
1

This document gives a general overview of the work done by an
operating system and gives specific examples from UNIX.

2

• Manages Resources:
– I/O devices (disk, keyboard, mouse, terminal)

– Memory

• Manages Processes:
– process creation, termination

– inter-process communication

– multi-tasking (scheduling processes)

3

• We will focus on the Unix operating
system.

• There are many flavors of Unix, but the
libraries that provide access to the kernel
are pretty standard (although there are
minor some differences between different
flavors of Unix).

4

Posix - Portable Operating System Interface

• Posix is a popular standard for Unix-like
operating systems.

• Posix is actually a collection of standards
that cover system calls, libraries,
applications and more…

• Posix 1003.1 defines the C language
interface to a Unix-like kernel.

5

• Most current Unix-like operating systems
are Posix compliant (or nearly so).

Linux, BSD, Solaris, IRIX

• We won’t do anything fancy enough that we
need to worry about specific
versions/flavors of Unix (any Unix will do).

6

• process primitives
– creating and managing processes

• managing process environment
– user ids, groups, process ids, etc.

• file and directory I/O

• terminal I/O

• system databases (passwords, etc)

7

System Calls

• A system call is an interface to the kernel that
makes some request for a service.

• The actual implementation (how a program
actually contacts the operating system) depends on
the specific version of Unix and the processor.

• The C interface to system calls is standard (so we
can write an program and it will work anywhere).

8

• Every process has the following attributes:
– a process id (a small integer)

– a user id (a small integer)

– a group id (a small integer)

– a current working directory.

– a chunk of memory that hold name/value pairs
as text strings (the environment variables).

– a bunch of other things…

9

• User ids and group ids are managed via a
number of functions that deal with system
databases.

• The passwsd database is one example.

• When you log in, the system looks up your
user id in the passwd database.

10

• For each user there is a record that includes:
– user’s login name
– user id (a small integer – 16 bits)
– group id
– home directory
– shell
– encrypted password
– user’s full name

11

struct passwd {

char *pw_name; /* user login name */

char *pw_passwd; /* encrypted password */

int pw_uid; /* user id */

int pw_gid; /* group id */

char *pw_gecos; /* full name */

char *pw_dir; /* home directory */

char *pw_shell; /* shell */

}

12

#include <pwd.h>

/* given a user id – get a record */

struct passwd *getpwuid(int uid);

/* given a login name – get a record */

struct passwd *getpwnam(char *name);

13

• The Unix filesystem is based on directories
and files.

• Directories are like folders (for you
Windows Weenies).

14

• Every file has a name.

• Unix file names can contain any characters
(although some make it difficult to access the
file).

• Unix file names can be long!
– how long depends on your specific flavor of Unix

15

• Each file can hold some raw data.

• Unix does not impose any structure on files
– files can hold any sequence of bytes.

• Many programs interpret the contents of a
file as having some special structure
– text file, sequence of integers, database records,

etc.

16

• A directory is a special kind of file - Unix
uses a directory to hold information about
other files.

• We often think of a directory as a container
that holds other files (or directories).

17

• Review: every file has a name.

• Each file in the same directory must have a
unique name.

• Files that are in different directories can
have the same name.

18

/

bin etc users tmp usr

hollid2 scully bin etc

netprog unix X ls who

19

• The filesystem is a hierarchical system of
organizing files and directories.

• The top level in the hierarchy is called the
"root" and holds all files and directories.

• The name of the root directory is /

20

• The pathname of a file includes the file
name and the name of the directory that
holds the file, and the name of the directory
that holds the directory that holds the file,
and the name of the … up to the root

• The pathname of every file in a Unix
filesystem is unique.

21

• To create a pathname you start at the root
(so you start with "/"), then follow the path
down the hierarchy (including each
directory name) and you end with the
filename.

• In between every directory name you put a
"/".

22

/

bin etc users tmp usr

xxx scully bin etc

netprog unix X ls who

/usr/bin/ls
Syllabus

/users/xxx/unix/Syllabus

23

• The pathnames described in the previous
slides start at the root.

• These pathnames are called "absolute
pathnames".

• We can also talk about the pathname of a
file relative to a directory.

24

• If we are in the directory /users/hollid2, the
relative pathname of the file Syllabus is:

unix/Syllabus

• Most unix commands deal with pathnames!

• We will usually use relative pathnames
when specifying files.

25

• The entire hierarchy can actually include
many disk drives.
– some directories can be on other computers

/

bin etc users tmp usr

xxx scully

26

• Every process runs in a directory.

• This attribute is called the

current working directory

27

char *getcwd(char *buf, size_t size);

Returns a string that contains the absolute
pathname of the current working directory.

There are functions that can be used to change
the current working directory (chdir).

28

#include <unistd.h>

pid_t getpid(void);

uid_t getuid(void);

29

• The only way to create a new process is to
issue the fork() system call.

• fork() splits the current process in to 2
processes, one is called the parent and the
other is called Regis.

• Actually it’s called the child.

30

• The child process is a copy of the parent
process.

• Same program.

• Same place in the program (almost – we’ll
see in a second).

• The child process gets a new process ID.

31

• The child process inherits many attributes
from the parent, including:
– current working directory

– user id

– group id

32

fork()

#include <unistd.h>

pid_t fork(void);

fork() returns a process id (a small integer).

fork() returns twice!

In the parent – fork returns the id of the child
process.

In the child – fork returns a 0.

33

#include <unistd.h>

#include <stdio.h>

void main(void) {

if (fork())

printf(“I am the parent\n”);

else

printf(“I am the child\n”);

printf(“I am the walrus\n”);

}

34

#include <unistd.h>

#include <stdio.h>

void main(void) {

 while (fork()) {

 printf("I am the parent %d\n“

,getpid());

 }

 printf("I am the child %d\n“

,getpid());

}

35

• Try pressing Ctrl-C to stop the program.

• It might be too late.

• If this is your own machine – try rebooting.

• If this is a campus machine – run for your
life. If they catch you – deny everything.

Try listening next time…

36

• fork() is the only way to create a new
process.

• This would be almost useless if there was
not a way to switch what program is
associated with a process.

• The exec() system call is used to start a
new program.

37

exec

• There are actually a number of exec
functions:
execlp execl execle execvp execv execve

• The difference between functions is the
parameters… (how the new program is
identified and some attributes that should be
set).

38

• When you call a member of the exec family
you give it the pathname of the executable
file that you want to run.

• If all goes well, exec will never return!

• The process becomes the new program.

39

int execl(char *path,

 char *arg0,

 char *arg1, …,

 char *argn,

 (char *) 0);

execl(“/home/chrisc/reverse”,

“reverse”, “Hidave”,NULL);

40

execl
#include <unistd.h> /* exec, getcwd */
#include <stdio.h> /* printf */

/* Exec example code */

/* This program simply execs "/bin/ls" */

void main(void) {

 char buf[1000];

 printf(“Here are the files in %s:\n",
 getcwd(buf,1000));

 execl("/bin/ls","ls","-al",NULL);

 printf("If exec works, this line won't be
printed\n");

}

41

fork() exec()

• Program does the following:
– fork() - results in 2 processes

– parent prints out it’s PID and waits for child
process to finish (to exit).

– child prints out it’s PID and then execs “ls”
and exits.

42

execandfork.c

#include <unistd.h> /* exec, getcwd */

#include <stdio.h> /* printf */

#include <sys/types.h> /* need for wait */

#include <sys/wait.h> /* wait() */

43

execandfork.c

void child(void) {

 int pid = getpid();

 printf("Child process PID is %d\n",pid);

 printf("Child now ready to exec ls\n");

 execl("/bin/ls","ls",NULL);

}

44

execandfork.c

void parent(void) {

 int pid = getpid();

 int stat;

 printf("Parent process PID is %d\n",pid);

 printf("Parent waiting for child\n");

 wait(&stat);

 printf("Child is done. Parent now
transporting to the surface\n");

}

45

execandfork.c

void main(void) {

 printf("In main - starting things with a
fork()\n");

 if (fork()) {

parent();

 } else {

child();

 }

 printf("Done in main()\n");

}

46

execandfork.c
> ./execandfork

In main - starting things with a fork()

Parent process PID is 759

Parent process is waiting for child

Child process PID is 760

Child now ready to exec ls

exec execandfork fork

exec.c execandfork.c fork.c

Child is done. Parent now transporting to
the surface

Done in main()

>

