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Abstract

A new set of techniques for the construction of large-scale side-scan mosaics is presented in

this paper. The complete procedure operates in two main stages. First an accurate registration of

the source side-scan images is performed by �ltering navigation data, where an augmented state

Rauch-Tung-Striebel (RTS) �lter is used to smooth the stochastic map obtained from a Concurrent

Mapping and Localization (CML) algorithm� which stores landmarks as extra states in a Kalman

�lter. Then a fusion algorithm based on Gabor wavelets is used to combine the registered side-

scan images and assemble the �nal mosaic. The algorithm can be tuned to either maximize the

information content or to minimize signal noise in the mosaic.

The paper presents novel results created by fusing 14 views of a scene as observed by a side-scan

sonar mounted on an Autonomous Underwater Vehicle (AUV). The resulting mosaics are tailored

to preserve the texture information of the individual views, accentuate the returns from important

objects in the scene, and cover a wider area than any one single view.

1 Introduction

Imaging of the sea�oor by AUVs has produced high resolution images of regions of interests [1]. AUVs

o�er a stable platform capable of operating at close distance from the sea�oor. It is now possible
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to covertly run Rapid Environmental Assessment (REA) shallow water missions, producing multiple

views of the same regions. These type of missions are valuable for Computer Aided Detection/Computer

Aided Classi�cation (CAD/CAC) exercises and also for rapid characterization of the sea�oor [2, 3, 4].

However, the accuracies of the navigation sensors used by AUVs are limited by the operating envi-

ronment. Whereas in air DGPS or GPS aided INS systems can produce highly accurate solutions,

electromagnetic signals attenuate quickly in water and satellite signals are limited to instances when

the AUVs surface. Conventional navigation suites combine dead-reckoning sensors with either acoustic

networks such as Long Baseline (LBL) networks, or acoustic trackers such as Ultra Short Baseline

(USBL) systems [5, 6, 7]. The resulting navigation solutions are generally acceptable for most mission

requirements, but do not meet the standards required by image fusion algorithms which are designed

under the assumption that the images have been perfectly registered [8]. Distortions due to seabed

topography cannot in general be corrected completely, for instance. Therefore, development of appro-

priate sonar registration tools is essential, as it is also the development of a fusion engine designed to

work with non-perfectly registered input sources.

TheOcean Systems Laboratory (OSL) has recently developed a technique suitable for geo-referencing

and co-registering multiple side-scan views of the same area [9]. Geo-referenced side-scan images are

formed using the knowledge of the side-scan's position and orientation as the scene is observed. The

appearance of the images is in�uenced by the relative orientation of the sonar and the seabed features

being observed [10]. Thus image matching techniques to co-register side-scan data sets, as proposed

in [11], will not be suitable under all circumstances. The OSL has instead produced a convenient sys-

tem that allows a human operator to manually match the sonar returns, by extracting and matching

landmarks. This system has also been extended to work with automatic landmark extraction tech-

niques [12]. The system subsequently uses the information to correct the vehicle navigation. The

chosen strategy is the stochastic map [13], an augmented state Kalman �lter. This �lter's state vector

stores the sonar's states and adds new states to for each new observed landmark. The trajectory result-

ing from the stochastic map is not a smooth trajectory suitable for geo-referencing the side-scan data.
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Each point in the trajectory is processed by using observations that occurred before that point. A

smoother trajectory results by using measurements before and after that point. The OSL has adapted

the RTS �lter to work with the stochastic map. The new smooth trajectory creates accurate and

smooth trajectories useful for geo-referencing the data.

Once the source images have been registered they must be properly assembled in order to construct

the side-scan mosaic. The choice of the fusion algorithm [14] will determine how the information

contained in the original images is managed and presented in the �nal result. An adequate selection

of the fusion approach is therefore important to preserve the particular type of information in which

the user is interested.

Thus, for the preservation of the visual information and image details a wavelet-based method

should be preferred, while simpler blending models will reduce the in�uence of spurious image artifacts.

To cover these two opposite goals, we have developed a tunable fusion algorithm based on Gabor wavelet

decomposition [15, 16, 17] which can be adjusted to the particular requirements of the user. The method

initially decomposes the registered images into their constituent spatial frequency components, which

are blended separately and then recombined to form the �nal side-scan mosaic.

The rest of the paper is organized as follows:

In section 2 the CML-RTS strategy designed by the OSL is examined , and details on the func-

tionality of the co-registration strategy are presented.

Section 3 describes the fusion algorithm designed to combine the registered sonar images into the

�nal mosaics.

In section 4 novel registration and fusion results are presented by assembling 14 di�erent side-scan

views of the same sea�oor region.

The last section summarizes the �ndings presented in this document and explores possibilities for

future work.
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2 Registration of Side-scan Sonar Using the Stochastic Map

The registration process uses the navigation information stored by the system and the side-scan data to

register the data. The chosen tools are the stochastic map and the RTS �lter. Both of these techniques

are now re-visited.

2.1 The Stochastic Map

The stochastic map is obtained by augmenting the state vector of an Extended Kalman Filter (EKF)

with new states representing newly observed landmarks. The EKF is a popular and well understood

technique [18, 19] and the stochastic map can bene�ts from this fact. The stochastic map keeps the

estimates of the vehicle-to-vehicle, landmark-to-vehicle and landmark-to-landmark correlations. Thus

new observations of landmarks or vehicle states help correct the whole stochastic map. The importance

of these correlations has been demonstrated through some telling research [20, 21].

The stochastic map's state vector x assumes the following form,

x =



xv

xl


 (1)

where xv holds the state of the vehicle and xl holds the states of the landmarks. The estimated error

covariance for this system,

P =



Pvv Pv l

Pl v Pl l


 (2)

where the submatrices Pvv, Pv l and Pl l are the vehicle-to-vehicle, vehicle-to-landmark and landmark-

to-landmark covariances respectively.

The state and covariance are updated according to the EKF update equations [18, 19]. Generic

incarnations of the stochastic map assumes that the landmarks are �xed in the world, although dynamic

landmarks could also be modeled.
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2.2 Smoothing the Stochastic Map

The Rauch-Tung-Striebel (RTS) backward �lter is commonly used to smooth the output of a Kalman

�lter [22]. The OSL has successfully used this �lter to smooth the output of the stochastic map [9, 12],

the technique is referred to as CML-RTS. The smoothing process is a non-real-time data processing

strategy that uses all measurements between times 0 and T to estimate the state at a certain time

t, where 0 ≤ t ≤ T . The RTS �lter uses the stored predictions and corrections of a Kalman �lter to

obtain the smooth estimates.

The RTS was designed to operate with state vectors of a �xed size. Thus the OSL had to adapt the

RTS input by increasing the size of the stored prediction and correction state vectors and covariances

to match the �nal size of the stochastic map. In the adapted RTS the state vector at time 0 will be

the same size as the stochastic map's state vector at time T . To do this the predicted and corrected

landmark states must be de�ned for those instances before they were actually observed. Making these

values zeros will cause a numerical instability. The strategy is to make them equivalent to the stochastic

map corrected state after the landmarks were observed the �rst time. Thus you are no more, nor less,

certain on the position of the landmarks before it was �rst observed. The correlation terms between

the new landmarks and the other states in the map are set to zero, because only after it has been

observed can the landmark be correlated to the rest of the stochastic map.

3 Gabor Fusion

After registration the side-scan images must be properly combined to build the �nal mosaic. Fusion of

images based on wavelet techniques [14, 15] is generally preferable to simpler methods (such as blending,

averaging, etc) because all the visual information contained in the original images is preserved in the

fusion result. As a counterpart, these fusion techniques also tend to highlight all the noise and mis-

registration errors present in the source images [23, 24], which can make the interpretation of the �nal

mosaic di�cult.
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To overcome this limitation we have developed a tunable fusion algorithm based on Gabor wavelet

decomposition [15, 16] which can be adjusted to the particularities of the source images. The method

initially decomposes the registered images into their constituent spatial frequency components, which

are blended separately and then recombined to form the �nal side-scan mosaic. The blending mode for

each frequency component can be selected to either preserve all the initial image details or to reduce

image noise.

Gabor wavelet functions have the following form [16, 25]:

gx0,y0,fn,θm = g0,0,fn,θm(x, y) ∗ δ(x− x0, y − y0) (3)

where

g0,0,fn,θm(x, y) = exp(−πa2((x cos θm + y sin θm)2 + (x cos θm − y sin θm)2)) · exp(ı(2πfn(x cos θm + y sin θm)))

(4)

and

a =
1
3

√
π

ln 2
· fn (5)

Parameters x0, y0 set the spatial location of the wavelet, fn its frequency and θm its orientation.

The value of a corresponds to the radial bandwidth of the Gabor function and is proportional to the

radial frequency fn the Gabor function is tuned to. In general these frequencies should be selected to

�t the sizes of those elements of interest to the user� such as sand ripples, mounds, ground targets�

in order to split the source image into meaningful spatial frequency bands. In this paper however,

and as a proof of concept, empirically adjusted frequency values have been selected for the examples

shown, which depend only on the dimensions in pixels of the source images. Also, for simplicity of

implementation, wavelets corresponding to di�erent orientations have been combined into a single

integrated �lter, as described in [17].

For the construction of the �nal mosaic, several additional considerations have to be addressed.

Boundaries of the registered images, for instance, cause a powerful response in the high-frequency band

(see Fig. 4), which means that they'll be clearly reproduced in the mosaic. To prevent it the boundaries
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of the registered images were blurred to the size that cancels the response of each band �lter, therefore

completely removing their in�uence on the �nal result. More elaborate techniques [26] could also be

used if the details contained in the border pixels must not be spared.

Image artifacts and noisy regions should also be eliminated from the �nal result whenever possible.

To this end, each frequency band is processed separately in order to estimate the most probable pixel

values at each position and scale. In the original fusion approach [15] the maximum value is always

selected, which results in a mosaic that preserves all the image information but also all the noise and

image boundaries (Fig. 4). In our case, a median �lter is used to select the most probable pixel value

at a given frequency band across the di�erent images, which ensures that consistent features will be

preserved and spurious defects removed. Fig. 5 shows the result of this fusion approach.

The algorithm weights and blending modes for the di�erent spatial frequencies can be modi�ed to

enhance speci�c image features or reveal underlying patterns not clearly discernible by other means,

as shown in the following section.

4 Results

These results were obtained by processing sidescan and navigation data recorded by the Ocean Explorer

(OEX) AUV during the GOATS trials, organized by NATO SACLANT Undersea Research Centre [27].

The OEX observed a region of interest by running parallel transects over that area. These results were

compiled by processing fourteen of those transects.

The CML-RTS solution is computed for all transects. To do this the operator extracts the land-

marks manually from the data and matches them to the landmarks that already exist in the stochastic

map. The landmarks and original trajectories, when plotted in a local East, North and Up (ENU)

navigation frame, clearly show the error in the position estimates for the transects, see Fig. 1. The

landmark observations display accross and along-track errors. The outcome of the CML-RTS system

produces a set of smoothed transects and one estimate for each landmark position. This is a useful

feature of the system that could be adapted for many di�erent applications where landmarks (pipe
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junctions, corals, underwater structures, wrecks, etc.) need to be inspected and mapped.

The trajectories were then used to create mosaics of transects. Fig. 2 shows the mosaic created

by averaging the original stored data. The errors in the transect trajectories are apparent in the

image. The resulting mosaic is not very informative, due to the errors in the co-registration of the

data which result in a diluted image. Fig. 3 results from running the CML-RTS system and averaging

the registered images. The �gure clearly shows a much clearer result, associated to the more accurate

geo-referenciation achieved by the registration method. Sea�oor features and man made targets can

be now clearly observed.

Minute details and dim areas are however blurred due to the blending by averaging image pixel

values. Gabor fusion enhances every detail present in the original images, although that also includes

image noise and distortion artifacts (see Fig. 4). The fusion approach presented in this paper is shown

in Fig. 5, where the default algorithm settings� which give similar priorities to all frequency bands�

were used. See how most image details that are consistent across the di�erent images are preserved

and most noise artifacts are removed.

The weights and blending modes for the di�erent spatial frequencies can be modi�ed to target

speci�c image features. In Fig. 6 the algorithm has been tuned to reduce noise and image artifacts�

note how most sensor noise has been removed while the details on dim areas and sand ripples are still

present.

Appropriate tuning of the fusion algorithm can reveal underlying patterns not clearly discernible

by other means. As an example see Fig. 7, where the settings have been set to enhance middle-sized

features. Note for instance the rich sea�oor structure in the central area of the mosaic, which is

otherwise lost on the �nal mosaic.

5 Conclusions and Future Work

In this paper new registration and fusion techniques for the construction of mosaics of side-scan images

have been presented. The CML-RTS registration method allows for accurate geo-referenciation of the
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source images, which can then be combined to form the �nal mosaic. The proposed fusion algorithm,

based on Gabor wavelet decomposition, has been designed to preserve all the information contained

in the source images while simultaneously diminishing the in�uence of sensor noise and spurious geo-

metrical distortions. The fusion algorithm can be tuned to enhance speci�c image features or reveal

underlying structural con�gurations not observable by other means.

In the Ocean Systems Laboratory we are currently working on methods for the estimation of sea�oor

bathymetry by the recti�cation of side-scan images. Successful determination of seabed topography

will permit more precise registration of the side-scan images, and will remove those mis-registration

deformations that are associated to the simpli�ed projection methods implicitly used in standard

techniques for rendering side-scan data.
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Figure 1: Original Stored Trajectories and Smooth Corrected Trajectories.

The image shows that the original absolute error was considerable. The stored vehicle trajectory had

both along and across track errors. The CML-RTS strategy used the matched landmarks to correct

the trajectories, the new landmark positions can also be seen in the image, the observations with

respect to the original trajectories can also be seen.
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Figure 2: Averaging of Transects Using Original Stored Trajectories.

The mosaic has been created by geo-referencing each transect using the original stored trajectories.

Collocated data has been averaged. Poor registration results in dilution and loss of data. The fan

e�ects on the edges of the mosaic are the result of erroneous heading measurements.
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Figure 3: Averaging of Transects Using Smooth Corrected Trajectories.

The mosaic has been created by geo-referencing each transect using the corrected trajectories using

the CML-RTS strategy. Collocated data has been averaged. Good registration produces a meaningful

mosaic.
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Figure 4: Gabor fusion of registered transects.

Result of the Gabor fusion of all the CML-RTS registered images. Every detail contained in the

source images is preserved, but also are all noise and distortion artifacts.
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Figure 5: Proposed fusion approach.

The �nal mosaic is now constructed by Gabor decomposition of the geo-referenced images in their

constituent spatial frequencies, which are then separately combined with equivalent priority given to

all frequency bands. Note how all the original image details have been preserved while the presence

of noise and distortion artifacts is diminished.
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Figure 6: Proposed fusion algorithm tuned for noise reduction.

The proposed fusion algorithm is in this case adjusted to reduce the impact of sensor noise and image

distortions in the �nal mosaic. Sand ripples and structures on dim areas are still present nevertheless.
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Figure 7: Alternate settings for the fusion algorithm.

The proposed fusion algorithm is now tuned to enhance middle-sized features. Note the rich

structure of the sea�oor in the central area of the mosaic, which is otherwise not preserved in the

mosaicking result.
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