
1

For more info check out the Unix man pages

(i.e., do “man -k topic-you-wish-to-search”)

-or-

Unix in a Nutshell

-and

C Language Reference Manual (K&R).

This document gives a starter in how to program in C. There’s
very little here that’s UNIX specific – all the functions
described here will run on any operating system.

2

• Sends text to standard output (stdout).
void main()

{
printf(“Hello World \n”);
}

• printf is a routine that is part of the C
standard library (i.e., libc)

• libc is linked into your program by default.
• Other libs (i.e., libm -- math -- is not)

3

• Scanf -- reads text from standard input (i.e.,
stdin)
void main()
{

char buffer[32];
int i;

scanf(“%s %d”, buffer, &i);
} /* Note, we use buffer and not &buffer */

4

• File descriptors...or more precisely a pointer
to type FILE.

• These FILE descriptors are setup when your
program is run.

• So, then what about regular user files...

5

• fopen -- opens a file

• fclose -- close a file

• fprintf -- “printf” to a file.

• fscanf -- read input from a file.

• ...and many other routines..

6

#include<stdio.h>

void main()

{

FILE *myfile;

myfile = fopen(“myfile.txt”, “w”);

}

• 2nd arg is mode:
– w -- create/truncate file for writing

– w+ -- create/truncate for writing and reading

– r -- open for reading

– r+ -- open for reading and writing

7

#include<stdio.h>

#include<errno.h>

void main()

{

FILE *myfile;

if(NULL == (myfile = fopen(“myfile.txt”, “w”)))

{

perror(“fopen failed in main”);

exit(-1);

}

fclose(myfile);

/* could check for error here, but usually not needed */

}

8

#include<stdio.h>

#include<errno.h>

void main()

{

FILE *myfile;

int i, j, k;

char buffer[80];

if(NULL == (myfile = fopen(“myfile.txt”, “w”)))

{

perror(“fopen failed in main”);

exit(-1);

}

fscanf(myfile, “%d %d %d %s”, &i, &j, &k, buffer);

fclose(myfile);

/* could check for error here, but usually not needed */

}

9

#include<stdio.h>

#include<errno.h>

void main()

{

FILE *myfile;

int i, j, k;

char buffer[80];

if(NULL == (myfile = fopen(“myfile.txt”, “w”)))

{

perror(“fopen failed in main”);

exit(-1);

}

fscanf(myfile, “%d %d %d %s”, &i, &j, &k, buffer);

fprintf(myfile, “%d %d %d %s, i, j, k, buffer);

fclose(myfile);

/* could check for error here, but usually not needed */

}

10

• They to are realized as a file descriptor which
links either ouput to input or input to output.
– recall doing shell commands of the form:

– > ls -al | grep “Jan 1” | more

– “|” is implemented as a libc call to “popen”

• Ex: let’s send e-mail from a C program...

• First, how do you “sendmail”???

11

• sendmail: is a unix command that allow the transmission and
delivery of mail. Note – everything so far in this document has
applied to “C” in general – but sendmail is a UNIX specific
command.

• extremely complicated program and it is full of security holes (i.e.,
never run sendmail on your unix machine).

• To use sendmail:
> /usr/lib/sendmail -t
To: jbreecher@clarku.edu
From: bogus
Subject: test
This is a test!!.
. /* NOTE: the “.\n” here is needed to terminate */
>

12

#include<stdio.h>

#include<errno.h>

void main()

{

FILE *mailpipe;

if(NULL == (mailpipe = popen(“usr/lib/sendmail -t”, “w”)))

{

perror(“popen failed in main”);

exit(-1);

}

fprintf(mailpipe, “To: chrisc@cs.rpi.edu \n”);

fprintf(mailpipe, “From: bogus \n”);

fprintf(mailpipe, “Subject: test \n”);

fprintf(mailpipe, “This is a test. \n”);

fprintf(mailpipe, “.\n”);

pclose(mailpipe);

/* could check for error here, but usually not needed */

}

13

• fgets(char *buffer, int maxsize, FILE *f);
– retrieves a whole line at a time up to newline or EOF.

• sscanf - does scanf on a string buffer.

• sprintf - does printf into a string buffer.

• You will use these in assignment 1...

• And speaking that, let’s cover that now!!

