Texture Analysis for Seabed Classification:

Co-occurrence Matrices vs Self-Organizing Maps

N. Pican, E. Trucco, M. Ross,
D. M. Lane, Y. Petillot and I. Tena Ruiz

Ocean Systems Laboratory
Department of Computing and Electrical Engineering
Heriot-Watt University
Riccarton, Edinburgh, EH14 4AS, UK

Abstract— This paper considers two well-known pattern
recognition techniques using texture analysis. The first is
the co-occurrence matrix method which relies on statistics
and the second is the Kohonen Map which comes from the
artificial neural networks domain. Both methods are used
as feature extraction methods. The extracted feature vec-
tors are fed to a second Kohonen map used as classifier.
‘We report briefly some results of our experimental as-
sessment of the merit of each technique when applied to
the problem of classifying seabed from sequences of real
images.

I. INTRODUCTION

This paper addresses the unsupervised classification of
real, underwater imagery using co-operative texture and
colour analysis. The applicative context is the automatic
detection of objects of interest in sequences of colour im-
ages of the seabed, acquired by a Remotely Operated Ve-
hicle (ROV) during scientific missions at depths between
some hundreds and some thousands meters. The target
objects are mainly organisms and plants lying on or at-
tached to the seabed (as opposed to floating or swimming
in the water column), for instance rocks, plants, molluscs
or particular sediment types.

The classification problem at hand is very difficult for
several reasons. First, imaging conditions like illumi-
nation and magnification undergo continuous (if slow)
change. Second, several noise sources contribute to de-
crease image quality, including floating particles, distur-
bances during transmission of the video signal to the
surface, and digitisation. Third, instances of the target
objects may occur in very different shapes and sizes.

For these reasons, our basic design choices were (1)
to employ a self-organising architecture to discover rel-
evant classes automatically, and (2) to combine sev-
eral features to characterise object classes. The self-
organising architecture adopted is the Kohonen self-
organising map (SOM), which we train using a large
database of real, subsea video. We compared our method
with another well-known texture analysis technique, the
it Co-Occurrence Matrices (COMs).

After a brief overview of both techniques we report
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and evaluate results obtained with our implementations,
applied to the classification of various textures in real
seabed images.

II. TECHNICAL OVERVIEW

One of the aims of pattern classification techniques
is to classify a pattern using its texture characteristics.
Thus the problem is to extract textural features that
give the greatest information pertaining to each tex-
ture. Several well-known techniques exist in this field,
e.g., Markov Random Fields, co-occurence matrices, self-
organizing maps, fractal components and 2-dimensional
FFT [7]. The choice of a suitable method depends on
the constraints of the application in terms of nature of
the textures and processing time.

The main idea of COMs [4], [3] is to characterise im-
age textures by a set of statistics for the occurences of
each gray level at different pixels and along different di-
rections. The term feature is used, in texture classifi-
cation, to describe a set of statistics extracted from a
co-occurence matrix, characterising the texture. For in-
stance, energy, entropy and contrast can all be used as
features. .

Artificial Neural Networks used in combination with
unsupervised training algorithms have proven capable to
extract automatically the most relevant features from a
set of data in several applications. We apply them here
to the automatic characterisation of image textures. The
SOM algorithm is typical for this task.

A. CO-OCCURRENCE MATRICES

The grey level COM technique [4], [3] sketched in this
section is based on the repeated occirrence of some grey
level configuration in the texture. Let f: Lz x Ly — T
be an image, with dimensions Lz = 1,2,...,n, and
Ly = 1,2,...,ny, and grey levels G = 0,1,...,m — 1.
Let d be the distance between two pixel positions (z1,41)
and (z2,y2). The immediate neighbours of any pixel can
lie on four possible directions: § = 0°, 45°, 90° and
135°, as indicated in Figure 1. The COM is constructed
by observing pairs of image cells distance d from each
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other and incrementing the matrix position correspond-
ing to the grey level of both cells. This allows us to
derive four matrices for each given distance: P(0°,d),
P(45°,d), P(90°,d), P(135°,d).

For instance, P(0°,d) is defined as follows:

P(0°,d) = {po(i,j);i € [0,m[, j € [0,m[}

where each po(7,j) value is the number of time when:
flxr,y1) =1, f(z2,92) = J, [21 22| = dand y1 = y, ap-
pend simultaneously in the image. P(45°,d), P(90°,d),
P(135°,d) are defined similarly.
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Fig. 1:

The matrices are normalised and features derived from
them. Many features can be derived directly; an experi-
mental investigation pointed us to a set of 5 most relevant
features, listed below.
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where p, pty are the means and o, 0, the standard de-
viations of p; and py.

Variance:
=2 Z i-
Inverse Difference Moment:

s =

Finally, the four values that one feature takes on in
the four directions shown in Figure 1 are averaged to
produce a rotation-invariant feature that we use.

w)?p(i, 5) 4)

In this paper we are concerned with colour images
of the seabed, and for this reason we extended the
COM technique to consider the three colour planes
(red,green,blue) individually, in order to provide the ad-
ditional colour information. As three distances d =
{1, 3,5} are used, the final feature vector, 3, has 45 com-
ponents: 3 distances x 3 colours x 5 averaged features.

Colour analysis [1], [8] has been rather neglected in
ROV applications, probably because, in practice, non-
blue components are lost for distances greater than a few
meters. Work exists on unsupervised systems for tex-
ture segmentation (e.g., [5]) and on unsupervised colour-
texture combination [2], but we are not aware of colour-
texture classifiers for unstructured subsea objects.

B. SELF-ORGANIZING MAPS

The Kohonen SOM [6] is frequently used to determine
the distribution of n-dimensional data, and map them
onto a lower-dimensional space (say m-dimensional,
with, commonly, m < n and m = 1,2 or 3).

3x10 output map
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Fig. 2: SOM architecture, with 3 input vector and a 3 x 10 output
grid. Layers are fully connected, though only the connections
of one output neuron are shown.
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The architecture of a SOM can be sketched as a two-
layered neural network (Figure 2) in which the first layer
is a set of n input neurons, and the second layer is a set
of C output neurons arranged in a m-dimensional space.
Each output neuron, i, is fully connected to the inputs.
The input layer does not perform any computation; out-
puts are equal to inputs. The second layer computes
the Euclidean distance d; between the input 3 and each
wj, where w; is the n-dimensional weight vector of the
connections of output neuron i¢. The smallest distance
defines the winner neuron 7* in the output map. For a
classification task, the outputs of neuron ¢ of the second
layer are set to 1 if ¢ = ¢* and 0 otherwise. For the fea-
ture extraction task the outputs are set to distance d;
and thus represent the feature values extracted from the
current input.

The training algorithm to tune each w; is an itera-
tive loop which, for each input presented, updates w; by
adding Aw; = nA(i, i*,0)(8—w;), where nis a coefficient
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controlling the learning rate; A(i,¢*, o) is a continuously
decreasing function with the distance between i and i*
and equal to 1 for ¢ = ¢* (typically a Gaussian function
is used); o reflects the range of effect of the updates. 7
and o decrease with the number of iterations.

Notice that, unlike COMs, unsupervised training dis-
covers automatically the image features characterising
different textures.

III. ARCHITECTURE
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Fig. 4: Image A of the Mediterranean seabed, from a sequence
acquired by a scientific ROV (original in colour). Courtesy of
the Institute of Marine Biology of Crete.

Fig. 3: Architecture of the unsupervised classifier, showing pro-
cess applied to each image window.

The hardware system is composed of a underwater
colour camera, a frame grabber at (1 image/sec) with
a resolution of 704 x 576 pixels, a Pentium II 300MHz
computer with Solaris 2.6 Operating System. The sys-
tem (Figure 3) downloads an image from the sequence.
Each 16 x 16 square window of the image feeds the feature
extraction tool (Co-Occurence Matrices or Kohonen-
Map), thus the resulting computation of the feature vec-
tor feeds the classifier, another Kohonen-Map wich gives
the class of the texture in the input window. The final
result is presented as a segmented and labeled image.

The SOM for feature extraction has 768 inputs (3
colours x16 x 16 pixel window) and 45 output nodes
arranged in wire. The SOMs used as classifier, for both
feature extraction methods, has 45 inputs and .30 output
nodes arranged in an array of 3 x 10. Fig. 5: Segmented image A using a Kohonen map for feature

extraction.
IV. RESULTS

For testing with real data we have used a set of images
(330%231) in 18 different image sequences extracted from
a 1-hour videotape recorded in various benthic trials be-
tween [10, 200]-metre depths in the Mediterranean. The
training phases needed for the SOMs architectures have
been done on all the sequences but on different images
used in the test phase. 20,000 times a 16 x 16 window
have been presented to the input of the system during
the training phase. For the test, the system labels each
4 x 4 window by analysing a 16 x 16 window centered on
it. Thus 4,674 windows are analysed by the system for
each image.

We report only two examples for reasons of space. Fig-
ure 4 shows an image containing various scientific tar-
gets. The resulting classes are shown in Figures 5 for the
Kohonen SOM technique. The figure shows the resulting  Fig. 6: Segmented image A using COMs for feature extraction.
labelled image where each grey level is associated to one
of the 30 classes. The results indicate a consistent choice
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of classes for the Kohonen SOM, which defines classes
automatically, and good segmentation performance for
both methods. For comparison, results obtained by the
COM technique are shown in Figure 6.

The other example (Figure 7) is a less coloured image.
In this case COMs (Figure 9) give the best labelling,
because the texture brings more information than the
colours, for which the SOM method (Figure 8) is more
relevant.

V. CONCLUDING REMARKS

We have built an unsupervised image segmentation
system using Kohonen SOMs, capable of identifying au-
tomatically the most prominent texture-colour features
in sets of real subsea images. Once classification tar-
gets are made explicit by scientists, training will be de-
signed to optimise target-specific classification. The re-
sults show the systems promise in terms of segmentation
quality (e.g., homogeneous regions corresponding to a
same type of seabed or flora are kept together).

Fig. 7: Image B of the Mediterranean seabed, from a sequence
acquired by a scientific ROV (original in colour). Courtesy of
the Institute of Marine Biology of Crete.

We have compared the system with a COM-based clas-
sifier, using real data. COMs appear to catch better
texture than SOMs, which however are better for catch-
ing colour variations. COM performance seems less af-
fected by typical subsea noise like marine snow. But
the time taken to compute COMs (and features from
COMs) is larger than for SOM. Moreover, the optimum
set of features from COM have to be determined a priori
and is highly dependent on the kind of seabed observed,
whereas SOMs can find automatically the most relevant
features in a large set of images.

The image processing problem posed by our project
is very difficult; this paper has reported an initial, if Fig. 8: Segmented image B using a Kohonen map for feature
promising, solution. Future work must address issues extraction.
critical in guaranteeing reliability during real, prolonged
missions, including invariance to scale, rotation, illumi-
nation, and filtering effects introduced by the water.
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