
Networks - Lab 0 1

Lab 0

Yvan Petillot

Networks - Lab 0 2

What You Will Do In This Lab.

The purpose of this lab is to help you become familiar with the
UNIX/LINUX on the lab network. This means being able to
do editing, compiling, etc. of simple programs. These
programs will be written in C, so you may have some
more learning/reviewing ahead of you.

You have one task before you:

• Using your favorite editor, type in (or paste) the program
given later in this document. Compile it and run it and
show that it produces communication between two
instances of the program.

• You will know you are done when you have demonstrated
to me that your program works.

Networks - Lab 0 3

Where To Get Documentation

There are many sources of information to help you with this lab. Here are
some of those sources:

Learning C:
Learning GDB – how to debug:
Learning UNIX:

All of these skills can be acquired (I hope) from the documentation available
on my webpage

If you don’t like these documents, there are plenty of other ones out on the
web. Go wild!

Networks - Lab 0 4

Where To Get Documentation

For information in more detail than is available
off of my home page, see the following links:

GNU Debugger – remote copy is at:
 http://www.gnu.org/manual/gdb-4.17/html_mono/gdb.html

GCC – Compiler: - remote copy is at:
http://gcc.gnu.org/onlinedocs/gcc-3.0.1/gcc.html

Networks - Lab 0 5

Detour – a gdb quickstart
Here’s all you need to know to get started using gdb:

Start the debugger with “gdb program_name”
List the lines with “l”
Set a breakpoint with “b <line_number>”
Print the value of a variable with “p <variable_name>”
To run the first time, say “run <optional arguments>
To continue from a breakpoint, use “c”
To single step, use “s”
To stop the debugger, use “q”

Networks - Lab 0 6

Project 0:
Here’s the code for this lab. We will be going through it so that you
understand what it does.

Type it in using your favorite editor. In this example, the source file is
named proj0.c

Get a port number from me. This way you won’t all be colliding with
each other.

To compile this code, say “gcc –g proj0.c –o proj0”

This will produce an output file that you can run.

As the code explains, there are several modes of execution.

proj0 –s& creates a process running the code as a server
proj0 –c creates a process running the code as a client

Networks - Lab 0 7

Computer Chat

• How do we make computers talk?

• How are they interconnected?

Internet Protocol (IP)

Networks - Lab 0 8

Internet Protocol (IP)

• Datagram (packet) protocol
• Best-effort service

– Loss
– Reordering

– Duplication
– Delay

• Host-to-host delivery

Networks - Lab 0 9

IP Address

• 32-bit identifier
• Dotted-quad: 134.111.10.43
• www.clarku.edu -> 140.232.1.19

• Identifies a host interface (not a host)

������������ ��������������

Networks - Lab 0 10

Transport Protocols

 Best-effort not sufficient!

• Add services on top of IP
• User Datagram Protocol (UDP)

– Data checksum
– Best-effort

• Transmission Control Protocol (TCP)
– Data checksum
– Reliable byte-stream delivery
– Flow and congestion control

Networks - Lab 0 11

Ports

Identifying the ultimate destination
• IP addresses identify hosts
• Host has many applications
• Ports (16-bit identifier)

������������

�����������3RUW�����������������������������������

$SSOLFDWLRQ�����:::�������(�PDLO������7HOQHW

Networks - Lab 0 12

Socket

How does one speak TCP/IP?

• Sockets provides interface to TCP/IP
• Generic interface for many protocols

Networks - Lab 0 13

Sockets

• Identified by protocol and local/remote address/port
• Applications may refer to many sockets
• Sockets accessed by many applications

Networks - Lab 0 14

TCP/IP Sockets

IPPROTO_UDPSOCK_DGRAMUDP

IPPROTO_TCPSOCK_STREAM
PF_INET

TCP

ProtocolTypeFamily

• mySock = socket(family, type, protocol);
• TCP/IP-specific sockets

• Socket reference
– File (socket) descriptor in UNIX
– Socket handle in WinSock

Networks - Lab 0 15

Specifying Addresses

• struct sockaddr
{

unsigned short sa_family; /* Address family (e.g., AF_INET) */
char sa_data[14]; /* Protocol-specific address information */

};

• struct sockaddr_in
{

 unsigned short sin_family; /* Internet protocol (AF_INET) */
 unsigned short sin_port; /* Port (16-bits) */
 struct in_addr sin_addr; /* Internet address (32-bits) */
 char sin_zero[8]; /* Not used */

};
struct in_addr
{

 unsigned long s_addr; /* Internet address (32-bits) */
};

*
H

Q
H

UL
F

,3
�6

S
H

FL
IL

F

Networks - Lab 0 16

Overview of The
Connection Mechanism

socket()

TCP Client

connect()

write()

socket()

TCP Server

bind()

listen()

accept()

read()

write()

read()

close()
read()

write()

end-of-file notification

Connection establishment

Data (Request)

Data (Reply)

Networks - Lab 0 17

server.c – the code:
/***

 server.c Designed as a simple class example. The program waits for
 a request. It assumes that request is numerical. It adds
 +1 to the input and sends it back.

 This program expects no arguments:
 server

 Yvan Petillot October 2002
**/

#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define TRUE 1
#define FALSE 0
#define BUFFER_SIZE 20
#define PORT 10000

void SysError(char *);

These say to include more
information from include files.

The compiler substitutes these values
whenever it sees the define.

A prototype.

Networks - Lab 0 18

server.c – the code:
main (int argc, char *argv[])
 {
 long input_value;
 int family = AF_INET; /* The default for most cases */
 int type = SOCK_STREAM; /* Says it’s a TCP connection */
 in_port_t port=PORT;
 int result;
 struct sockaddr_in server;
 int lserver = sizeof(server);
 int fdListen, fdConn, fd;
 char console_buffer[BUFFER_SIZE];
 char ip_input_buffer[BUFFER_SIZE];
 char ip_output_buffer[BUFFER_SIZE];

A C program always starts at
main()

This section is declaring the
variables.

Networks - Lab 0 19

server.c – the code:
if ((fd = socket (family, type, 0)) < 0)
 SysError ("Error on socket");

 server.sin_family = family;
 server.sin_port = port; /* client & server see same
port*/
 server.sin_addr.s_addr = htonl(INADDR_ANY); /* the kernel assigns the IP
addr*/

Open a socket. The
socket descriptor is
returned in fd.

Fill in the structure that
defines how we want to
connect to other programs.

Networks - Lab 0 20

server.c – the code:

 if (bind (fd, (struct sockaddr *)&server, sizeof(server)) == -1)
 SysError ("Error on bind");

 if (listen (fd, SOMAXCONN) == -1) /* set up for listening */
 SysError ("Error on listen");

 fdListen = fd;

Server program here. Then
do the bind and listen.

Networks - Lab 0 21

server.c – the code:
while(TRUE)

 {
 if ((fdConn = accept (fdListen, (struct sockaddr *)&server,
&lserver)) <0)
 SysError ("Error on accept");

 bzero(ip_input_buffer, sizeof(ip_input_buffer));

 while (recv(fdConn, ip_input_buffer, BUFFER_SIZE - 2, 0) > 0)
 {
 input_value = atoi(ip_input_buffer);
 input_value = input_value + 1;

 bzero(ip_output_buffer, sizeof(ip_output_buffer));
 sprintf(ip_output_buffer, "%d", input_value);

 if (send(fdConn, ip_output_buffer,
strlen(ip_output_buffer) +1, 0) <= 0)

 SysError("Error on send");

 } /* End of while recv is successful */
 close (fdConn);
 } /* End of while TRUE */
 } /* End of server case */

Repeat forever

recv from client

Send back to the client

Calculate the new value

recv will keep on working until the client closes the connection. The recv will then
take an error in that case.

Networks - Lab 0 22

client.c – the code:
main (int argc, char *argv[])
 {
 long input_value;
 int family = AF_INET; /* The default for most cases */
 int type = SOCK_STREAM; /* Says it’s a TCP connection */
 in_port_t port=PORT;
 int result;
 struct sockaddr_in client;
 struct sockaddr_in server;
 int lclient = sizeof(client);
 int fdListen, fdConn, fd;
 char console_buffer[BUFFER_SIZE];
 char ip_input_buffer[BUFFER_SIZE];
 char ip_output_buffer[BUFFER_SIZE];
 struct hostent *host;

A C program always starts at
main()

This section is declaring the
variables.

Networks - Lab 0 23

client.c – the code:

 /* Checks first we have the correct number of arguments */
 if (argc < 2) {
 printf("The program expects arguments\n");
 printf("tcp_client <hostname>\n");
 exit(0);
 }

 if ((host = gethostbyname(argv[1])) == (struct hostent *)NULL)
 {
 SysError("Error on gethostbyname");
 return(-1);
 }

if ((fd = socket (family, type, 0)) < 0)
 SysError ("Error on socket");

 client.sin_family = family;
 client.sin_port = port; /* client & server see same
port*/
 client.sin_addr.s_addr = htonl(INADDR_ANY); /* the kernel assigns the IP
addr*/

Fill in the structure that
defines how we want to
connect to other programs.

Find Host IP address
based on Name using DNS
server

Check Number of
arguments of program

Networks - Lab 0 24

Client.c – the code:
 /* Fills server socket structure with correct fields */
 server.sin_family = family;
 server.sin_port = port; /* client & server see same
port*/
 memcpy((char *)&server.sin_addr, (char *)host->h_addr, host->h_length);

Initialise server
characteristics.

Networks - Lab 0 25

client.c – the code:

if (connect(fd, (struct sockaddr *)&server, sizeof(server)))
 SysError ("Error on connect");

This is for a client.

So the first thing a client
does is a connect to the
server.

Networks - Lab 0 26

client.c – the code:
while(TRUE)

 {
 printf("> ");
 scanf("%s", console_buffer);
 if (atoi(console_buffer) == -1)
 {
 printf("We Have Successfully Finished.\n");
 exit(0);
 }
 bzero(ip_output_buffer, sizeof(ip_output_buffer));
 strcpy(ip_output_buffer, console_buffer);

 if (send(fd, ip_output_buffer,
strlen(ip_output_buffer) + 1, 0) <= 0)

 SysError("Error on send");

 bzero(ip_input_buffer, sizeof(ip_input_buffer));

 if (recv(fd, ip_input_buffer,
sizeof(ip_input_buffer) - 2, 0) <= 0)

 SysError("Error on recv");
 printf("%s\n", ip_input_buffer);
 } /* End of while TRUE */
 } /* End of client case */
} /* End of main */

Loop here forever.

Get data from console

send data to server

recv data from server

End of main

Networks - Lab 0 27

server.c / client.c – the code:

void SysError(char *string)
 {
 printf("Error found: String given is --> %s\n", string);
 exit(0);
}

How to use a
subroutine.

