HERIOT-WATT UNIVERSITY DEPARTMENT OF COMPUTING AND ELECTRICAL ENGINEERING

22.3MB1 Electromagnetics

Tutorial 4

- 1. Plot a curve in dBm⁻¹ versus frequency showing the attenuation in sea water from 10 KHz to 1 GHz, assuming μ_0 and σ are constant over this frequency range and equal to $4\pi \times 10^{-7}$ H/m and 5 Sm⁻¹ respectively. Take $\epsilon_r = 81$. Comment on the implications of the results to the problem of communicating, by means of radio waves, with vehicles submerged in sea water.
- 2. Calculate the attenuation of an electromagnetic wave in sea water and in copper at 20 KHz given that σ for sea water is 5 Sm⁻¹ and for copper is 5.8×10^7 Sm⁻¹. Both can be assumed to non-magnetic. State the result in dBm⁻¹. Also compare the intrinsic impedances of the two media at 20 KHz.

 $[5.45, 172.5, 1.86 \times 10^4, 5.88 \times 10^5, 0.178 \Omega, 5.22 \times 10^{-5} \Omega]$

- 3. The electric field strength of a uniform plane electromagnetic wave in free space is 1 Vm⁻¹ and the frequency is 300 MHz. If a very large thick flat copper plate is placed normal to the direction of wave propagation determine (a) the electric field strength at the surface of the plate; (b) the magnetic field strength at the surface of the plate; (c) the depth of penetration; (d) the conduction current density at the surface; (e) the conduction current density at a distance of 0.01 mm below the surface; (f) the surface current density J_s ; (g) the power loss per square metre of surface area. For copper use $\sigma = 5.8 \times 10^7 \text{ Sm}^{-1}$, $\mu = \mu_0$, $\varepsilon = \varepsilon_0$.
 - [(a) $33.8 \,\mu Vm^{-1}$, (b) $5.3 \,mAm^{-1}$, (c) $0.00382 \,mm$, (d) $1960 \,Am^{-2}$, (e) $143Am^{-2}$, (f) $5.3 \,mAm^{-1}$, (g) $0.0634 \mu Wm^{-2}$]