
Electromagnetics Tutor ial

1. plane wave is incident normally on a sheet of polystyrene of dielectric constant εr with
a large hole. Derive an expression for how thick the sheet should be so that the wave
that has passed through the sheet is in phase with the wave that has passed through the
hole. For teflon with a value of εr=2.7 and a frequency of 10 GHz, how thick should
the Teflon sheet be?

2. When a lens is used to form an image on the detector within a camera, reflections from
the lens surfaces results in loss of transmitted light and stray light reflections at the
detector. Estimate, stating any simplifying assumptions made, the fraction of the
available optical power at the input surface that is transmitted directly to the detector
(this forms the image) and the fraction that arrives at the detector via the most intense
to reflection  from the lens surfaces (this is background and ghost images) for (a)
operation in the visible using glass lenses (n =1.5) and (b) in the thermal infrared using
germanium lenses (n=4). You will need to derive the basic expressions based on
reflectivity equations given in the lectures.

3. Reflections can be reduced by coating a lens with an antireflection coating consisting
of a layer of dielectric that is λ/4 thick whereby that the reflection from the front
surface is equal in amplitude, but opposite in phase with the reflection at the interface
between the lens and coating. By assuming low refractive index and only the two
strongest reflected components, show that if the lens has a refractive index of n, the
refractive index of the coating material be √n. For a glass lens with n=1.5, what will be
the thickness of the dielectric to reduce reflections for green light with a wavelength of
550 nm. Can you explain why the reflections from such a lens appear purple when
illuminated by white light?

1. Explain why light from the sun tends to be unpolarised whilst radio waves from a
dipole are linearly polarised.

2. Four linear polarisers are stacked together with mutual angular displacements of 30º,
what is the fractional power transmission through all four when illuminated by natural
light.

3. The intensity of solar radiation at the top of the Earth’s atmosphere is 1.4 kW/m2.
Estimate the RMS strengths of the E-field and B-field of this radiation.

4. A short dipole is aligned vertically and a negative charge is applied to the whole
dipole. Sketch the electric field lines close to the dipole and at a great distance (that is
on a greatly expanded scale, so that the dipole appears as point source)

A high frequency, radio-frequency sinusoidal power source is now applied to the
centre of the dipole to produce a current that oscillates along the dipole. Sketch the
electric field lines close to the dipole and at a great distance, for which the evanescent
Coulomb-field is insignificant.

5. With reference to suitable diagrams show the instantaneous time and space
relationship between electric field and magnetic field for a sinusoidal TEM (transverse
electromagnetic) wave propagating in an unbounded region of free space.
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Indicate the significance of the Poynting vector for the wave, both graphically and in
vector notation

By considering a laser beam as a plane transverse electromagnetic (TEM) wave,
estimate the diameter of the beam of a 1kW laser that would cause voltage breakdown
in air. Assume that air has dielectric breakdown strength of 3MV/m

6. A parallel plate capacitor with circular plates of radius R and separation d is charged
with a voltage ramp that increases linearly at α V/sec. Using Amperes equation in

integral form, A
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r, of the magnetic field between the plates of the capacitor, for r≤R.

Derive an expression for the magnetic field for r>R.

Derive an expression in terms of R, α and d for the current flowing through the wires
that feed the capacitor.

Use this expression and Amperes equation to derive an expression for the magnetic
field that this current produces around the wires.

Compare the expressions for the magnetic fields around the wire and around the
capacitor. Is it possible, to distinguish between the magnetic field due to the
displacement current and that due to the electron current?

If the voltage ramp has a rate of change of 1kV/µsec, the separation of the capacitor
plates is 100 µm and the radius of the capacitor is 55 mm, calculate B at r=R= 55 mm.
Is this a large value? Can one compare typical values of B and E ?

Answers

Question 1.

EM radiation travelling through a dielectric travels at a speed of c/√εr (see notes page 10-
12). This means that the wavelength is also reduced by a factor of √εr. Thus for a given
thickness d of dielectric there will be more wavelengths along the z-axis than in free space,
so that the phase of the wave leaving the dielectric will lag the phase in free space. If we
make this phase lag equal to an integral number of cycles, then the wave leaving the
dielectric will be in phase with the wave that has travelled through the hole.

This assumes that there is no phase change during transmission through the interfaces- it
can be seen from page 70 that for a lossless dielectric the transmission coefficient is real
(not complex) and positive, so this is true.

The phase change due to propagation through a distance d (to be determined) of free space
is:

λ
πφ d

2=∆ (1)

The phase change for propagation through an equal thickness of dielectric we will set to be
equal to ∆φ plus one cycle:
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Inserting values of λ=c/f=0.03m and εr=2.7 gives d=18.3 mm.

Question 2
To estimate the farctional light powers transmitted and reflected from the lens, we can
consider it as simply a glass plate:
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The incident light will be partially reflected at both the air/glass and glass/air interface and
some reflected light will bounce back and forth within the lens, with intensity diminishing
at each reflection. We will consider only the power of the directly transmitted light ray and
the first reflected ray that is transmitted towards the detector. The former of these forms
the image and the latter is stray light, which causes ghost images and reduced contrast in
the image.

The power reflectivity is equal to the square of the amplitude reflectivity (because power
is proportional to E2 – see page 25 for example) and is given by (see page 70):
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The power reflectivity can be seen to be equal for both the air/glass and glass/air
interfaces.

It can be seen from the above diagram and from the conservation of energy, that if a
fraction r of the light intensity is reflected at an interface then 1-r is transmitted at the
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air/glass interface and the same fraction 1-r is transmitted by the glass/air interface so that
the light intensity at the detector will be reduced by a factor (1-r)2 by the reflections.

The diagram also indicates the intensity of the multiply reflected beam that arrives at the
detector and this can be seen to have an intensity that is reduced by a factor r2(1-r)2 since
it has undergone two interface transmissions and two interface reflections.

For glass n=1.5, so the power reflectivity is
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and the fraction transmitted in the direct beam is (1-0.04)2=0.9216.
The reflected beam has an intensity reduced by a factor of 0.042x(1-0.04)2=0.00147

For thermal imaging in the infrared, germanium lenses with a refractive index of 4 are
often employed. The equivalent values are
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directly transmitted intensity = (1-0.36)2=0.4096
reflected intensity = 0.362x(1-0.36)2=0.053

Thus it can be seen that glass lenses transmit 92% of the incident light and the total power
of the multiple reflections is only about 0.14% of that of the main image. Hence windows
and spectacles give good performance without antireflection coating. However, for a
germanium lens, only about 41% of the light is transmitted and the total power at the
detector in the reflected light is about 13% of this. This becomes more significant if
compound lenses with many surfaces are required. Thus germanium lenses are always
antireflection coated. Antireflection coating is the subject of the next question.

Question 3
For an antireflection coating on a glass with a low n, we can approximate that the reflected
intensity from the air/dielectric interface is equal to the reflected intensity from the
dielectric/glass interface (that is we neglect the power lost by transmission through the
air/glass interface). The double λ/4 delay through the dielectric ensures that the two
componenets are π out of phase and cancel to give zero reflectivity at the design
wavelength.

As an approximation, (which we will see works exactly) we set the two amplitude
reflectivities to be exactly equal:

( )( ) ( )( )

gd

gdgddgdgdd

dgdgdd

gd

gd

d

d

nn

nnnnnnnnnn

nnnnnn

nn

nn

n

n

=⇒

−−+=−+−⇒

+−=+−⇒

+
−

=
+
−

22

11

1

1

where nd  and ng are the refractive indices of the dielectric and glass respectively. Thus the
dielectric should have a refractive index equal to the geometric mean of the glass and the
free space.
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For the curious, it can be noted that the light actually reflects back and forth within the
antireflection coating so that the resultant reflectivity is due to an infinite number of
reflections that can be summed as a geometric progression. This is illustrated in the figure
below.
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so that the reflected power is calculated by:
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where we have used the following identities:
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Thus it can be seen that our assumption that zero reflectivity is obtained when the
reflectivities at the air/dielectric and dielectric/glass interface are equal can be justified.
However, this is presented only for the curious and is not expected as an answer.

The thickness of the dielctric is λ/(4√ng). For =550 nm and ng=1.5 this gives a thickness of
112.3 nm.

This antireflection coating will yield zero reflectivity at 550 nm, but at shorter
wavelengths (that is blue light) and longer wavelengths (red light), light will be reflected
resulting in a purple colour. This can be seen on antireflection coatings applied to camera
lenses and glasses.

Question 4
Electromagnetic waves are generated by accelerating charges. In the case of light emitted
by the sun, these charges are (generally) moving randomly with no preferred direction and
hence light is emitted equally with all polarisation states with the net result that emitted
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light is unpolarised. Charges accelerating within a dipole are constrained to the plane of
the dipole and this results in radio waves that are plane polarised in the plane of the dipole.

Question 5
A linear polariser resolves the input light into the plane of polarisation transmitted by the
polariser. That is, it passes that component of the input light that is polarised in the
transmission plane of the polariser. Natural light has no preferred polarisation direction,
and any free-space, plane electromagnetic wave has only two degrees of freedom
(describing intensity), which we can call, for example, Ex and Ey, where the total intensity
of the wave is given by 22

yx EEI += . Because the light is unpolarised, light intensity is split

equally between the x and y components and a linear polariser will transmit half of the
input light.
The light transmitted through the linear polariser is now linearly polarised. The second
polariser transmits the component of this light that is polarised in the direction of the
transmission axis of the second polariser and similarly for the subsequent polarisers.
Resolving components of one vector in the direction of another is simply obtained by
taking the dot product of the vectors, which in normalised units, is equal to the cos of the
angle between the vectors. Thus the total fraction of transmitted light is given by
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Question 6

 The RMS power flow of EM radiation is given by 22 22 HEP ηη == (page 27).
Thus we get
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Question 7
At the dipole only the component of E pafrallel to the surface is zero (page 53,54) so the
electric field lines are normal to the dipole. At distances much larger than the dipole
length, the dipole appears as a point source as shown below. The intensity of the field lines
falls with the inverse square of the displacement according to the Coulomb law.
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When a high frequency signal is applied to the dipole charges move along the dipole and
the electric fields due to these charges move with the charges, distorting the electric field
lines. These distortions, or wiggles propagate out at the speed of light. From Maxwells
equations, the wiggles are displacement currents (dE/dt) which set up transverse H fields
(that loop right around the dipole) and the resulting dH/dt set up transverse E fields and
the net result is a propagating electromagnetic wave with transverse E and H fields –
known as a tranverse electromagnetic wave (TEM). However, it is the second differential
components 22 / t∂∂ E and 22 / t∂∂ H  that mutually couple to produce the propagating TEM
wave. The Coulomb field decays in strength with a 1/r2 law. Like any wave, the power  in
the propagating wave decays with an inverse square law, so the field (which is
proportional to the square root of the power) decays as 1/r; that is, much more slowly than
the Coulomb rate of decay. This means that at large distances (that is many wavelengths)
the Coulomb field is much weaker than the field due to the propagating wave and can be
neglected. This is illustrated below. Close to the antenna, both near-field and propagating
wave co-exist, but the near-field dominates, whereas at large distances, where the
Coulomb field has decayed, the propagating wave dominates. It should be noted that an
observer in the end-fire direction of the dipole does not see any wiggle in the field lines
and hence no wave is propagated in that direction. See pages 4 & 5 and page 8 et seq of
the lecture notes

Wiggling Coulomb field

Propagating electric fields

Question 8
Sketch page 21 of the notes for a diagram of the propagating E and H fields and for the
description of the Poynting vector.

The pointing vector HES ×=  gives the direction and power density of the propagating
field.

We can write the power density as the power per unit area of the laser beam (if somewhat
simplistically we assume it to be circular with uniform intrensity), thus:
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Substituting in the maximum field strength and the power of the laser we obtain
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Question 9
Ampers equation is
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This states that, if we take a loop composed of an infinite number of infinitely small
segments of length ds, measure the magnetic field vector H at the centre point of each
segment, calculate the scalar product H.ds (that is ϑcosHds where ϑ is the angle between
the vector H and the vector ds) at each point and sum (integrate) the total, we obtain a
value that is equal to the integral on the RHS. The integral on the RHS is the sum of two
components, J.dA and dAD .t∂∂  integrated over a surface A – this is the area of a surface
for which the above mentioned loop is the perimeter.  The surface is divided into an
infinite number of infinitely small surfaces of area dA. For each of these surfaces we
calculate the scalar product of the normal to the area dA and the current density J and the
displacement current density t∂∂D and sum (inegrate) all of these components to get the
value of the RHS. Amperes law does not tell us how to choose the loop S or the surface A,
it just simply states that if we choose a surface A with a perimeter S and then perform the
integral on the LHS and perform the integral on the RHS they will be equal. However in
cases with high degrees of symmetry we can conveniently choose a circlular perimeters S
enclosing a disk A (or if appropriate, a rectangular perimeter encosing a rectangle) and the
application of Amperes rule can very elegantly yield simple answers.

In this question we have circular symmetry so we will choose A to be a circle located
between the plates of the capacitor and centred on the axis of the capacitor. There is no
current J between the capacitor (i.e. J=0), but there is a changing electric field (a
displacement current) due to the changing voltage applied to the plates. This is given by
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and this is in the direction of the normal to the capacitor plates and our plane of
integration. This assumes that electric field between the plates is uniform, which will be
true for high conductivity plates. Each component dA of our area contributes a component
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where the integral of the infinite number of infinitesimal components dA over A for a
circle of radius r is simply πr2.
To evaluate the LHS, we exploit the fact that radial symmetry means that H is constant
around the perimeter of our circle and is always in the direction of the tangent to the circle
so for all ds, H.ds=H ds cosϑ=Hds and
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of course we could have chosen a totally different loop, for example a square loop, but we
would not have been able to exploit symmetry so readily and so would not readily have
obtained the answer in terms of r.  Rigorous calculation, could however have yielded
exactly the same answer (eventually!). Setting the LHS equal to the RHS yields
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For values of r>R the integral on the RHS is simply
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because the displacement current is zero outside of the confines of the capacitor (at least in
this idealised example). Thus outside of the capacitor we obtain
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Now the current flowing through the wires that charge the capacitor can be derived as
follows:
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where we have differentiated w.r.t. time, the charge stored on a capacitor so as to obtain an
expression for the current in terms of the capacitance C and the rate of change of voltage
α. We have then inserted the standard expression for the capacitance of a parallel plate
capacitor, in terms of the plate area A. If we now choose an Amperian loop or radius r,
centred on the wire (but larger than it so as to encompase all of the wire), the LHS of
Amperes equation becomes simply 2πrH as before. To calculate the RHS, we note that the
displacement current is zero (assuming a perfect conductor, so there is no electric field
along the wires) and we must then integrate the current density J across the area of the
wire and this simply gives the total current I  (Again the direction of J is in the same
direction to the normal of our surface A). Equating the LHS to the RHS simply gives
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 (This is the familiar rIB o πµ 2/=  for the magnetic field from an infinitely long current
carrying wire). We can rearrange this to give
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which, as expected is exactly the same expression as that for the magnetic field due to the
displacement current through the capacitor.

Thus, from a remote position, it is not possible to distinguish a displacement current from
a current of electrons based on magnetic field measurement; that is, they are equivalent.

Inserting the values given yields
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Although this is a very small number compared to probable values of V or tE ∂∂ one
cannot compare one with the other since they have different units (similarly, one cannot
say that 1 km is larger than a gram). However, it would be difficult to measure a field
strength of this magnitude, so from that point of view it is small.


