-
fined as ellipses whose defining functions g; in a 2D Eu-
clidean space are defined in equation 3. The free space
of the vehicle with respect to obstacle O; is defined as:

{peE | 1-gp) <0} (®)

Therefore the complete free space of the vehicle can be
represented as: '

{peE | Vie[l,n], 1-gp) <0} 9)

Let’s now define the objective function f representing
the practical problem to be solved, in our case, the min-
imum distance from the start to the goal point in the
configuration space as:

VpeE, f(p)=(p—pg)(p— Py (10)

where p, designs the goal point and t is the transpose
operation.

We now have completely defined our path planning
problem:
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Optimize f under the constraints g;, ¢ € [1,n].

This is a classical problem in optimisation. As in the gen-
eral case the defining functions are nonlinear, we use well-
proven numerical nonlinear programming techniques to
solve the path planning problem. This approach gen-
erates very smooth paths compatible with feasible vehi-
cle motion. The effect of each constraint can be clearly
seen while it is often hidden in a single objective func-
tion in other optimisation techniques such as potential
fields where the careless definition of the potential func-
tions can easily lead to local minima. Finally the CSG
modeling of the obstacles offers a lot of flexibility in the
representation of the workspace.

V. Results

Although the tracking has been tested on simulated
data, it has not been implemented yet in the general sys-
tem. We have tested the combination of the segmenta-
tion, the feature extraction and the path planning mod-
ules on real sequences of sonar data. In order to test the
algorithm, we used sequences composed of pier legs and
a moving diver taken from a still sonar and we have sim-
ulated the movement of a “blind” ROV, driven according
to the data received from the sonar. This does not alter
the validity of the approach as the tracking module will
enable the creation (and update) of a dynamic map of
the environment in real world coordinates.

An animated MPEG version of the results displayed
in figures 3 and 4 can be found on our Web page at:
http://www.cee.hw.ac.uk/«aramis/resources/.

The goal is set in so that the generated path crosses
the path of the moving diver. On figures 3 and 4, the
left image is the original image while the right image
is the segmented image showing the identified obstacles.
On the segmented images, the obstacles contour are dis-
played in cyan while their elliptic representation is dis-
played in red. The planned path is also drawn on both
sequences of images (in yellow).

In order to achieve faster processing time, the original
images (300 x 700 pixels) were subsampled by a factor of
4 in both directions. Using Matlab 5.2 on a Sun Ultra-10,
the whole process (segmentation, workspace representa-
tion and path planning) takes 3.8 seconds per frame.
Considering a frame rate of a few images per seconds
and using optimised code, a real-time system is certainly
achievable using the framework we present here.

V1. Conclusion

We have presented here a general framework for per-
forming 2D and 3D obstacle avoidance and path plan-
ning for underwater vehicles based on a multi-beam for-
ward looking sonar sensor.

The ability of the system has been demonstrated on
real sonar data. The sequence used is very noisy, thus
corresponding to realistic situations, and the system still
performs very well. Compared to other methods, our
system generates very smooth paths, can handle complex
and changing workspaces and presents no local minima
as we use a convex representation for the obstacles.

Future work will include the tracking module as well
as the dynamic models of the ROVs ROMEO and VIC-
TOR. Each module will then be optimised with respect
to the missions that will have to be handled.
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Fig. 3: Example of path planning on a sequence of real Fig. 4: Same example with the segmented images and
images containing the diver (in the centre) and several their associated elliptic representations. The bound-
pier legs. The blue cross represents the goal. aries of the segmented objects are represented in cyan
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