

E	Electrostatics
$\oint_{C} \vec{E} . d\vec{l} = 0$	Maxwell's 1st Equation = Faraday's Law
$\oint_{\sigma} \vec{D} . d\vec{S} = \int \rho dv$	Maxwell's 3rd Equation = Gauss's Law No Electric fields without charges
3 V	
, v	lagnetostatics
$\oint_c \vec{H} . d\vec{l} = \int_s \vec{J} . d\vec{S}$	lagnetostatics Maxwell's 2nd Equation = Ampere's Law No magnetic Field without currents
$\oint_{s} \vec{H} . d\vec{l} = \int_{s} \vec{J} . d\vec{S}$ $\oint_{s} \vec{B} . d\vec{S} = 0$	Iagnetostatics Maxwell's 2nd Equation = Ampere's Law No magnetic Field without currents Maxwell's 4th Equation = Conservation of Magnetic Flux

	Electrostatics
$\oint_{C} \vec{E} . d\vec{l} = 0$	Maxwell's 1st Equation = Faraday's Law
$\oint_{S} \vec{D} \cdot d\vec{S} = \int_{S} \rho dv$	Maxwell's 3rd Equation = Gauss's Law No Electric fields without charges
	Ũ
	Magnetostatics
$\oint_c \vec{H} . d\vec{l} = \int_s \vec{J} . d\vec{S}$	Magnetostatics Maxwell's 2nd Equation = Ampere's Law No magnetic Field without currents
$\oint_{c} \vec{H} . d\vec{l} = \int_{s} \vec{J} . d\vec{S}$ $\oint_{s} \vec{B} . d\vec{S} = 0$	Magnetostatics Maxwell's 2nd Equation = Ampere's Law No magnetic Field without currents Maxwell's 4th Equation = Conservation of Magnetic Flux

What causes what

- · A current carrying conductor will produce a magnetic field around itself.
- Bodies of electric charge produce electric fields between them.
 A time-varying electric current will produce both magnetic and electric
- fields, this is better known as an electromagnetic field.

direct current carrying conductor	magnetic field	
system of charges	electric field	
alternating current carrying conductor	electromagnetic field. E and B are linked	
Revision lecture	22.3MB1	1.35

Maxwell's Equa	ations (Differential Form)	
$\oint_C \vec{E} d\vec{l} = -\int_S \frac{\partial \vec{B}}{\partial t} d\vec{S}$	$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	
$\oint_C \vec{H}.d\vec{l} = \int_S \left(J + \frac{\partial \vec{D}}{\partial t}\right) d\vec{S}$	$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$	
$\oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho dv$	$\vec{\nabla}.\vec{D}=\rho$	
$\oint_{S} \vec{B}.d\vec{S} = 0$	$\vec{\nabla}.\vec{B}=0$	
Revision lecture	22.3MB1 1.37	-

Field Vectors The same E-field can be described using different coordinate systems. THIS FIELD IS INDEPENDENT OF THE COORDINATE SYSTEM!!!				
$\vec{E} = \vec{a}_x E_x + \vec{a}_y E_y + \vec{a}_z E_z$	cartesian (x, y, z)	$\begin{array}{l} -\infty < x < \infty \\ -\infty < y < \infty \\ -\infty < z < \infty \end{array}$		
$\vec{E} = \vec{a}_r E_r + \vec{a}_\theta E_\theta + \vec{a}_z E_z$	cylindrical (r, θ, z)	$\begin{array}{l} 0 \leq r < \infty \\ 0 \leq \varphi < 2\pi \\ -\infty < z < \infty \end{array}$		
$\vec{E} = \vec{a}_r E_r + \vec{a}_\theta E_\theta + \vec{a}_\phi E_\phi$	spherical (r, θ, ϕ)	$\begin{array}{l} 0 \leq r < \infty \\ 0 \leq \theta \leq \pi \\ 0 \leq \varphi < 2\pi \end{array}$		
Revision lecture	22.3MB1	1.40		

