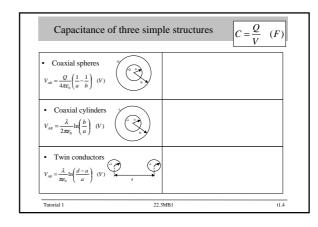
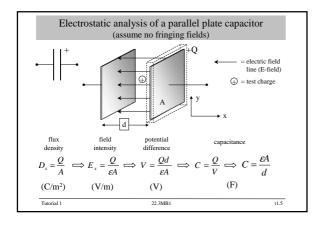
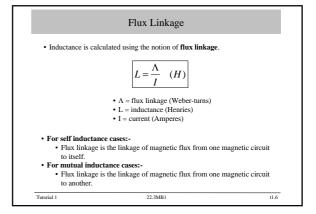
## Electrostatics & Magnetostatics 22.3MB1 Dr Yvan Petillot

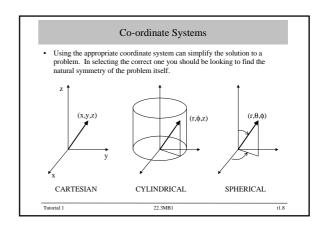
## Capacitance


Capacitance is the ratio of charge to electric potential difference.


$$C = \frac{Q}{V} \quad (F)$$


- C = capacitance (Farads)
- Q = capacitor charge (Coulombs)
- $\bullet \quad V = potential \ difference \ (Volts)$

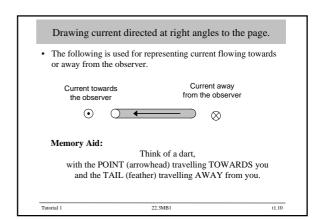
Tutorial 1 22.3MB1 tl.2


| Timee steps to em                                                                                                                | culating capacitance                                            |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| STEP1 Apply Gauss's law to find the flux density and the electric field distribution. ( $\mathbf{D} = \epsilon \mathbf{E}$ )     | $\oint_{S} \vec{D}.d\vec{S} = Q_{enc}  (C)$                     |
| STEP2 Apply the potential law to find the potential difference between the conductors which form the structure of the capacitor. | $V_{AB} = -\int_{B}^{A} \vec{E}.d\vec{l}  (V)$                  |
| STEP3 Apply Q=CV or an equivalent. As in the case of a line conductor (\lambdaL=CV). This will give capacitance per unit length. | $C = \frac{Q}{V_{AB}}  (F)$ $C = \frac{\lambda}{V_{AB}}  (F/m)$ |



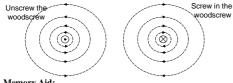





| STEP1 Apply Ampere's law to determine the magnetic field distribution around the circuit. Then find the flux density.                       | $\oint_{l} \vec{H} \cdot d\vec{l} = I_{enc}  (A)$ $\vec{B} = \mu_{0} \mu_{r} \vec{H}  (Wb/m^{2})$ |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| STEP2 Apply the flux law to find the total flux passing through the circuit. Then determine the flux linkage, (shown is for a N-turn coil). | $\Phi = \int_{S} \vec{B} . d\vec{S}  (Wb)$ $\Lambda = N\Phi  (Wb-turns)$                          |
| STEP3 Apply $\Lambda = LI$ to find the inductance.                                                                                          | $L = \frac{\Lambda}{I}  (H)$                                                                      |



## Field Vectors


- The same E-field can be described using different coordinate systems.
  THIS FIELD IS INDEPENDENT OF THE COORDINATE SYSTEM!!!

| E-vector                                                                              | Coordinates                    | Range of Coordinates                                                |
|---------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------|
| $\vec{E} = \vec{a}_x E_x + \vec{a}_y E_y + \vec{a}_z E_z$                             | cartesian (x, y, z)            | -∞ < x < ∞<br>-∞ < y < ∞<br>-∞ < z < ∞                              |
| $\vec{E} = \vec{a}_r E_r + \vec{a}_\theta E_\theta + \vec{a}_z E_z$                   |                                | $0 \le r < \infty$<br>$0 \le \phi < 2\pi$<br>$-\infty < z < \infty$ |
| $\vec{E} = \vec{a}_{r} E_{r} + \vec{a}_{\theta} E_{\theta} + \vec{a}_{\phi} E_{\phi}$ | spherical $(r,\theta,\varphi)$ | $0 \le r < \infty$ $0 \le \theta \le \pi$ $0 \le \phi < 2\pi$       |
| utorial 1                                                                             | 22.3MB1                        | tl                                                                  |



## The grip rule

Now draw the field around a current carrying conductor using the RIGHT-HAND THREAD rule.



Memory Aid:

Grip your right hand around the conductor with your thumb in the same direction as the conductor. Your 4 fingers now show the direction of the magnetic field.

Tutorial 1 22.3MB1