Computer Networks

Lab O

Yvan Petillot

Networks-Lab 0

What You Will Do In This Lab.

The purpose of this lab is to help you become familiar with the
UNIX/LINUX on the lab network. This means being able to
do editing, compiling, etc. of simple programs. These
programs will be written in C, so you may have some
more learning/reviewing ahead of you.

You have one task before you:

. Using your favorite editor, type in (or paste) the program
given later in this document. Compile it and run it and
show that it produces communication between two
Instances of the program.

. You will know you are done when you have demonstrated
to me that your program works.

Networks-Lab 0 2

Where To Get Documentation

There are many sources of information to help you with this lab. Here are
some of those sources:

Learning C:
Learning GDB — how to debug:
Learning UNIX:

All of these skills can be acquired (I hope) from the documentation available
on my webpage

If you don’t like these documents, there are plenty of other ones out on the
web. Go wild!

Networks-Lab 0 3

Where To Get Documentation

For information in more detail than is available
off of my home page, see the following links:

GNU Debugger — remote copy is at:
http://www.gnu.org/manual/gdb-4.17/html mono/gdb.html

GCC — Compiler: - remote copy is at:
http://gcc.gnu.org/onlinedocs/gcc-3.0.1/gcc.html

Networks-Lab 0 4

Detour — a gdb quickstart

Here’s all you need to know to get started using gdb:

Start the debugger with “gdb program_name”

List the lines with “I”

Set a breakpoint with “b <line_number>"

Print the value of a variable with “p <variable _name>”
To run the first time, say “run <optional arguments>
To continue from a breakpoint, use “c”

To single step, use “s”

To stop the debugger, use “qg”

Networks-Lab 0

Project O:

Here’s the code for this lab. We will be going through it so that you
understand what it does.

Type it in using your favorite editor. In this example, the source file is
named proj0.c

Get a port number from me. This way you won’t all be colliding with
each other.

To compile this code, say “gcc —g proj0.c —o proj0”
This will produce an output file that you can run.
As the code explains, there are several modes of execution.

projo —s& creates a process running the code as a server
projo —c creates a process running the code as a client

Networks-Lab 0 6

Computer Chat

« How do we make computers talk?

7] >

P

—n

« How are they interconnected?

Internet Protocol (IP)

Networks-Lab 0

Internet Protocol (IP)

 Datagram (packet) protocol
 Best-effort service

0SS
Reordering
Duplication

Delay

 Host-to-host delivery

Networks-Lab 0

IP Address

32-bit identifier
Dotted-quad: 134.111.10.43
www.clarku.edu - > 140.232.1.19

Identifies a host interface (not a host)

192.18.22.13

= 209.134.16.123

Networks-Lab 0

Transport Protocols

Best-effort not sufficient!

 Add services on top of IP
 User Datagram Protocol (UDP)
— Data checksum
— Best-effort
« Transmission Control Protocol (TCP)
— Data checksum
— Reliable byte-stream delivery
— Flow and congestion control

Networks-Lab 0

10

Ports

ldentifying the ultimate destination
 |P addresses identify hosts
 Host has many applications
 Ports (16-bit identifier)

Application WWW E-mail Telnet

Port SVNST /'3

137.195.52.9

Networks-Lab 0 11

Socket

How does one speak TCP/IP?

e Sockets provides interface to TCP/IP
 Generic interface for many protocols

Networks-Lab 0

12

Sockets

« |dentified by protocol and local/remote address/port
 Applications may refer to many sockets
 Sockets accessed by many applications

Aoplications Aoplications

TCP sockats - [UDP sackats
.
------ = = Sodei bound 1o pore
E |
TI:P I_E 1TEESE LIDP Fl:lrE

Networks-Lab 0 13

TCP/IP Sockets

« mySock = socket(family, type, protocol);
« TCP/IP-specific sockets

Fam”y Type Protocol
TCP SOCK_STREAM IPPROTO_TCP
PF_INET
UDP SOCK_DGRAM IPPROTO_UDP

e Socket reference
— File (socket) descriptor in UNIX
— Socket handle in WinSock

Networks-Lab 0 14

Generic

IP Specific

Specifying Addresses

struct sockaddr

{
unsigned short sa_family;
char sa_data[14];

¥

struct sockaddr _in

{
unsigned short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

3

struct in_addr

{
unsigned long s_addr;

3

/* Address family (e.g., AF_INET) */
[* Protocol-specific address information */

/* Internet protocol (AF_INET) */
[* Port (16-bits) */

[* Internet address (32-bits) */

/* Not used */

[* Internet address (32-bits) */

Networks-Lab 0

15

TCP Server

Overview of The

. _ socket()
Connection Mechanism v
bind()
TCP Client *
listen()
socket() v
* Connection establishment accept()
connect() |e—
; |
write() Data (Request) - read()
v
read() i
v end-of-file notification read()
close() ¢
write()

Networks-Lab 0

16

server.c — the code:

/***

server.c Designed as a sinple class exanple. The programwaits for
a request. It assunes that request is nunerical. It adds
+1 to the input and sends it back.

Thi s program expects no argunents:
server

Yvan Petill ot October 2002

**/

#i ncl ude <stdlib. h>

#i ncl ude <sys/ socket. h> :

#i ncl ude SUEERIC TN P E— These say to include more
information from include files.

#def i ne TRUE 1

#defi ne FALSE 0

#def i ne BUFFER_SI ZE 20 Cr——

#tdefine PORT 10000 | The compiler substitutes these values

whenever it sees the define.

voi d SysError(char *);

Networks-Lab 0 17

server.c — the code:

main (int argc, char *argv[])4—A C program always starts at

{ main()
| ong I nput _val ue;
i nt famly = AF_| NET; /* The default for nost cases */
I nt type = SOCK_ STREAM /* Says it’'s a TCP connection */
I n_port t por t =PORT;
I nt resul t;
struct sockaddr in server;
I nt | server = sizeof(server);
I nt fdLi sten, fdConn, fd;
char consol e _buf f er[BUFFER_SI ZE]
char I p_i nput buffer[BUFFER SI ZE] ;
char | p_out put _buf fer[BUFFER_SI ZE] ;
\This section is declaring the
variables.

Networks-Lab 0 18

server.c — the code:

if ((fd = socket (fanmily, type, 0)) < 0 Open a socket. The
SysError ("Error on socket"); socket descriptor is

returned in fd.

server.sin famly = famly;

server. sin_port = port; [* client & server see sane
port*/

server.sin_addr.s _addr = htonl (I NADDR ANY); /* the kernel assigns the IP
addr */

Fill in the structure that
defines how we want to
connect to other programs.

Networks-Lab 0 19

server.c — the code:

if (bind (fd, (struct sockaddr *)&server, sizeof(server)) == -1)
SysError ("Error on bind");

i f (listen (fd, SOVAXCONN) == -1) /* set up for listening */
SysError ("Error on |listen");

fdLi sten = fd;

Server program here. Then
do the bind and listen.

Networks-Lab 0 20

server.c — the code:

if ((fdConn = accept (fdListen, (struct sockaddr *)&server,
& server)) <0)
SysError ("Error on accept");
bzero(ip_input buffer, sizeof(ip_input_buffer));

while (recv(fdConn, ip_input_buffer, BUFFER SIZE - 2, 0) > 0)

{

I nput _val ue

atoi (ip_input_buffer); |F€CV from client

I nput _val ue I nput _val ue + 1;

Calculate the new value

bzero(ip_output buffer, sizeof(ip_output_ buffer));
sprintf(ip_output buffer, "%", input_value);

Send back to the client
if (send(fdConn, ip_output buffer,

strlien(ip_output_buffer) +1, 0) <= 0)
SysError("Error on send");

} /* End of while recv is successful */
cl ose (fdConn);
} /* End of while TRUE */
} /* End of server case */

recv will keep on working until the client closes the connection. The recv will then
take an error in that case. Networks- Lab O 21

client.c — the code:
main (int arge, char *argv[]) <@ A C program always starts at

{ main()

| ong I nput _val ue;

i nt famly = AF_| NET; /* The default for nost cases */
I nt type = SOCK_ STREAM /* Says it’'s a TCP connection */
I n_port t por t =PORT;

I nt resul t;

struct sockaddr _in client;
struct sockaddr in server;

I nt | client = sizeof(client);

I nt fdLi sten, fdConn, fd;

char consol e _buf f er [BUFFER_SI ZE] ;
char I p_i nput _buf f er [BUFFER_SI ZE] ;
char | p_out put _buf fer[BUFFER_SI ZE] ;
struct hostent *host ;

This section is declaring the
variables.

Networks-Lab 0 22

client.c — the code:

/* Checks first we have the correct nunber of argunments */
if (argc <2) {

printf("The program expects argunents\n"); Check Number of
2;: tn'z 12)5 "tcp_client <hostnanme>\n")< arguments of program

}

I f ((host = gethostbynane(argv[1l])) == (struct hostentF’il)]HUH_aSt IP address

{ .
SysError ("Error on gethost bynamNbased on Name using DNS

return(-1); server
}

Fill in the structure that

if ((fd = socket (family, type, 0)) < 0) defines how we want to
SysError ("Error on socket"); connect to other programs.

client.sin famly = famly;

client.sin_port = port; /* client & server see sane
port*/

client.sin _addr.s _addr = htonl (I NADDR ANY); /* the kernel assigns the IP
addr */

Networks-Lab 0 23

Client.c — the code:

/* Fills server socket structure with correct fields */
server.sin famly =
server. sin_port = port; /[* client & server see sane

port*/
mencpy((char *)&server.sin_addr, (char *)host->h_addr, host->h_|ength);

Initialise server
characteristics.

Networks-Lab 0 24

client.c — the code:

This is for a client.

i f (connect(fd, (struct sockaddr *)&server, sizeof(server)))
SysError ("Error on connect");

So the first thing a client
does is a connect to the
server.

Networks-Lab 0

25

}
}

client.c — the code:

whi | e(TRUE) ¢ | | 00D here forever.

{

printf("> ");

scanf("9%", console buffer); 4—‘

if (atoi(console buffer) == -1) Get data from console
{
printf("W Have Successfully Finished.\n");
exit(0);

}

bzero(ip_output buffer, sizeof(ip_output buffer));
strcpy(ip_output buffer, console buffer);

if (send(fd, ip_output buffer, send data to server

strlien(ip_output _buffer) + 1, 0) <=0)
SysError("Error on send");

bzero(ip_input _buffer, sizeof(ip_input_buffer));

£ (recv(fd, ip_input_buffer, <«m|lECV datairom server

si zeof (i p_input_buffer) - 2, 0) <= 0)
SysError("Error on recv");
printf("%\n", ip_input _buffer);
[* End of while TRUE * [
/[* End of client case */

} /* End of nmain */
‘\‘ End of main Networks-Lab O 26

server.c / client.c — the code:

- SvsE (ch o) How to use a
VOl Serror char *strin .
{ y g subroutine.

printf("Error found: String givenis --> 9%\n", string);
exit(0);

Networks-Lab 0 27

