

Computer Networks

Introduction to Computer Networks and Data Communications

Dr Yvan Petillot

Data Communications and Computer Networks

A bit of history...

1980: Networks are an academic curiosity

1988: All networks wires are copper based

1988: Networks used by universities and large businesses

1996: Networks used by millions of people

2002: High bandwidth connections and information

highways are common place

2050: ?

Who uses networks and why?

· Companies

- Resource sharing
- · High reliability
- · Saving money

Client server model

· Individuals

- Access to remote information
- Person to person communication
- Interactive entertainment
- Online shopping

Data Communications and Computer Networks

What A Network Does

Provides communication that is

- Reliable
- Fair
- Efficient
- From one application to another

Automatically detects and corrects

- Data corruption
- Data loss
- Duplication
- Out-of-order delivery

Automatically finds optimal path from source to destination

The Language of Computer Networks

WAN: Wide area network - a large network that encompasses parts of states, multiple states, countries, and the world

LAN: Local Area Network. Small, privately owned, localised network.

Data communications - the transfer of digital or analog data using digital or analog signals

Voice network - a network that transmits telephone signals

Data network - a network that transmits computer data

Data Communications and Computer Networks

Type of networks

- · Broadcast (small localised)
 - · One communication channel shared by all users
 - · All messages received by all users
 - Users decode message target and discard useless messages
 - Some messages are addressed to all users / groups of users (multicast)
- · Point to point (large, de-localised)
 - · many connections between pairs of computers

Network topologies

Data Communications and Computer Networks

The Big Picture of Network hardware

Networks are composed of many devices, including:

- workstations
- •servers
- •bridges
- •routers
- •hubs and switches
- •nodes

Examples

Figure 1-1 An overall view of the interconnection between local area networks and wide area networks

Data Communications and Computer Networks

Examples

Figure 1-3
A microcomputer lab, showing the cabling that exits from the back of a computer and runs to a collection point of the LAN in the back of the room

Examples

Figure 1-4
A microcomputer
sending data over a
telephone line to an
Internet service
provider and into the
Internet

Data Communications and Computer Networks

Examples

Figure 1-5 Two local area networks connected by a bridge

Examples

Figure 1-6 Local area network to a wide area network connection

Data Communications and Computer Networks

Examples

Figure 1-8
Example of a television
company using a satellite system to broadcast
television services into
homes and businesses

Examples

Figure 1-9 An example of a laptop computer connected to a wireless telephone system to transmit and receive data

Data Communications and Computer Networks

A network is a combination of:

- · hardware
- · data communications
- · protocols
- · routing
- · software
- · services (applications)

How is it all organised and managed?

Network architecture models

Network Architecture Models

- A reference model that describes the layers of hardware and software necessary to transmit data between two points
- Reference models are necessary to increase the likelihood that different components from different manufacturers will converse
- There are two models that are required learning: The OSI Model, and the Internet Model (TCP/IP model).

Data Communications and Computer Networks

Network architecture models

Data Communications and Computer Networks

Network architecture models

Physical layer:

handles the transmission of bits over a communications channel. Includes voltage levels, connectors, media choice, modulation techniques.

Data link layer:

responsible for taking the data and transforming it into a *frame* with header, control and address information, and error detection code.

Network architecture models

Network layer:

responsible for creating maintaining and ending network connections. Transfers a data packet from node to node within the network.

Transport layer:

provides an end-to-end, error-free network connection. Makes sure the data arrives at the destination exactly as it left the source.

Session layer:

responsible for establishing sessions between users.

Data Communications and Computer Networks

Network architecture models

<u>Presentation layer:</u>

performs a series of miscellaneous functions necessary for presenting the data package properly to the sender or receiver

Application layer:

where the application using the network resides. Common network applications include remote login, file transfer, e-mail, and web page browsing.

Network architecture models

The Internet Model (TCP/IP)

Figure 1-13
The layers of the Internet model compared to the layers of the OSI model

Data Communications and Computer Networks

Network architecture models

Interface layer:

equivalent to the OSI's physical and data link layers

Network layer:

roughly equivalent to the OSI's network layer

Transport layer:

performs same function as OSI transport layer

Application layer:

equivalent to the OSI's presentation and application layers

Network architecture models

Logical and physical connections

A logical connection is one that exists only in the software, while a physical connection is one that exists in the hardware.

Note that in a network architecture model, only the lowest layer contains a physical connection, while all higher layers contain logical connections.

Network architecture models

Our hybrid model

5	Application layer
4	Transport layer
3	Network layer
2	Data link layer
1	physical layer

Data Communications and Computer Networks

Network software

CONNECTION-ORIENTED / CONNECTIONLESS SERVICES:

Connection oriented service -

Like the phone system. The system establishes a connection, uses it, and closes it. Acts like a tube. Data comes out the other end in the same order as it goes in.

Connection Setup
Data Transfer
Connection Termination

Connectionless service -

Like the post office. Each message has the entire address on it. Each message may follow a different route to its destination. Ordering not maintained.

Data Transfer