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What Is Statistics?

Statistics is about collecting, presenting, and characterizing information

to assist in data analysis and decision-making.

e Descriptive statistics is involved with the collection, presentation,
and characterization of data sets to simply describe properties of a

population.

e Inferential statistics aims to make inferences about a population
based on information contained in a sample.

Here population is the set of data of our interest, and a sample is any

selected subset of the population.

Typical areas of applications of statistics are business, science, politics,

etc.
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Examples

Example. A supermarket needs to know how many cashiers it needs so

that on average 90% of their customers wait no longer than 2 minutes.
[]

Example. A bank wants to better serve their clients. It sends out a
questionnaire to 2000 randomly selected clients with questions about
their banking habits and their use of computers. Depending on the
outcome of these questionnaires the bank has to decide whether to invest
more into online banking or not. ]

Example. A manufacturer of screws makes special screws for a
customer. From every lot of 1000 screws the manufacturer wants to
select screws randomly to check whether they match the customer’s
specifications or not. How many screws from each lot should be tested

to be 98% confident that all screws in that lot meet the specifications?
]
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Examples

Example. In an experiment a scientist measures the speed of light.
Even though theory tells her that there is only one actual value for the
speed of light, she finds slightly different values in each trial due to
external factors and inaccurate equipment. How should she estimate the
speed of light given this set of data? [l

Example. An airline wants to maximize profit and sell as many seats
as possible. However, due to ‘no-shows’ seats often remain empty.

Therefore many airlines overbook their planes. But now it can happen
that passengers have to stay behind or have to be booked on planes of

other companies.

How should the airline estimate the number of no-shows to plan the
optimal number of reservations, that is, which number of reservations
will maximize the number of filled seats, but minimizes the number of

passengers with reservations who get denied. [l
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Types of Data

Quantitative data are data that represent an amount or a quantity. These

can be discrete data or continuous data:
e number of books bought this month;
e height;
e weight, etc.

Qualitative data (also called categorical data) are data that have no

quantitative interpretations:
e your favorite author;
e the grocery store where you do your weekly shopping;

e the names of the computer stores listed in the directory, etc.
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Graphical Methods For Describing Data

There are lots of different ways to represent quantitative data, for example
tables, vertical or horizontal bar graphs, pie charts, scatter diagrams, etc.
The following examples each show the money available for research at
U.K. universities during the academic year 1998/99 (source: The Times
Higher Education Supplement) in 1000 £:

Funding councils 1011835 Research councils 599606
Other UK government 316413 UK charities 429163
UK industry 221188 EU government 155435
Other 33598 Other EU 28218
Other overseas 91071

Total: 2886527m £.
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Numerical Values Associated to Samples

We consider a relative frequency table (also called the relative frequency
distribution) of a sample.

A variety of numerical values can be associated to a sample. These values
aim
e to help locate the center of the relative frequency distribution of the

data (arithmetic mean, median, mode); and

e to measure how the data is spread (range, variance, standard
deviation).
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Measures of Central Tendency

We consider a sample or an experiment where we made successively the
observations x1,...,x,. Arranged in a relative frequency table the data
may look as on the left, or as sketched on the right:

Y
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Measures of Central Tendency

The arithmetic mean x of the sample x4, ..., x, is the average
mn
PPV LY
n
The median of the sample z4,...,x, is the middle number when the

values are arranged in ascending or descending order.

The mode of the sample z4,...,x, is the value which occurs with
greatest frequency.

Example. Consider the measurement
1,2,2,2,2,3,3,4.

The arithmetic means is T = 2, the median is m = (2 + 2) = 2, and
the mode is also 2. L]
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Measures of Central Tendency

mean (point of balance) median

mode (peak point)

Y
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Measures of Variation

The range of a sample is the difference between the largest and smallest
values in the sample.

The variance of the sample z1,...,z, is
$2 — >_i(zi —7)? _ > i Ti — %(Zz z;)’
n—1 n—1 '

The standard deviation of a sample is the square root of the variance.

Example. With the data from the previous example continued the range
Is4 — 1 = 3, and the variance is

1 1
— 7(1+4-22+2~32+1-42—§.192)
1 361
— (49 — —
7( 8>
~ 0.0554

]

The variance measures (almost) the arithmetic mean of the (square of
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Measures of Variation

the) distance of the values in the sample z1, ..., x, from the arithmetic
mean ZI.

Note that we have to square, that is, that we cannot consider % Zz(xz —
T): A simple calculation shows that

Z(xi—£)22xi—§:£=nf—n3_320,

) )

and + >".(z; — Z) = 0 does not contain any information.
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The Role of the Standard Deviation

The variance of a sample is primarily of theoretical interest, but the
standard deviation has a clear meaning:

Theorem. (Tchebysheff's Theorem) For a sample of size n and
1 < k <mn, at least 1 — ki of the observations lie within k standard

deviations of their mean.

The following empirical rule is also useful. It holds for mound-shaped
(bell-shaped) frequency distributions of samples:

e Approximately 68% of the observations will lie within 1 standard
deviation of their mean.

e Approximately 95% of the observations will lie within 2 standard
deviations of their mean.

e Almost all observations will lie within 3 standard deviations of their
mean.
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Measures of Relative Standing

Some type of data (scores, health data) is often reported in a manner
that describes their position relative to other data.

The 100pth percentile of a data set is the value x of possible outcomes
such that 100p% of the area of the relative frequency table lies left to
the 100pth percentile.

The lower quartile ();, for a data set is the 25th percentile, the mid-
quartile m for a data set is the 50th percentile, and the upper quartile
(Qy for a data set is the 75th percentile.

Example. If your mark in the statistics module is located on the 72th
percentile then 72% of the students in your class had lower marks than
you, and 28% had higher marks. ]
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An Example

The following table shows the results of an exam with 52 students:

0 0 0 0 0 0 40 41 42 50
50 22 60 60 60 61 62 63 63 63
63 65 66 67 68 70 70 71 71 72
2 73 74 75 75 T7r 80 80 80 &0
80 81 &1 81 81 82 87 87 88 90
94 95

The 6 values 0 come from the fact that some students enrolled in the
class, but didn't show up for the class or the exam. Such values are called
outliers.
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An Example

For this data set we get the following values:

mean z = 62.37

range = 95
median = 70
mode = 0
variance s° = 676.04
standard deviation s = 26.00

Out of the 52 data 40 lie in the interval [z — s,z + 5|, which is 77%. Out
of the data, 46 lie in the interval [Z — 2s, T + 2s], which is 88%. Note
that the frequency distribution is not bell-shaped, but right-skewed.

]
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An Example

As we have seen before, the first 6 values are clearly outliers. What would
have been the results if we had removed these outliers?

meanz = 70.5
range = 95
median = 71.5
mode = 81
variance s> = 179.9
standard deviation s = 13.41

We can see that the mean and mode are not very robust to the outliers
while the median is. Dealing with outliers is the branch of statistics called
Robust Statitics and involves techniques such as RANSAC. This will not
be developped in this course. Just remember that these techniques exist
and that they normally give more robust but less precise estimations.
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The Role of Statistics in Science

Experimental research, whether in engineering, life sciences, information
science, business, or other sciences, involves experimental data. From
this data the scientists derives properties of the whole population. Since
the size of the whole population can be very large this is often the only
possibility to gain insight into properties of the population.

However, this process of inference almost always involves an error. For
example, a sample of 100 potential customers of a new product contains
25 people in favor of the new product, whereas a second sample of again
100 potential customers contains 32 people in favor of the new product.
Hence, there is always uncertainty about the actual property.

Statistics provides scientific tools to enable such inferences with a
probability of certainty, that is, provides methods to judge the reliability
of such inferences. Statistics are also about predicting under uncertainty
(Tracking of a missile) providing models of the underlying (random)
processes encountered in physics, economics,...
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Introduction to Probability Theory

Probability theory deals with the situation where the whole population is
known. We calculate the likelihood that a particular sample is randomly

selected from that population.

Probability theory plays some role in decision-making. If the introduction
of the three previous new products of a company (say, new computer

software) was a flop, would you invest in this company shortly before it
launches its new product? If you are playing blackjack in a casino and

the bank draws 3 blackjacks in a row, do you believe that the deck of
cards is well-shuffled, or that the game is fair?
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Objective Versus Subjective Probability

Very general, probability refers to the chance or likelihood that a particular
event will occur.

We distinguish between subjective and objective probability. Examples
of the former are the chances that Celtic will win the next Champions
League, or that it will rain tomorrow. Examples of the latter are

e the probability that a thrown fair die will show 1 (which is ¢), and
similarly for every other possible outcome;

e the probability that in a shuffled deck of 52 cards the top card is an
ace (which is ).

Objective probability can be defined as

number of outcomes

total number of possible outcomes

W  B34.UC2 Numerical Computation and Statistics in Engineering

Yvan Petillot Unit 1 -20



Objective Versus Subjective Probability

However care have to be taken when using this formula as:

e It is only valid under the assumption that all outcomes
are equally likely.

e This is the classical definition of probability where the
probability of an event can be calculated a-priori. For
experimental data, the number of possible outcome might
not be known and the probability needs to be estimated
from samples as we shall see later in the course. Classical

probablities can then be used as working hypothesis.

Example. Find the probability that 2 dices add to 7. Lets consider as
the number of outcomes the 11 possible sums 2,3,4,...12. The probability
of having 7 is then P = ﬁ according to the definition. Any problem?

This is wrong as the right answer is 1/6. Why? because the 11 sums are
not equally likely. [

]
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Events And Sample Space

Before we see some more examples let us introduce some new concepts.
Each possible outcome of an experiment or an observation is called a
simple event. An event is any possible outcome. The collection of all
simple events is called the sample space.

Example. Let us consider again the example of throwing a die. A
typical simple event is ‘1'. Another event is ‘even’ = {2,4,6}. The
sample space consists of all possible outcomes, that is, of the set of
numbers {1,2,3,4,5,6}. ]

Probability now refers to the probability of occurrence of an event. The

notation
P(A)

denotes the probability that event A occurs.
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Compound Events

The union of two events A and B, in symbols, AU B, is the event that
either A or B occurs. The intersection of the two events A and B, in
symbols A N B, is the event that both A and B occur.

Example. (Rolling a die.)
Let A be the event ‘even’ = {2,4,6}, and B the event ‘divisible by 3" =
{3,6}. Then AUB ={2,3,4,6} and AN B = {6}. ]

Example. (Tossing a fair coin twice.)

Let A be the event ‘H in the first toss’ and B be the event ‘T in the
second toss’. Then A and B is the event {HT}, whereas A or B is
{HH, HT, TT}. H

It is important to note that

P(AUB)=P(A)+ P(B)—P(ANB).
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Complementary Events

The complement of an event A, in symbols A€ or CA, is the union of all
simple events not contained in A.

Example. (Rolling a die.)
If A is the event ‘even’, then AC is the event ‘odd’. Note that
P(AC) =1 P(A)=1-1=1 =

2

It holds in general that

P(A®) =1—-P(A).
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Summary of the Rules

e 0 < P(A) L1.
o P(BlL_JBQUUBk):l;

if the B; are a collection of exhaustive events, that is, if at least one
of the B; must occur.

e P(A) =3, P(AN By),
if the B; are a collection of collectively exhaustive and mutually

exclusive events, that is, if at least one of the B; must occur, but
not two of them can occur at the same time.

e PLAUB)=P(A)+ P(B)— P(AN B).
° P(AC) =1— P(A).

]
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Conditional Probability

Example. (Tossing a die.)

The probability P(‘even’) is 3. But suppose we know that the outcome
was greater or equal than 4. Since this reduces the possible outcomes
to {4,5,6} it seems reasonable to bet with probability P = % that the
outcome is even, since we know that the outcome was either ‘4’, ‘5’ or

l61. D
The conditional probability that event A occurs given that B occurs is
given by
P(AN B)
P(A| B) =
(A1 B) =~

This formula holds in general, but is easiest motivated through counting.
Suppose that we have n simple events, out of which b are in B, and
c <barein AN B. Then, by definition,

_ P(ANB)

- P(B)

C

b

P(A|B)

3|3 |0
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Conditional Probability

Example. A chip manufacturer sends large numbers of micro-chips to a
customer. The customer makes random checks whether the chips meet
his specifications. Suppose S is the event that a lot is shipped to the

customer, and F' the event that a lot contains faulty chips. Longterm

inspections show the following table of probabilities:

SNFC 0.85 SNF 0.02
SCNFC 0.09 SCNE 0.04

Then the probability of a lot being send to the buyer is
P(S)=P(SNF)+P(SNF° =0.02+0.85 = 0.87,

and the conditional probability that a sent lot does not confirm to the
customer’s specifications is

P(F .02
(FN5) —&z0.0Q&

PUF1S) = P(S) ~ 0.087
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Independent Events

Two events A and B are said to be independent if the occurrence of
B does not effect the occurrence of A, that is, if P(A | B) = P(A).
Otherwise we say that the events are dependent.

Example. (Tossing a die.)
We consider the events A = ‘even’ and B = 'less or equal to 3'. Then
P(A)=3 P(B) = % and P(ANB) = %. It follows that

51

P(ANnB) =+ 1
P(A| B) = =S =-_ALPlA
(A1B) = =5 =4 =3# P,
so that the events are dependent. L]

Note that when P(A | B) = P(A) then
P(B)P(A)=P(B)P(A| B)=P(ANnB)=PA)P(B|A),

so that in this case we also have P(B | A) = P(B).
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Independent Events

Example. A manufacturer of hard drives offers a one year guaranty on
his products. Analysis of customer complaints resulted in the following

table:
Reason for complaint
electrical failure mechanical failure | Total
during the first year 31% 41% 72%
after one year 14% 14% 28%
45% 55% 100%
Are the events A = ‘complaint during the first year’ and B =

‘mechanical failure’ dependent?

O

We know from the table that P(A) = 0.72, P(B) = 0.55, and

P(AN B) = 041, thus P(A | B) = ~ 0.76, and the events are
dependent. ]

)
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Independent Events

Suppose that the events A and B are independent, then

P(AN B)

P(A)= P(A| B) = =5

and we get the following multiplication rule for independent events:
P(ANnB)=P(A)-P(B).

Example. (Throwing a die twice.)
Let A be the event that we first observe ‘H’, and B be the event that we
observe ‘T' in the second throw.

Then P(A) =2 =3 = P(B), and P(ANB) =

4= 2
are independent as expected. L]

- so that the events

T
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Counting

Many of our previous examples involved counting the outcomes relevant
for some event and the total number of outcomes. For large sample
spaces, however, it is not feasible to list all possible outcomes and we
need rules for counting.

Rulel: Suppose we have k sets of elements, n; elements in the first set,
n9 elements in the second set, ..., n; elements in the kth set. Suppose
we want to sample k elements, taking one element of each set. Then
there are

niNg * - * Ny
different possibilities.

Example. There are 2-2---2 = 210 = 1024 simple events (= possible
outcomes) of tossing a coin 10 times. L]
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Counting

Rule 2: If n objects are given then they can be arranged in order in
nl=nn—-1)(n-2)---2-1

different ways. (By definition, 0! = 1.)

The symbol ! is read factorial.

Example. There are 11-10---2 -1 = 39916800 possibilities that 11
students take seats on 11 chairs. L]

Rule 3: Given a set of NV elements we want to select n < N elements of
this set in order. Then there are

N!
(N —n)!

NIN-1)(N-=2)---(N—n+1)=

possibilities.

Example. A sales agent has 10 different customers in Edinburgh. If she
wants to visit 5 of them today, then there are 15—0!! =10-9-8-7-6 = 30245

]
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Counting

different possible ways in which order she can visit 5 of her customers
today. ]

Rule 4: Given a set of V elements, we want to select n < N elements
of this set without regard of the order. Then there are

(:) B n!(J\fNi n)!

Example. In the German lottery 6 aus 49 you mark 6 numbers out of

different possibilities.

the numbers 1,...,49. There are
49 49 - 48 - 47 - 46 - 45 - 44
— = 13983816
(6) =65 0]
possible ways to do so. ]

ey
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Sampling With/Without Replacement

The previous rules contain indirectly also the following two rules of
sampling of populations:

Rule 5: (Random sampling with replacement.) Given a set of N
elements we want to select randomly n elements, returning each selected
element back into the population. Then there are

N’I’L
possible outcomes.

Rule 6: (Random sampling without replacement.) Given a set of N
elements we want to select randomly n elements, not returning the
samples back into the population. Then there are

N(N—-1)---(N—-n+1)
possible outcomes.

Example. There are 52 - 51 - 50 - 49 possibilities of picking 4 cards (in
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Sampling With/Without Replacement

order) out of a deck of 52 cards. ]

Example. To draw a blackjack the dealer has to deal a card with value
10 (4 - 4 possibilities) and an ace.

There are 52 - 51 different possibilities to draw 2 cards, and 16-4+4 - 16

possibilities for drawing a blackjack. The probability of dealing a blackjack

is thus % ~ 4.83%. ]

]
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Summary

e Statistics is about collecting, presenting and characterizing data and
assists in data analysis and decision making.

e Statistics is usually about quantitative data. Often, such data is
presented in diagrams.

e Basic analysis of data is about the central tendency of data (mean,
median, mode), and about the variance of data (variance, standard
deviation).

e Probability refers to the likelihood of a particular event.

e Probability theory is employed when the whole population is known.
Often it involves counting the number of possible events.
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Random Variables

A random variable is a function taking numerical values which is defined
over a sample space. Such a random variable is called discrete if it only
takes countably many values.

Example. A quality control engineer checks randomly the content of
bags, each containing 100 resistors. He selects 2 resistors and measures
whether they match the specification (exact value plus or minus 10%
tolerance). The number of resistors not matching the specification is a
discrete random variable.

Another random variable would be the function taking values 0 and 1,
for the outcomes that there are faulty resistors in the bag, or not. []

The probability distribution of a random variable is a table, graph, or
formula that gives for each possible value of the random variable its
probability. The requirements are that

0 S p(ﬁlf) S 1 and Zallxp(x> = L.

The following two diagrams show examples of discrete probability distri-
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Random Variables

butions:

Binomial Distribution, n =10, p =0.3

0.3}
+
+
0.2} =
+

0.1 +

| +

0 S T

0 2 4 6 8 10

Poisson Distribution,A =2

0.3r
+
0.2f
+

4

0.1 .
+
0 2 4 6 8 10
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Expected Value

For a discrete random variable x with probability distribution p(z) the
expected value (or mean) is defined as

=) z-p(a)

all

Example. We consider throwing a fair die 6000 times. We expect
roughly 1000 outcomes of each possible observations 1,..., 6. Thus the
arithmetic mean of such an experiment will be approximately

1000 1000 1000
|+ 2o 4+ 6 = 3.5
6000 6000 o 66000 59
The expected value is 37, ip(i) = 4 - 21 = 3.5, as expected. ]
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Expected Value

Let x be any discrete random variable with probability distribution p(z),
and let g be any function of . Then the expected value of g(x) is

defined as

Elg(z)] =) g(x) p(z).

all

The variance of a discrete random variable z with probability distribution

p(x) is defined as
0* = E[(z — p)7,

the standard deviation is defined as 0 = \/E[(z — u)?].

Example. We return to the example of throwing a die. For the variance

we find
2 o1 o1 o1
o= (1-23.5) 6+(2_3'5) 6+---+(6—3.5) 5 ~ 2.917.
For the standard deviation we find o ~ 1.708. []

]
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Properties of the Expected Value

Let x be a discrete random variable with probability distribution p(x).
e F(c) = c, for every constant c;

o F(cx) = cFE(x), for every constant c;

o Elgi(x) + g2(x)] = Elg1(x)] + Elga()],
for any two functions gy, g> on .

It follows the important formula that

For the proof of this formula note that
0° = El(z —p)?] = E[z*—2ux+ p?]
= El2%] - 2uE[z] + p* B[]
= Ex?] - 2up + u*.
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The Binomial Probability Distribution

Example.
e T[ossing a coin 10 times.

e Questioning 100 people on Princess Street in Edinburgh whether
they know that Madonna’s wedding takes place in a Scottish castle.

e Checking whether lots of transistors contain faulty transistors or not.

]

These experiments or observations are all examples of what is called a
binomial experiment (the corresponding discrete random variable is called

a binomial random variable).
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The Binomial Probability Distribution

The examples have the following common characteristics:
e The experiment consists of n identical trials.

e In each trial there are exactly two possible outcomes (yes/no,
pass/failure, or success/failure), denoted here 0 and 1 (for success).

e The probabilities for the outcomes 0 and 1 are the same in each trial
(the trials are independent). These probabilities are usually denoted

p=P('l')andg=1—p= P('0).

e The discrete (binomial) random variable is the number of successes
(i.e., of 1's) in the n trials.
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The Binomial Probability Distribution

The binomial probability distribution is given by the formula

p(z) = (Z)pxq”“’“, z €{0,...,n},
where
e p is the probability of a success in a single trial, and ¢ = 1 — p;
e 1 is the number of trials; and

e x is the number of successes.

The expected value (mean) and standard deviation are given by

L= np and o= ./npq.
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The Binomial Probability Distribution

n=10,p=0.3 n=10,p=0.5
0.35 ‘ ‘ 0.35 ‘ ‘
0.3t 1 0.3}
+
0.25f 1 0.25¢ +
+
0.2f + 1 0.2f + +
0.15f 1 0.15¢
+ + +
0.1t + 1 0.1t
0.05f 1 0.05f
i + + +
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The Binomial Probability Distribution

n=10,p =0.7 n=30,p=0.7
0.35 w w 0.16 ‘ ‘ —F
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0.25¢
+ +
0.2} +
I +
0.08 +
0.157
f +
0.1 0.04t +
0.05¢ +
+
=+
T TEFEFIFETEFSFIFIMSTE NS L + 4
0 2 4 6 8 10 0 5 10 15 20 25 30
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The Binomial Probability Distribution

n=4,p=0.2

Example. Tests show that about
20% of all private wells in some spe- oA ;

cific region are contaminated. What |
are the probabilities that in a random

0.2r
sample of 4 wells exactly 2, fewer .

than 2, or at least 2 wells are con- o4

+

taminated? 05 : : : :

Here n = 4, p = 0.2 (success for being contaminated). We find

P(z=2) = (3)0.2%0.8""2 =0.1536,
P(z<2) = P(z=0)+P(z=1)=(;)0.200.8* + (})0.2'0.8% = 0.8192,
P(lr>2) = Pllz=2)+P(z=3)+P(xz=4")

= 0.1536 + (5)0.20.8" + (7)0.2%0.8° = 0.1808.
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The Geometric Probability Distribution

Example. Customers wait in line to be served at a wicket. Per time
interval the probability that a customer is served is 10%. What is the
probability that a customer has to wait 15 time intervals before being
served? ]

Such and similar events are modeled by the geometric probability
distribution. Each time interval we have an ‘independent experiment’
which can succeed or fail with success probability p (as for the binomial
probability distribution). To be successful in the zth try we need z — 1
failures (with probability ¢ = 1 — p) and one success (with probability p).
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The Geometric Probability Distribution

The data for the geometric probability distribution are
e p(x) =pg®° 1, r=12,...,
where z is the number of trials until the first success; and

1 — q
o,u—zg,anda— 02

Geometric Probability Distribution, p = 0.1

4

0.1

o.ogr +

0.06 +

0.04r +

0.02¢
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The Geometric Probability Distribution

Example. The average life expectancy of a fuse is 15 months. What is
the probability that the fuse will last exactly 20 months?

We have that ¢ = 15 (months), or p = -, which is the probability that

a fuse will break. For z = 20 we obtain

P(w=20) = = (1 =)»-1,

15 15
which is approximately 0.018. For o we find v/210 = 14.49. []
Geometric Probability Distribution, p = 1/15 Geometric Cummulative Distribution, p = 1/15
+ ‘ ‘ ! ‘ ‘
L+ +
0.06 ++ ol ++++++++++7
Ty ++++
+ +F
0.04 *, i 0.6f +++
+++ 0.4 ++
ty ' +F
+
0.02} +++++ W
++++++++ 0.2F ++
+
0 : ‘ ‘ ‘ ‘ 0 ‘ ‘
0 5 10 15 20 25 30 0 10 20 30
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The Hypergeometric Distribution

The binomial and the geometric probability distribution are to be applied
if, after observing a result, the sample is put back into the population.
However, in practice, we often sample without replacement:

Example.

e If we test a bag of 1000 resistors whether they meet the specification
we usually won't put back the tested items.

e Suppose people are randomly selected at Princess Street in Edinburgh
to fill in a questionnaire about a new product. When people are
approached they are usually first asked whether they have already
taken part in this marketing research.

e A big manufacturing company maintains their machines on a regular
basis. Suppose that on average 15% of the machines need repair.
What is the probability that among the five machines inspected this
week, one of them needs repair?

W  B34.UC2 Numerical Computation and Statistics in Engineering
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The Hypergeometric Distribution

e A box of 1000 fuses is tested one by one until the first defective fuse

is found. Supposing that about 5% of the fuses are defective, what

is the probability that a defective fuse is among the first 5 fuses
tested?

]

Such and similar random variables have a hypergeometric probability
distribution:

e The populations consists if N objects.

e The possible outcomes of the experiment are success or failure.

e Each sample of size n is equally likely to be drawn.
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The Hypergeometric Distribution

The data for the hypergeometric probability distribution are
() G=2)
()

p(z) =

Oon—N+r<z<n,r,

where
e NV is the number of elements in the population;
e 1 is the number in the population for success;
e 1 is the number of elements drawn; and
e 1 is the number of successes in the n randomly drawn elements.

The mean and standard deviation are given by

T nd 0:\/7"(N—7")n(N—n)
A= N2(N 1)
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The Hypergeometric Distribution

If we write p = & then ;1 = np and 0 = \/%np(l — p). This shows
that the binomial and the hypergeometric distributions have the same
expected value, but different standard deviations. The correction factor

%:’f is less than 1, but close to 1 if n is small relative to V.
n=10,N=50,r=10,p =0.2 n =10, N =1000, r =200, p =0.2
0.4 w w w w 0.4 w ‘ ‘ ‘
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The Hypergeometric Distribution

Example. A retailer sells computers. He buys lots of 10 motherboards
from a manufacturer who sells them cheaply, but also offers low quality.
Suppose the current lot contains one defective item. If the retailer usually
tests 4 items per lot, what is the probability that the lot is accepted?

Here N = 10, r = 1, and n = 4, and we are looking for P(‘x = 0'),

which is
1\ (9
1-9-8.7-61-2-3-4
P(‘CIZ — 01) — (0)154) —
(4) 1-2-3-4 10:9-8-7
_ 5
10
We would use the same calculation if we would only know that on average
10% of the motherboards are faulty. ]

]
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The Hypergeometric Distribution

Example. We test lots of 100 fuses. On average 5% of the fuses are
defective. If we test 4 fuses, what is the probability that we accept the

current lot?

Again, the random variable is hypergeometric, and since N = 100 is large
we can assume that there are 5 defective fuses in this lot. We find

HIGIT
! ! 151 51901
P('z=0) % _ 0.51.&90.
) 5195!
~95-94-93-92-91
~100-99-98-97-96
~ 0.7696.

Later we will see how reliable this value is, as we don’t know the exact

number of faulty fuses in this lot. ]

]
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The Poisson Distribution

The Poisson probability distribution provides a model for the frequency of
events, like the number people arriving at a counter, the number of plane
crashes per month, or the number of micro-cracks in steel. (Micro-cracks
in steel wheels of the German high-speed train ICE led to a disastrous
rail accident in 1998.) The characteristics of a Poisson random variable
are as follows:

e The experiment consists of counting events in a particular unit (time,
area, volume, etc.).

e The probability that an event occurs in a given unit is the same for
every unit.

e The number of events that occur in one unit is independent of the
number of events that occur in other units.
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The Poisson Distribution

The Poisson probability distribution with mean A is given by the formula

Ae—A

— (x=0,1,2,...),
!

p(x)

where e is the constant 2.71828. The expected value and standard
deviation are

b= A, and = V).
Poisson Distribution,A =5 Poisson Distribution, A = 10
0.2 0.2
+ +
0.15) . + 0.15¢
+ +
+ +
1 + 1
0.1 0.1 . +
+ +
0.05} 0.05¢ o
+ + +
+ +
O-u- ‘ + + +
0 5 10 15 0 5 10 15
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The Poisson Distribution

Example. Suppose customers ar-

A=3
rive at a counter at an average rate of
+ +
6 per minute, and suppose that the 0.2/
random variable ‘customer arrival’ .
has a Poisson distribution. What is 01l .
the probability that in a half-minute
+ +
interval at most one new customer +
: L
arrives? % 5 10 15
Here A = 2 = 3 customers per half- g cummuinive dISTRUonATE,
. +

minute. So oal .
Pz <1) = P(z=0)+P(x=1) o5

_ e7330 | 33l -

= <3 4 0.4

_ 4 0.2f +

— 23

O-ﬂ- ‘ ‘

which equals approximately 0.199. [] 0 S 10 15

As an example we will verify that the Poisson probability distribution

Y
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The Poisson Distribution

p(x) really is a distribution, and that the mean is \.

We note first that 0 < p(x) for all values of x. Also, since

1 =eted = e Y00 4 = 3020 X = 3% p(), which shows
that p(x) <1land ), . p(z)=1.

For the mean we calculate

. @)

E(x) = Zaz

)\)\:c e )\)\x

-
. O+;x

-
z!

W  B34.UC2 Numerical Computation and Statistics in Engineering

Yvan Petillot Unit 2 — 25



Continuous Random Variables

Many random variables arising in practice are not discrete. Examples
are the strength of a beam, the height of a person, or the capacity of a
conductor. Such random variables are called continuous.

A practical problem arises, as it is impossible to assign finite amounts
of probabilities to uncountably many values of the real line (or some
interval) so that the values add up to 1. Thus, continuous probability
distributions are usually based on cumulative distribution functions.

The cumulative distribution F'(x) of a random variable x is the function

F(xg) = P('z <x').
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Continuous Random Variables

n=10,p=0.3 Binomial CDF,n =10, p =0.3
1 w w +——+—+
035 T T T T + =+
1 ] +
0.3 0.8 *
+
0.25¢
+ +
0.61 |
0.21 +
0.15 1 04l N ]
+
0.1 +
0.2} i
0.05¢ . +
+ +
0 + L gt
0 2 4 6 8 10 0 2 4 6 8 10
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Continuous Random Variables

Poisson PD,A =3 Poisson CDF,A =3
‘ ‘ ‘ 1 ‘ ‘ ; ¥ + +
+ o+ +
0.2r 1 0.8r + ]
+ +
+ 0.6 1
0.1 + 0.4 * ]
+ + 0.2r + ]
+ +
0 + + 4 0
0 2 4 6 8 10 0 2 4 6 8 10
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Density Functions

If ' is the cumulative distribution of a continuous random variable z
then the density function p(x) for z is given by

dF
p(z) = dr

(provided that F' is differentiable). It follows that
Flz) = / o(L) dt
Moreover, the density function always satisfies the following two proper-

ties:

e p(x) > 0; and

In particular, P(a < z <b) = Pla <z <b)= [ p(t)dt.
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Density Functions

0.2}
0.1}
F(x,)
O 1
0 2 4 6 8 8 10
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Expected Values

Let us recall from calculus that an integral is a limit process of a
summation. Finding
Lo
F(a:o)zf p(z)dr
—00

for a continuous random variable is analogous to finding
F(zo) = Y plx)
x<zxQ

for a discrete random variable. Thus, we define the expected value

analogous to the discrete case.

The expected value of a continuous random variable x with density

function p(z) is given by
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Expected Values

If ¢ is any function we define the expected value of g(x) as

Elg(z)] = / " () dt,

provided that these integrals exist. The standard deviation is o =
vV E[(z — u)?]. Note that

o F(c) = c, for every constant ¢;

o F(cr) = cE(x), for every constant c;

o Elgi(x) + g2(2)] = Elgi ()] + Elga()],
for any two functions gy, g» on .
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An Example

Example. We consider the density function

€

N8

if 0 <z < o0,

1
p = 2
0 else.

This density function is everywhere positive, and for z < 0, F(z) =
[ p(t)dt =0, whereas for z > 0

Z x 1 .
Flz) = / o(t) dt = / Lot
—00 0 2
— |:—€_%:| — 60—6_% — 1—6_%
0
In particular,

/OO p(t)dt = lim F(x)

T—r 00
—Oo0

— ]—lime 2 =1-0 = 1.

T—00
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An Example

For the expected value we find

o o 1 ;
po= / tp(t) dt :/ t§e_§dt

x at
= lim t—e"2dt /teat = e—(at — 1)
2 a?

—r00 0

T

1 e, 1
= — lim |[4e™2(2= —1)
2 z—00 2 0

-~ %[0—460(—0—1)] = 2.

A similar calculation shows that F(x?) = 8, so that 0 = \/FE(22) — p? =
v8 — 4 = 2. Finally, to do another calculation,
1,

Plu—o<z<pu+o) = /ie_idt = —e2
0

1
= e 24’ = 1- 5 = 0.8647.
€

]
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An Example

The empirical rule of Unit 1 suggested 68%. O]
Exponential Density Funtion, 3 =2 Cumulative Distribution, =2
0.6 T T T T l
0.8-
0.4¢
0.6F
0.4+
0.2f
0.2r
00 2 4 6 8 10 OO 2 4 6 8 10
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The Uniform Probability Distribution

If we select randomly a number in the interval [a, b] then the corresponding
random variable z is called a uniform random variable. Its density function

IS

— ifa<z<b,
—a

0 else.

For the mean and standard deviation one finds

a-+b and b—a \/§(b 2)
p— o = pr— —_ .
g 2 2v/3 6
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The Uniform Probability Distribution

Example. A manufacturer of wires believes that one of her machines
makes wires with diameter uniformly distributed between 0.98 and 1.03

millimeters.

The mean of the thickness is +%23%%8 —= 1,005 millimeters, and the
standard deviation is o = %(1.03 —0.98) = 0.014 millimeters.

The density function for this uniform 5, onorm Density Funciton, [0.95,1.03

1

random variable is p = = = 20 for

0.98 < z < 1.03, and 0 elsewhere. 205
And, for example,

20

1.00
P(‘'z <1.00) = / 20 dt el
0.98 '
= 20[1.00 — 0.98]
_ 04 . 109.96 O.§8 1 1.62 1.64

]
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The Normal Probability Distribution

The normal probability distribution was suggested by C. F. Gauss as
a model of the relative frequency distribution of errors (for example in
measurements). The density function of this probability distribution is

1 _ (z=pw)?
e 202 — 0 <Tr <00,

p(x) = —

where 1 and o denote the mean and standard deviation, respectively (so
these two values are parameters of the normal probability distribution).

Normal Distribution,pu=4,0=1 Normal Distribution,p=4,0=2
04 0.4
0.3f 1 0.3f
0.2f
0.1
B3: o
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The Normal Probability Distribution

The standard normal random variable has mean 0 and variance 1:

Normal Density Function,u=0,0=1

0.4

0.3}

0.2}

0.1+

In practice it is enough to have tables for the standard normal probability
distribution: Given a random variable z the variable 2 = =% has mean (

and standard deviation 1.
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The Normal Probability Distribution

Example. Suppose a normally distributed random variable = has mean
10 and standard deviation 3. Find P(‘z < 11’) using tables.

We set z = =19 which has standard normal distribution. The z-

3
value 11 corresponds to the z-value H5% = 2. Then the table
shows P('z <11') = P('2<3') = P('2<0)+ P(0<z2<3) ~
D+ 0.1293 = 0.6293. []

Why is this justified? In the integral calculating P(‘z < 11) we substitute

z=%EL Then & =1 and
o dx o

11 1

P(z<10) = /_

_ (z—p)?
e 202 dx

oo OV 2T

[t
= e 2 dz
oo V2T

Pz <t

<3).

ey
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The Normal Probability Distribution

Example. An amplifier is built using two integrated circuits. Both have
a life-length that is normally distributed, the first with mean 36000 hours
and standard deviation 8000 hours, the second with mean 38000 hours
and standard deviation 10000 hours. Which of the two integrated circuits
is more likely to last at least 40.000 hours?

In both cases we ask for P(‘z > 40000") = 1 — P(‘x <40000'). The
corresponding values for the standardized normal random variables z;

and z; are z; = £, and 2, = ;. Thus
P(z; > 40000) = 1 — P('z; < ') & 1 — (0.5 + 0.1915) = 0.3085,

and similarly, P(‘xy > 40000') = 1— P(‘z < %) ~ 1—(0.540.0793) =
0.4207. Thus, the second integrated circuit is more likely to last more
than 40000 hours. [
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The Gamma Distribution

Many continuous random variables can only take positive values, like
height, thickness, life expectations of transistors, etc. Such random
variables are often modeled by gamma type random variables. The
corresponding density functions contain two parameters o, 5. The first is
known as the shape parameter, the second as the scale parameter.

Gamma Density Functions,a=1,3,6,=1

0.8
0.7¢
06| a=1
0.5¢
0.41
0.31 a=3

0.2f a=6

0.1¢

0O 2 4 6 8 10 12
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The Gamma Distribution

The density function is given by

f0<z<oo, a >0,

0 else,
where I'(a) = [~ t* 'e™" dt. The mean and standard deviation are
uw=apf and oc=vab?.

The gamma function plays an important role in mathematics. It holds
that '(a + 1) = al'(a), and I'(1) = 1, so that for integer values of «,
['(a) = al. In general there is no closed form for the gamma function,
and its values are approximated and taken from tables.
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The Gamma Distribution

Example. A manufacturer of CPU’s knows that the relative frequency
complaints from customers (in weeks) about total failures is modeled by
a gamma distribution with o« = 2 and 8 = 4. Exactly 12 weeks after
the quality control department was restructured the next (first) major
complaint arrives. Does this suggest that the restructuring resulted in an
improvement of quality control?

We calculate y = af =8 and 0 = 44/2 =~ 5.657. The value z = 12 lies
well within one standard deviation from the (old) mean, so we would not
consider it an exceptional value. Thus there is insufficient evidence to

indicate an improvement in quality control given just this data. ]
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The Chi-Square Distribution

The x?* (chi-square) probability distribution plays an important role in
statistics. The distribution is a special case of the gamma distribution
for « = £ and 8 =2 (v is called the number of degrees of freedom):

where c(x?) = ¥z~ For mean and standard deviation one finds

Ve
I
N—

UL="v and o=V2.
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The Exponential Density Function

The exponential density function is a gamma density function with oo = 1,

with mean 4 = [ and standard deviation ¢ = 3. The corresponding
random variable models for example the length of time between events
(arrivals at a counter, requests to a CPU, etc) when the probability of an
arrival in an interval is independent from arrivals in other intervals. This
distribution also models the life expectancy of equipment or products,
provided that the probability that the equipment will last ¢ more time
intervals is the same as for a new product (this holds for well-maintained
equipment).

If the arrival of events follows a Poisson distribution with mean % (arrivals
per unit interval), then the time interval between two successive arrivals
is modeled by the exponential distribution with mean f.
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The Weibull Density Function

As the gamma probability distribution the Weibull probability distribu-
tion is often used to model length of life of products, equipment, or
components. The density function is

2 le™F  ifz >0,

else,

with shape parameter o and scale parameter 3. Moreover,

o o= \/BEIN(=2) — (=)

For o = 1 we get the exponential density function.
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The Weibull Density Function

The Weibull cumulative distribution has a closed form; after substituting
y = z% and dy = az® ! dx we find

Flx <xzg) = —x* leTF dr

N o B

Y
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The Weibull Density Function

Example. The length of life in years of a component in a camera is
known to have a Weibull distribution with o = 2 and 8 = 100. What is
the probability that the component will last at least 6 years?

We are looking for P(‘x > 6) which is

P(z>6) = 1—P(z<6)

— 1—(1—6_%)
1

36
€100

~ (0.698.

ey
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Summary

e Random variables are functions assigning numerical values to each
simple event of a sample space. We distinguish discrete and
continuous random variables.

e The probability distribution of a discrete random variable is a function
that gives for each event the probability that the event occurs.

e The expected value E(z) is the mean, the standard deviation the
square root of E[(z — E(x))?].

e Examples of discrete probability distribution are the binomial,
geometric, hypergeometric and the Poisson distribution.

e For continuous random variables we have to give the cumulative
probability distribution.
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Summary

e The relative frequency distribution for a population with continuous
random variable can be modeled using a density function p(z)
(usually a smooth curve) such that

p(x) >0 and /_OO plz)de =1.

. @)

e Examples are the uniform distribution, normal distribution, gamma
distribution, the exponential distribution and the Weibull distribution.
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Introduction

In this unit we will mainly talk about infinite populations. However, most
of the techniques and results will hold for (large) finite populations.

We are interested in taking random samples of a population to determine
properties like the (unknown) mean or (unknown) standard deviation of
the population. The process of taking random samples from a population
Is known as sampling.

In general, we want to have the following three properties of an estimator
(say for the population mean) when sampling:

e unbiasedness,
e consistency, and

o cfficiency.
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Introduction

Unbiasedness refers to the fact that the average over all possible sample
means (of a given size n) is equal to the population mean.

An estimator is consistent if, as the sample size increases, the difference
between estimate and true population value (here mean) approaches
zero. (For example, the formula for the standard deviation with n — 1
In the denominator is unbiased and consistent, the one with n in the
denominator is consistent, but biased.)

Efficiency, the last desirable property of an estimator, refers to the
precision of the sample.
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Basic Definitions

If x1,...,x, are independent and identically distributed random variables

then they form a random sample from the population.

Example. A machine manufactures conductors. Each week one sample
of fifty conductors is taken and the capacity is measured. If z; is the
average of the measures in week ¢, then the z; form a random sample

from the population. ]

If 21,...,x, are a random sample then

:Ez%zzx@ and 32:nilzi(xi_j)2

are called the sample mean and sample variance. As before, the sample

standard deviation is the square root of the sample variance.

The standard error of a statistics is the standard deviation of its sampling

distribution.
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Distribution of the Mean

If z1,...,x, are a random sample from an infinite population with mean

1t and standard deviation o, then

E(z)=u and Oz = —.

This result says that if we sample then the expected value of these
samples is the actual mean of the population, i.e., the correct value,
and, the standard deviation of the sample decreases if the sample size
increases: The more samples we take the more we can be assured that
iIs close to p. Thus, the estimator z for the population mean is unbiased
and consistent.

Together with Chebycheff’'s Theorem (see Unit 1) the previous result can
be rephrased as follows:

For every positive ¢, the probability that z will take a value in
2

the interval [ — ¢, pu +¢| is at least 1 — Z5.
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The Central Limit Theorem

Of more importance (both theoretically and practically) is the following

version of the Central Limit Theorem:

If n is sufficiently large (in practice n > 30) the random variable
x can be approximated with a normal probability distribution
with mean u and standard deviation % (regardless of the actual

shape of the sampled population (!)).

If the distribution of the population is symmetric then taking samples of
size n > 25 is enough. If the distribution of the population is normal
then T has normal distribution too, regardless of the size of n.
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The Central Limit Theorem

Example. A coffee vending machine fills cups with coffee with mean
150 milliliter and standard deviation 15 milliliter. What is the probability
that the average amount of coffee in a random sample of size 40 is at
least 155 milliliters?

The distribution of Z (the average amount in the sample of 40 cups of
coffee) has sample mean p; = 150, and standard deviation o; = \}—45—,
and this distribution is approximately normal. Using the standardized

normal distribution z = “EZ the corresponding z-value is 122510 =

xTr

3

@ ~ 2.10817. Thus, tables show that

P(z > 155) = P(z > 2.108) ~ 0.0175 .

The table gives P(0 < z < 2.10) = 0.4821, and P(0 < z < 2.11) =
0.4826. With a linear approximation we find that P(0 < z < 2.10817) ~
0.4821 + 0.81(0.4826 — 0.4821) = 0.4825. Thus, P(z > 2.10817) is
approximately 1 — P(z < 2.10817) ~ 1 — (.5 4+ 0.4825) = 0.0175. [
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The Chi-Square Distribution

The importance of the chi-square distribution results from the following
fact:

If £ has a standard normal distribution then z? has chi-square
distribution (with v = 1 degree of freedom) with density function

1
1 r 2¢

N8

if x > 0,

0 else,

with mean 1 and standard deviation v/2.

In statistics we use the following more general fact:
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The Chi-Square Distribution

If £ and s are the mean and standard deviation of a random sample of
size n from a normal population with mean p and standard deviation o,
then

e 7 and s? are independent, and

e the random variable (";—12)32 has a chi-square distribution with n — 1
degrees of freedom.

Tables of the chi-square distri- Chi-Square, 4 df
0.2 ‘ :

bution show, for given degree of

freedom v, the value of the ran- 0.6}

dom variable (here (";282, but

0.12
often denoted x7, ), such that

0.08f

0.04
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The Chi-Square Distribution

Example. Suppose the thickness of some semi-conductor part (with
normal distribution) is critical, and suppose that the accepted variation
around the mean is at most one standard deviation o = 0.6 - 1073

cm. Random samples of size 20 are taken each week to monitor the

manufacturing process.

The machine is to be readjusted if the probability that s will take a
value greater than or equal to the observed value is 0.01 or less. What
can we conclude if we find that in a sample s = 0.84 - 1072 cm?

The machine is re-adjusted if
P(S? > (0.84-107%)%) < 0.01.

The probability on the left is that of P((”_lz)s2 > ("_232), which has a

o o

chi-square distribution with 20 — 1 degrees of freedom.
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The Chi-Square Distribution

g2

For n = 20, s = 0.84- 10~ and o = 0.6 - 10~ we find ") = 37.24,
and
—1)5°
P D5 5 5704y~ 1 - 0.9926 = 0.0073,
o
so that the machine has to be re-adjusted. (The value was calculated
using MATLAB.) ]

Chi-Square, 19 df

0.06[

0.04f

0.02¢

60

]
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The Chi-Square Distribution

In practice we have to solve such a question using tables:

In our example we want P((n—0_12)52 > (”;—2)32) < 0.01, for v = 19,

a = 0.01. From the table we find that his is the case if
(n —1)s?

0-2

> 36.1908 .

Since we found that (n;—IQ)SQ = 37.24 > 36.1908 the machine has to be

re-adjusted.

]
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The Student’s {-Distribution

We already saw that for random samples from normal populations with
mean u and standard deviation o that the random variable z has a
normal distribution with mean 1 and standard deviation \/— that is,
has a standard normal distribution.

/\/_

We cannot apply this knowledge in practice since usually o, the standard
deviation of the population, is unknown.

Hence we replace o by its estimation s which we get from the random
sample. The probability distribution of the random variable

T — [

s/v/n

is the t-distribution with v = n — 1 degrees of freedom, with density

function
| ==t +2 — v
p(t) = \/7r(712()5) : (1—|—;> for —oo <t < .
)
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The Student’s {-Distribution

W. S. Gossett discovered this distribution through his work at the

Guinness brewery. At that time the brewery did not allow its staff

to publish, so Gossett used the pseudonym Student, hence the name
Student’s ¢-distribution.

Student’s t-Distribution, v =4

0.4

0.357

0.37

0.25¢

0.27

0.15¢

0.1t

0.05¢

O I
-5 0 5
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The Student’s {-Distribution

The t-distribution is similar to the normal distribution, but is wider
than the latter, i.e., has more tail. This is due to the fact that o, the
true population standard deviation, is only estimated. For larger v the
t-distribution becomes closer to the normal distribution.

t— vs Normal Distribution
0.4 —

0.35] v=4 / '«——— normal
0.3 v=2 / \ 1
025’ / \ e
0.2y ' \ 1

0.15¢ ’ \ 1

0.05} \ .

0 | |
-5 0 5

Y
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The Student’s {-Distribution

Example. The output of an old line printer is analyzed for a couple
of days and it is found that the printer prints about 45 characters per
second, with sample deviation 2 characters per second.

What is the probability that the sample mean of a random sample of 60
seconds will be between 44.5 and 45.3 characters per second?

T—I

Here £ = 45, s = 2, and n = 60. For z = N which has a
t-distribution, we find using MATLAB that

P(44.5 <z <453) = P(—1.9365< z < 1.1619)
= P(z < 1.1619) — P(z < —1.9365)
= 0.8750 — 0.0288 = 0.8462.

]
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The Student’s {-Distribution

Approximating the t-distribution by the normal distribution we find that

P(z < 1.1619) = 0.5+ (0.3770 + .19(0.3790 — 0.3770))
= 0.8774,

P(z < —1.9365) = P(z > 1.9365)
— 1— P(z < 1.9365)
— 1 (0.5+ (0.4732 + 0.65(0.4732 — 0.4726)))
— 0.0264,

and thus P(—1.9365 < z < 1.1619) = 0.851. [l
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Sampling From Finite Populations

If Z is the mean of a random variable of size n of a finite population of
size NV with mean 1 and standard deviation o then

o |[N—n
- ynVN-1

These formulae are similar to those for infinite populations, except for

E(z) =p and o

the finite population correction factor

N —n
N—1"

If N is large relative to n then this correction factor is close to 1
and, indeed, the distribution of x is then approximated by the normal

o

distribution with mean p© and standard deviation NG
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Sampling From Finite Populations

Correction Factor, N =10 Correction Factor, N = 200
11—+ ‘ ‘ ‘ 1
+
0.8 + 108
+
0.6 0.6
+
+
0.4+ 0.4+
+
0.2} + I ool
+
O I I I I + 0 I I I
0 2 4 6 8 10 0 50 100 150 200
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Normal as Approximation to the Binomial Distribution

Recall that for a binomial random variable the success probability was

p(z) = (n)px(l -p)"7",

X

where n is the number of trials (or observations), and p is the success
probability in one trial. We found that u = np and o0 = /np(1 — p).

The normal distribution approximates reasonably well the binomial
distribution, even for small n (n = 10) when p is close to 0.5, and the
distribution is symmetric around p© = np. When p differs from 0.5 the
binomial distribution is skewed, but the skewness disappears for large n.
In general, the approximation is good for n large enough so that

0<u—20, pu+20<n.

s I
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Normal as Approximation to the Binomial Distribution

Binomial vs Normal Distr., n = 10, p =0.5 Binomial vs Normal Distr., n =10, p =0.3
0.3f 1 0.3f
+
+
0.2+ 1 0.2f
0.1+ 1 0.1f
: . ! : T O -+ ! : ! ; T +—
0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12

Note that, for example in the second case, 1 = 3 and o = 1.45, so that
uw—20=0.01 >0, and u+ 20 =5.9 < 10.
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Normal as Approximation to the Binomial Distribution

The following are known as continuity correction for the normal approxi-
mation: If x is a binomial random variable with parameters n and p, and

if z = =F, then z has approximately standard normal distribution, and

o P(z <a)~ Pz < let05=py

o
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Normal as Approximation to the Binomial Distribution

Example. In quality control we randomly check 200 items if they meet
the specifications. Suppose that the lot is accepted if the failure rate is
below 6%. If, unknown to the quality control engineer, the failure rate is
8%, what is the probability that the lot is accepted?

In this example n = 200, p = 0.08, and we are looking for the probability
that P(xz < 0.06 - 200) = P(z < 12). Using the approximations above
this is roughly

12.5 — 200 - 0.08
2

v/200 - 0.08 - 0.92

P( ) = P(z < —0.9123)

= P(z > 0.9123)
= 0.5— P(0 <z <0.9123)

0.5 — (0.3186 + 0.23(0.3213 — 0.3186))
= 0.180779.

MATLAB gives as exact value 0.1821. [l
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Summary

e Sampling is about taking random sampling from (usually infinite)
populations. Sampling is often used to calculate estimators for
population parameters.

e The Central Limit Theorem states that for large sample size n the
sample mean is approximately normally distributed with mean the
true population mean, and standard deviation the true standard
deviation of the population divided by the square root of the sample
size.

. _ 2 )
e The random variable 02)8 , with s the sample error and o the

population standard deviation has a chi-square distribution with
(n — 1) degrees of freedom.

e Usually, the true population standard deviation is not known. In this
case the sample mean has a Student’s ¢-distribution with mean the
true population mean, and standard deviation the sample deviation
divided by the square root of the sample size.
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Estimators

Two different type of inferences (here for example about the mean) can
be made from a sample:

e one can estimate the true mean of the population; or

e one can try to decide whether the true mean exceeds same value or
lies within some interval.

Suppose we want to estimate a population parameter 6 (say mean,
standard deviation, or P(‘z < d')). A point estimator for theta is a rule
that tells us how to compute from the sample data a single value 0 (also
called a point estimator) that will serve as an estimator for 6.

An interval estimator is a rule computing an interval to estimate 6.

Example. If z1,...,x, is a random sample from a population then Z is
a point estimator for the true population mean, whereas [z — s, + s] is
an interval estimator for the population mean. ]
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Bias

An estimator 6 is called unbiased if E(é) = ). The bias of an estimator

A

is B=F(0)—6.

Unbiased Estimator Biased Estimator

0,6 6 6
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MVUE

In addition to unbiasedness we hope for a small standard deviation (or
variance) of the probability distribution of f. An unbiased estimator
which has minimum variance among all unbiased estimators is called a
minimum variance unbiased estimator (MVUE).

If such a MVUE does not exist one prefers the estimator which minimizes

the mean squared error

E[(6 - 0)7].
Note that
E[(0—6)2 = E(6°) —20E(f) + E@?
= 0% — 20E(f) + var; + E(6)’

— B? + vary .

]
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MVUE

In particular, if B =0 then
e the mean squared error is equal to the variance of 9, and

e the estimator 6 that yields the smallest mean squared error is also a
MVUE for 6.

Example. [f x has binomial distribution with parameters n and p, then

X

= is an unbiased estimator for p.

Indeed, since E(z) = np it follows that E(2) = 1E(z) = fnp=p. O
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MVUE

Example. |If s? is the variance of a random sample from an infinite
population then F(s?) = o2, the true population variance, hence s? is
an unbiased estimator for o2 (regardless of the nature of the sampled
population). Here we use that s* = —=[>". 27 — =(3°, 2;)?], and the
fact that for any random variable, E(y*) = o + E(y)*.

E(s?) = nil ZE ——E[ZZ )2]]
= [ = ok BT, a0

n—1
1 | 1 1
= 1 no’ +nu’ — — -no’ — —(nu)ﬂ
n—1]| n n
1
= [no® — o] = o*.
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An Example

Consider the following three density functions:

1

plr) = 5 26_($_“)2/(202) for —oo < & < 00,

To

1

plr) = Ry s for —oo < x < o0,

1
plr) = o for —c <z — pu < ¢, and 0 else.

c

The first is the normal distribution, the second the Cauchy distribution,
and the third the uniform distribution. All three have mean L.

In theory we have at least three estimators for 1 from a given sample,
namely Z (mean), Z (median), . (average between the two extreme
observations).

W  B34.UC2 Numerical Computation and Statistics in Engineering
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An Example

e |f the sample comes from a normal distribution, Z is the best of the
estimators as it is the MVUE.

e |f the sample comes from a Cauchy distribution then  and z. are
bad estimators, whereas 7 is quite good (the MVUE is not known).
x is bad because it is sensitive to outliers, and the heavy tails of the
Cauchy distribution will make such outliers very probable.

e If the distribution is uniform then z. is the best estimator. z. is
sensitive to outliers, but the lack of tails makes such observations

impossible.

W  B34.UC2 Numerical Computation and Statistics in Engineering
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An Example

Cauchy vs Normal Distribution

Y
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Maximum Likelihood Estimators

Let z1,...,2z, be a random sample. The likelihood of the sample is
defined as

o L =P(xy,...,2,) =[], Plx;)
if the x; are discrete random variables;

o L =p(r1,...,2,) =1, p(z:)

if the z; are continuous random variables. (Note that p(z4,...,z,)
is the density function of

F(xl,,xn) :P(tl le,,tngxn))
The maximum likelihood estimator for 6 (or a list of parameters

f1,...,0;) is the estimator 8 (or 61, ...,0,) that maximizes L.

In practice one often maximizes the logarithm of p(z4,...,x,), which
is easier to calculate and gives the same estimator since the logarithm
function is strictly increasing.
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Maximum Likelihood Estimators

Example. Let z1,...,x, be a random sample of n observations of a

random variable x with exponential density function

e B
B

0 else.

if 0 <z < o0,
p(r) =

What is the maximum likelihood estimator B for 37

The joint density function is L(3) = ﬂ%ezi —2i/B and

InL = —nlnﬁ—l—z_—xi/ﬁ

Setting d;%L equal to 0 gives

> T n:()

g2 B
or B = %ZZ x;. Thus B = 7 is the maximum likelihood estimator for (.
]
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Maximum Likelihood Estimators

Example. What is the maximum likelihood estimator of the success
probability 8 of a random sample from a population with binomial
probability distribution?

Here L(#) = ()6%(1 — 6)"*, and we maximize

In L(f) =In (n) +xInf+ (n—x)In(l —0).
x
Then
dlnL_O+£_n—x
do 0 1-0°
and thus x — 0z = 6n — Oz, or 6 = 7. []

Example. On 20 cold days a student gets his car started on the third,
first, fifth, first, second, third, first, seventh, second, fourth, eighth,
fourth, third, first, fifth, sixth, second, first, second, and sixth try. If the
distribution of this random variable is modeled by a geometric probability
distribution, what is the maximum likelihood estimator for 67

]
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Maximum Likelihood Estimators

The probability for success in the xth try is
0(1 —0)~!
forz =1,2,3,.... Then L(0) = [[,0(1 — 0)%~' = "(1 — )=,
and InL(0) =nlnf+ (D>, x; — n)In(1l — ), thus
dL n ) .z;i—n

40— 0 1—0

The necessary condition for a maximum is thus

n—’nﬂ:@Zixi—nQ,

orezz’”ﬂ:f—l.

i i

For our data, n = 10 and z = 3.35, so that an estimator is given by
0.299. ]
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The Confidence Coefficient

We continue with interval estimators. The two numbers computed by

an interval estimator are the endpoints of the confidence interval. The

confidence coefficient for a confidence interval is the probability that the
interval will contain the true (to be estimated) parameter.

A

As an example we consider the case when 6 is approximately normally

A

distributed with mean E(6) = 6 and error (standard deviation) 0. Then

Y

yA—

T4
Is approximately a standard random variable. We are looking for values

2" such that
P(—2<z2<2)=1-aq,

for 1 — « the confidence coefficient of the interval [—2', 2]. From the
graph
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The Confidence Coefficient

we see that 2’ = 2,9, which is
the unique 2’ such that P(z <

The Confidence Coefficient

0.5
2') = /2. Substituting back the
definition of z we find that for 0.4
given confidence coefficient 1 —« 0.3l
the confidence interval for 6 is
0.2
[0 — 2a/20 (), 0 + Zoz/ZO-é] , 01l 1-a
al2 a/2
where z,/9 is the unique 2’ such 0 ‘
4 “Zar 0 Zai2 4
that P(z < 2') = «a/2 for the
normally distributed random vari-
able z with mean 0 and standard
deviation 1.
?@ B34.UC2 Numerical Computation and Statistics in Engineering
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Estimating the Mean

If the sampling size n is large (n > 30) then z, the sampling mean,
is approximately normally distributed with mean E(Z) = u, the true
population mean, and o; = o/4/n. Thus Z is an unbiased estimator
for u, and x is also the MVUE for u. Since the distribution of x

Is approximately normal we can use the previous analysis to get the
endpoints of the (1 — «)100% confidence interval for u as

T =+ Ra/20z = T £ Za/gi

Y
Vn
where z, /5 is the z-value that locates from —oo to z,/2 an area o/2
under the standard normal density function.
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Estimating the Mean

If the population is smaller, or if the value of ¢ has to be approximated
by the sample deviation (sample error) s, then the t-distribution with
n — 1 degrees of freedom replaces the normal distribution so that the

endpoints of the (1 — «)100% confidence interval for u become
_ _ o
T+ ta/20:E =T x ta/2ﬁ ,

where ¢, /5 is the t-value that locates from —oo to t,/2 an area /2 under
the density function of the t-distribution with n — 1 degrees of freedom.
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Estimating the Mean

Example. Time between server failures is recorded and for a sample of
20 failures the values x = 1500 hours and s = 210 hours are computed.
What is the 95% confidence interval for the mean based on this sample?

To apply the theory we have to assume a normal distribution for the
time between server failures. Then z = Sm/?/‘% has a t-distribution and for
a = 0.05 we find the endpoints of the confidence interval as

S 1500492003220 _ 1500+ 08,980

Vi V20

:T::I:ta/g

]
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Estimating the Mean

Example. If a random sample of size 20 of a normal population with
standard deviation 12.3 has mean 83.2, then we construct the confidence
intervals with the following endpoints:

e 90%: 83.2 + 2505123 = 83.2+ 1.645123 = 83.2 + 4.524

V20 V20
e 95%: 83.2 + zo_o%% = 83.2 + 1.9603—2-_3 — 83.2 + 5.390
e 900%: 83.2 + 20,005% — 83.2 + 2.5763—2-_3 — 83.2 4+ 7.084

If the standard deviation of the population has to be estimated as well,
and if 12.3 is an estimate based on the sample then the endpoints change

as follows:

o 90%: 83.2 £ lig05 25 = 83.2 £ 1.729 22 = 83.2 £ 4.755
o 95%: 83.2 % tigo025 5 = 83.2 £ 12.093 22 = 83.2 £ 5.756

V20
o 99%: 83.2 £ tig 0005 5 = 83.2 £ 2.861 7= = 83.2 £ 7.868

[l
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Estimating the Mean

Example.

11.3968
6.38328
16.7264
3.4829

What is the 95% confidence interval for the mean?

4.1666
6.4634
1.1679
0.6679

0.8273
2.0181
3.2379
2.5763

18.4765

0.2051
0.2825
6.3852

Readings from a machine show the following values:

7.8963
6.4615
3.0543
1.5892

Here T = 5.4232, and s = 5.0388, thus the 95% confidence interval has

endpoints

T x t19.0.025

V20

= 5.4232 + 2.358.

(The numbers are random numbers for an exponential distribution with

mean 4.) In theory our results do not apply since the sampling size is too

small and the distribution is not bell-shaped!

]

g

]

—,
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Estimating the Mean

Example. A company selling easy-to-assemble furniture wants to
determine how long it takes to assemble a chest of drawers Bialitt. Using
the following data (in minutes) gathered from 15 volunteers we construct

a 95% confidence interval.

84.3487  59.6883 95.5066 98.7535 70.0706
116.8183 116.7833 92.2473  99.5458 96.4928
89.2658 107.5158 &81.2337 136.6637 90.2721

Here £ = 95.6804 and s = 19.1003. Thus the confidence interval has

endpoints
_ s
T =* t14,0.025 \/B = 95.6804 £+ 10.5784 .
(The data are random numbers from a normal distribution with mean 93

and standard deviation 20.) ]
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Estimating the Difference Between Means

If Z; and Zy are the values of the means and standard deviation of
independent random samples of size n; and ny, from normal populations

with known standard deviations o; and oy respectively, then

2 2
o] + 05

b T) 2
(T1 = Z2) £ 22 ny + ng

are the endpoints of a (1 — a)100% confidence interval for the difference
between the means 1 — po. (By the central limit theorem this confidence
interval can also be used for independent random samples from non-
normal populations if ny,ny > 30, or for even smaller samples when the
density functions of the populations are known to be bell-shaped.)
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Estimating the Difference Between Means

If o1 and oy are to be estimated by the samples standard deviations then
the endpoints of the (1 — «)100% confidence interval for the difference

between the means are

1 1

(fl — f2) =+ ta/2,n1+n2—25P — + — )
ni o

where

\/ (ny — 1)82 + (ny — 1)83
Sp — .

n1—|—n2—2

(sp is called the pooled estimator for o2, and is unbiased.) Here the only
assumption is that the two populations are normal.
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Estimating the Difference Between Means

Example. Two machines make wires. 10 measurements taken in 1

minute intervals from both machines show the following diameters:

I. 1.0429 1.0627 0.9203 0.9280 1.0286
0.9800 1.0345 1.0408 1.0356 1.0645

[1: 1.0001 1.0157 0.9439 0.9794 0.9753
0.9319 0.9877 0.9483 1.0225 0.9558

What is a 95% confidence interval for pq; — ps?
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Estimating the Difference Between Means

Here ny = ny = 10, ;1 = 1.0138, sy = 0.0526, o, = 0.9761, and
so = 0.0309. Thus Z; — Z5 = 0.0377 and s = 1% (s] + s3) = 0.00186.

The endpoints of the interval are thus

| 2

(The data are random numbers for normal distributions with mean and
standard deviations 1.0, 0.05, and 0.98, 0.03 respectively.)

The analysis shows slightly more: Since we are 95% confident that the

difference between the means is within the interval
(0.0090, 0.0664]

(which does not contain 0), we are also 95% confident that the means

of the diameters of wires produced by the two machines differ. ]
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Estimating Proportions

We often try to estimate proportions, probabilities, or percentages such
as faulty transistors, faulty lights, etc. If the sample size is large the
corresponding random variable has approximately a binomial distribution
(even though we often sample without replacement), and can be
approximated by a normal distribution.

Thus, if 6 denotes the true probability and ) = ~ its estimate derived
from a sample of size n then we can assert with (1 —a)100% confidence
that the error we make is less than

0(1—6
Za/Q\/(n) .

Indeed, 2 = =F = “30_(7;0 > is approximately a standard normal random
01—

variable and thus

—nb
v " <Za/2)§1—04.

‘HF%”S\ﬂwu—ey—
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Estimating Proportions

Approximating 6 by f under the radical and solving for 6 gives

P (—za/g\/né(l — ) <nf—z< za/g\/né(l — é))
. \/nd(1— ) \/nf(1— )

= P — — Za/2 §9§£+2a/2
n n n n
. 9(1—6 . A(1— 6
= P ‘9—204/2\/ )§t9§6’—|—za/2\/( )
n n
< 11—«

ey
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Estimating Proportions

Example. A study is made to determine the proportion of people
aged between 16 and 25 that use use the internet. If 316 out of 400

young people use the internet, what is a 95% confidence interval for
p= % = 0.797

Here n = 400, 0 = 0.79, and 25025 = 1.960. With 95% confidence the

maximum error we make is

0.79-0.21
1.960 ~ 0.0399
\/ 400 ’

i.e., the interval is [0.79 — 0.0399, 0.79 + 0.0399]. [l
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Estimating Differences in Proportions

We often estimate differences between proportions (differences between
males and females in favor of a certain candidate, difference between the
percentage of faulty transistors manufactured by two machines, etc.).

If we have two samples x; and x5 of size n; and ny respectively, then
91 — 92 = % — sz IS an estimator for the difference between the two
proportions. If both n; and ny are large then 01 — 0y is approximately
normally distributed with mean 6; — 65 the difference between the true

proportions, and variance

Ou(1—6) | a1 06:)

n1 no

Putting everything together and estimating 6; and 6, by 0, and 6y we
find the endpoints of the (1 — a)100% confidence interval to be

b Za/2\/91(1 —61)  0(1=0n)

nq D)
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Estimating Differences in Proportions

Example. Voters are questioned after they went to the ballots. Out of
212 male voters 76 voted for candidate A, and out of 179 female voters
57 voted for the same candidate. What is a 99% confidence interval for
the difference between the percentages of voters voting for candidate A?

Here n; = 212, 6, = 75 = 0.3585 and ny = 179, 0, = 37 = (0.3184.

212 179
The endpoints of the interval are thus

0.3585 - 0.6415 n 0.3184 - 0.6816
212 179

= (0.3585 — 0.3184) + 2.575\/

= 0.0401 £+ +/0.0011 + 0.0012
— 0.0401 + 0.0479 .

The interval is thus [—0.0078,0.0880], which includes 0. This means
that the case that there is no difference in voting habits among males

and females is included. []
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Summary

e Estimators are used to estimate population parameters from samples.
We distinguish point estimators and interval estimators.

e |n addition to unbiasedness we hope for a small standard deviation of
the probability distribution of the estimator. An unbiased estimator
with smallest variance among all unbiased estimators is called the
minimum variance unbiased estimator (MVUE).

e Good estimators are often found the the method of maximum
likelihood, which finds that parameter value which makes the

observed sample most likely.

e The confidence coefficient for a confidence interval is the probability
that the interval will contain the true population parameter.
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Hypothesis Testing

Statistical tests consist of the following elements:
e a null hypothesis Hy about one or more population parameters;

e an alternative hypothesis H, (or H,) that replaces Hj if the test
does not support Hy;

e the test statistics;

e acceptance and rejection regions indicating the values of the statistics
that will lead to acceptance or rejection of Hy.

The term null hypothesis stems from the fact that we often test for
‘'something being equal to 0, for example u — 4 = 0 (i.e., the population
mean equals 4), or y; — e = 0 (i.e., the two populations have the same
mean).
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Errors

There are two types of errors we can make when testing a hypothesis:

Hy true H, false
Decision: Reject H Type | error Correct decision
Accept Hy | Correct decision Type Il error

Type | errors (rejecting Hy while it is true) are usually denoted by the
symbol «, type Il errors (accepting Hy while it is false) are denoted by
the symbol (.

Example. A car retailer believes that more than 20% of his customers
are willing to spend extra money for upgrading the stereo equipment of
their new car. Before ordering new equipment the retailer wants to ask 10
of his customers whether they would buy the more expensive equipment.
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Errors

Here we pick
Hy: p=20.2.

H,: p>0.2.

(We do not believe in p < 0.2.) The random variable x for this test is the
number of people indicating that they would buy better stereo equipment
for their cars. If p = 0.2 we expect 10 - 0.2 = 2 people to be in favor of
the better product, thus, rejecting Hy if © > 4 seems reasonable. For the
type Il error we find

a = P(reject Hy while it is true)
= P(p=02and x> 4)
= 1—P(p=02and z <3)

= 1- Zi_o ({f)pm(l —p)e

0.121.

Q

]
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Errors

Questioning the customers the retailer finds that 4 out of 10 people are
in favor of the better product, thus Hy is rejected.

Binomial Distribution, n =10, p =0.2

0.3f + 1
+

0.27 + 1

+ ]
0.1 +

-+
0 ‘ | o+ o+ o+
0 2 4 6 8 10

Rejection Area
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Errors

Suppose that the true parameter value is p = 0.4. Then
B = Placcept Hy while p=0.4) = P(x < 3 while p =0.4)
3 10
= ) B ( )0.490(1 —0.4)"7" ~ 0.3823.

= i

Binomial Distribution,n =10,p =0.4

0.31
+
+

0.2 +

+
0.1} ¥

+ +
I I 1- NS
0 2 4 6 8 10

Rejection Area
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Using the Normal Distribution

In practice we can often use the normal distribution to find acceptance
and rejection intervals. Suppose we want to test

H02(9:(90 H1:6’7é6’0

where 0 is a parameter of a population (probability, mean, etc.). 6 is
the value that we think 6 has. We assume that the estimator § that we
get from the sample has normal distribution with mean 6, and standard
deviation ;. Then

0 — 6,

T4

statistics z =
has a standard normal distribution. If the rejection region is
z < —Za/g, Za/g <z

then the type | error is a.
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Using the Normal Distribution

Indeed, Standard Normal Distribution

type I error
= P(Hy holds but is rejected)
= P2 < =242 OF 2472 < 2)

= .

a/2 a/2

a/2 a/2
Such a test is called a two-tailed test.
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Using the Normal Distribution

For a one-tailed test the data are
o H()I 0 = 00;
® Hll 0>00 (9<90);
6—6,

e Statistics: z = ;
g4

e Rejection region: z > z, (2 < —2z,);
e Type | error: .

In practice, we are often given « in advance specifying the type | error
probability that we are willing to accept, and we use this to find the

acceptance and rejection interval.
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Test About a Mean

One-tailed test

Two-tailed test

Ho: p= po
Hy:p > po
(or Hy: pn < pg)

T— o
oz

z =
Rejection region:

z2 > 24 (Or 2 < —24)

degrees of freedom.

Hy: o= pio
Hy:p# po

T—po
oz

z =

Rejection region:

2 < —Zgj2 OF Zgj2 < 2

If the sample size is small (n < 30) or if o; has to be estimated by s//n
then the normal distribution is replaced by the ¢-distribution with n — 1

ﬁ 7
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Test About a Mean

Example. We go back to the machines making wires with diameter
approximately Imm. Data taken from two machines showed the following

values:
[: 1.0429 1.0627 0.9203 0.9280 1.0286

0.9800 1.0345 1.0408 1.0356 1.0645

II: 1.0001 1.0157 0.9439 0.9794 0.9753
0.9319 0.9877 0.9483 1.0225 0.9558

with ny = ne = 10, z; = 1.0138, s; = 0.0526, o = 0.9761, and
so = 0.0309.

For
, _Ei—10
' Sz/\/m

we find ¢; = 0.7877 and t, = —2.4459. With o = 0.05 we consider the
following tests:

o H()I .’,731 — 10,
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Test About a Mean

e Hy:x; <1.0.

Since t1 # t9,0.05 = 1.8331 the hypothesis H is accepted.
e Hy: 2, = 1.0,
o Hi:xzy#1.0.

Since t9.025 = 2.2622 and —2.2622 < t; < 2.2622 the hypothesis is
accepted.

In both cases the decision is ‘correct’; the data was random data with
1 =1.0 and o = 0.05.

]
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Test About a Mean

For the second sample we consider
® H()I :EQ = 10,
® Hll To < 1.0.

Since 1y = —2.4459 < t9.05 = —1.833 the hypothesis is rejected. For
the two-tailed test

o Hy: 7o =10,
o Hy:Zy# 1.0

we see that t9 < —1g0.025 = —2.262, and we reject H, again. []
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Test About a Mean

Student’s t—Distribution, 9 df

0.4
0.25
0.2 ]
0.10
0.05
0.025
0.01
-4 -2 0 t e 2 U oo 4

]
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Testing For the Difference Between Means

One-tailed test

Two tailed test

Ho: pp —po=d
H12,LL1—,LL2<d
(orle,ul—,ug>d)

(:ﬁl—fz)—d . (fl—fz)—d

z = pr—
T31-22 of L o3
ni n

Rejection region:

z> 24 (Or 2 < z4)

Ho: pp —pe=d
Hy:py —po #d

_ (#1—z2)—d

Z = =
Ta1-%3 of o3
nj ng

Rejection region:

z < —Za/2 OF Z2q/2 <z

ﬁ 7
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Testing For the Difference Between Means

If the sample sizes are small and o; and o3 are unknown then the
t-distribution with n; + ny — 2 degrees of freedom replaces the normal

distribution, with

ny —1)s? 4+ (ny — 1)s2

t = where 3%2(1 Jsi + (s )27
Ny + Ng — 2

provided that the two unknown variances are equal.
Example. The response times of two hard drives are tested. The values

found are
Disk 1 Disk 2

n1=15 7’L2=13
f1:16 Zf'2:13

81:5 82:4

What can be said about the difference between the mean response times?
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Testing For the Difference Between Means

Here
Ho: (1 —p2) =0, Hi: (g1 — p2) #0.
We calculate
2 (ni—1)si+ (ng—1)s3
niy + Ng — 2
14 - 52 412 - 42

15+13 -2
= 20.8462

and

(1 — Zo) — d

Vb (E+ L)
16 — 13

\/20.8462(% + &)
= 17340,

]
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Testing For the Difference Between Means

From the tables we know that for ny + ny — 2 = 26 and o = 0.1 (for
example) that

t0.05,26 = 1.706.

Since %0526 < t the hypothesis is rejected.

Student’s t—-Distribution, 26 df

]
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Testing For the Difference Between Means

Example. A study is done in the effectiveness of certain exercises to
help weight loss. The following data are collected (in kg):

before after before after
106 99 86 83
90 87 78 77
86 86 92 92
107 104 83 82
91 90 101 100
97 96 90 38
80 81 22 116
91 91 73 71

For the random variables before b and after a we find b = 92.0625,
sp = 12.3584, a = 90.0625, and s, = 11.0843. Our hypotheses are

78  B34.UC2 Numerical Computation and Statistics in Engineering
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Testing For the Difference Between Means

® HO:B—&:(),
L H126—6_L>0,

and we will test at a 5% level of significance.

Then t30005 = 1.699, and we reject Hy if ¢ > 1.699. To calculate

further,

2 (np — 1)sy + (na — 1)s3
Ny + Ng — 2
15
30(s7 + s2)

1
— 5(12.35842 +11.0843%)

= 137.79562.

]

j B34.UC2 Numerical Computation and Statistics in Engineering
]?

Yvan Petillot

Unit 5 — 20



Testing For the Difference Between Means

For ¢ we find

(b—a)—0
NCICHEES
92.0625 — 90.0625

\/137.79562 - L
— 0.38098.

The hypothesis is accepted, and there is evidence that the exercises help
reducing weight. []

]
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Tests Concerning the Variance

Given a random sample from a normal population we will test the

null hypothesis o? = o7 against the alternatives o # o or 0% < o}

(62 > 07). The random variable
, (n—1)s*

X = 7
!

has a x? distribution with n — 1 degrees of freedom. For a two-tailed test
the null hypothesis is rejected if

X2 < X%—a/2,n—1 or X2 > Xz/z,n—l :
For a one-tailed test and the alternative hypothesis 0% < o7 we reject H
if x? < X%—a,n—l'
Example. Thickness of a semi-conductor part (in 10~°m) is crucial in a

production process. The machine manufacturing these semi-conductors
needs to be readjusted if 0% < (.36.

If in a sample of 20 measurements we find s> = 0.74, what can be said
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Tests Concerning the Variance

at a a = 0.05 level of significance?

We assume that thickness is normally distributed. Then
e Hy: 0% =0.36,
e H,: 0% > 0.36.

We reject the null hypothesis if x* > x§ o519 = 30.144. With s* = 0.74,
o5 = 0.36 and n = 20 we find
, (n—1)s* 19.0.74

YT T2 T T 0.36

— 34.944 .

and the machine needs to be readjusted.

Note that for n = 20, o} = 0.36, and o = 0.05 the machine needs
readjustment if for a sample of 20 measurements the sample variation s
is greater or equal than 0.571. [

]
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Testing for Proportions

Example. Suppose 5 out of 20 transistors are faulty. We test the

hypothesis
L H()I P = 05,
o Hll D 7é 05,

at the 0.05 level of significance.

Instead of determining the rejection and acceptance interval we will find
the smallest o which will reject Hy (note for the calculation that the
binomial distribution is symmetric):

a/2 = P(r <))

5 20
= ) ( )0.5%0.520—”5
x=0 T

— 0.0207,

so that a = 0.0414. Since a < 0.05 we will reject Hy. []

]
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Testing for Proportions

If in a binomial test the size n is large we can use the normal distribution
(with or without continuity correction) as an approximation for the
random variable . Then we get

Hy: p=po

Hi:p 75 Po

5 = T—npo or z = (ji%)—npo
npo(1—po) npo(1—po)

Rejection region:

2 < —Zg/2 OF Zoj2 < 2
(If we use the correction factor we use a minus when z exceeds np,, and
a plus when z is less than np,.)

For the on-tailed test
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Testing for Proportions

we use the same statistics z as above with rejection interval z > z,.
Example. Suppose py = 0.2 and we test

o Hy: p=20.2,

o H:p<0.2,

at the 0.01 level of significance. Then, using 291 = 2.33 we have the
rejection region z < —2.33. If the test data are n = 200, x = 22, then
B X — npo ~22-200-0.2

v/1po(l — po) v/200-0.2- 0.8

and we reject the null hypothesis. [

Z

~ —3.18,
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Goodness-To-Fit

Goodness to fit tests are applied to test whether a set of data may
be looked upon as a random sample from a population having a given
distribution.

Suppose we have data from a Poisson distribution with A = 3 (see next
slide), which gives the following frequency diagram:

Data Plot
100 T T T T T T ' ! ‘
+ Data plot
+ T~ Poisson distribution
80} |
+
60 |
+
40/ ' |
20+ : |
+
+
+
0 |
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Goodness-To-Fit

Frequency Poisson | Expected freq. e;
T fi A=3 (A = 3.0225)
0 20 | 0.0500 | 0.0498 19.4717
1 57 10.1425 | 0.1494 58.8534
2 8710.2175 | 0.2240 88.9421
3 92 | 0.2300 | 0.2240 89.6092
4 68 | 0.1700 | 0.1680 67.7110
5 46 | 0.1150 | 0.1008 40.9313
6 16 | 0.0400 | 0.0504 20.6191
7 910.0225| 0.0216 8.9030
8 410.0100 | 0.0081 3.3637
9 1]0.0025| 0.0027 1.1296

For the expected frequency we first estimated A using the third column

g

]

—,
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Goodness-To-Fit

das

A

A =3.0225.

The random variable

i=0 ‘
with m the number of different data (here 10) has a x* distribution with
m — t — 1 degrees of freedom, where ¢ is the number of parameters
estimated from the data (here 1).
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Goodness-To-Fit

With the data above we want to test at a 0.05 level of significance
whether the data are from a random variable having Poisson distribution.

We set

e Hy: The data are from a Poisson random variable.

e H,: The data are not from a Poisson random variable.

We reject Hj if

- (fz' — Gi)Q
X?)z,m—t—l S X2 — Z .

Here m = 10, t = 1, and X§g510-1-1 = 15.507. With our data,
2 = 1.9789, and H, is accepted.
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Summary

e Statistical tests often consist of a null hypothesis, and an alternative
hypothesis. A type | error is made when the null hypothesis is true,
but rejected. A type Il error is made when the null hypothesis is
false, but is accepted.

e We distinguish one-tailed and two-tailed tests.

e Statistical tests are based on sampling and confidence intervals. We
thus use the normal distribution, the Student’s ¢-distribution, and
the chi-square distribution in standard tests.

e Goodness-To-Fit tests use the chi-square distribution to test whether
a set of data fits a given distribution.
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Scatterplots

Scatterplots show the relationship between two quantitative variables.
Examples are

e fuel consumption per speed:;
e fuel consumption per weight;
e spending for leisure per income;

e ctcC.
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Scatterplots

Example. We consider the following average high and low temperatures
in Montreal (in degrees Celsius), and the measured gas consumption for
heating (in liters) for a house:

Jan.  Feb. March April  Mai June
high -4 -3 3 12 20 25
low | -14  -12 -6 2 9 14
gas | 894 750 692 486 279 148
July Aug. Sept. Oct. Nov. Dec.
high | 27 26 21 14 6 2
low | 17 15 11 5 -1 -10
gas | 77 127 248 390 584 688

The following is a data plot of the gas consumption against the low and

ey
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Scatterplots

hight temperatures. Both suggest a strong linear relationship.

Scatterplot of Gas vs Temperature
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Scatterplots

In general, interpreting a scatterplot we first look for an overall pattern,

and describe form, direction, and strength.

Two variables are positively associated if above average values of one
variable tend to result in above average values of the other. Two variables
are negatively associated if above average values of one variable tend to

result in below average values of the other.
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Correlation

Correlation measures strength and direction of the linear relationship
between two data sets. If the random variables are = and y, each
consisting of n individual data, then the correlation r between x and y is

defined as

1 Z Ti—T Yi—Y
r = . ) )
n—1 i Sy Sy
where Z and ¢ are the sample means, s, and s, the sample errors.

Correlation has the following properties:

e 7 does not have a dimension;

e the correlation is invariant under change of units of measurements;
e 1 is also independent from interchanging the role of x and y;
e 1 is always a number between —1 and 1.

Values close to —1 or 1 indicate strong linear relationships.
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Correlation
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Least Squares Regression Line

One of the variables is usually considered to be an explanatory variable
(often denoted x), and the other a response variable (often denoted y).

A regression line is a line that describes how the response variable y
changes when the explanatory variable x changes. Regression lines are
used, among others, for prediction.

We use the notation
y = bz + By
to denote a regression line for the data set x and y. Here ¢ stands for

the predicted value of the response variable (as opposed to the observed
value). The quantity

€& =i — Yi = (Bazi + Bo) — i

is called the error (or residual) of the observed data y;, and is the
vertical (!) distance between y; and the regression line.

The least squares regression line is the regression line that minimizes the
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Least Squares Regression Line

sum
Zi 67,2 - ZZ(@Z — yi)2 :

The least squares regression line y = Blaz + Bo has slope

B =2y = 2_i(®i — 2)(yi — 1)
se D i(%i = T)(2i — T)

and intercept
Bo=1y— .
e In least squares regression analysis the role of x and y are distinct.
Changing the role of x and y gives different regression lines.

e A change of one standard deviation in x corresponds to a change of

r standard deviation in y.
e | east square regression lines are sensitive to outliers.

How do we find the estimators Bo and 31 for the least squares regression
line? We want to minimize E(By, 51) = Sy — ) =D (i — (Bo +

W  B34.UC2 Numerical Computation and Statistics in Engineering
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Least Squares Regression Line

Biz;))2. Then

Ok A
96 ZZ 2(yi — Bo — brzi)(—1) and

OF
o5 = .2 o= i) (-,

Setting both lines equal to 0 and simplifying gives
0 = Z(?Jz — 31%) - nBo
= —nfy— Z T; + Z Y and
0 = —Zi$iyi+ﬁozi$i+ﬁ1zi$?-

Solving this system of linear equations in (3 and 3, gives the formulae

above.
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Least Squares Regression Line

For our data relating the use of gas for heating we find the following
parameters for the least squares regression lines:

T Sy Sy 31 Bo
high | -0.9940 11.4213 247.7005 -23.9072 743.8478
low | -0.9912 11.0495 247.7005 -24.6422 508.6054

The two equations for the regression lines are thus

= —23.9072x + 743.8478 and
= —24.6422x + 508.6054 .

Nauf SN e

g

]
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Least Squares Regression Line

The following diagram shows the data and the regression lines:

Scatterplot of Gas vs Temperature
1500 T T

1000

500¢

Gas for heating in liters

—%O -10 0 10 20 30 40
Temperature in degrees celcius
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Least Squares Regression Line

If we interchange the role of x and y then we get the regression line
T = (341y + (340
with & = rz—;f and &g = x — aqy. This yields the equation

7 =—0.0412y +30.8903  or y = —24.1967% + T47.4423 .

Scatterplot of Gas vs Temperature

1500

iters

10001

Gas for heating in |
o
o
=

—%O -10 0 10 20 30 40
Temperature in degrees celcius
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Example

The following data represent the number of members in the EC Council

of Ministers of current EC members and of potential EC members, and

the populations of the member states:

number population

(in 1,000,000)

Germany 29 82.038
Great-Britain 29 59.247
France 29 58.966

ltaly 29 57.610

Spain 27 39.394
Netherlands 13 15.760
Grece 12 10.533
Belgium 12 10.213

number population

(in 1,000,000)

Portugal 12 9.980
Sweden 10 8.854
Austria 10 8.082
Denmark 7 5.313
Finland 7 5.160
Irland 7 3.744
Luxembourg 4 0.429

The list of candidates is as follows, with the agreed

number of seats

ﬁ 7
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Example

according to the EC meeting in Nice end of 2000:

number population number population

(in 1,000,000) (in 1,000,000)

Poland 27 33.667 Lithuania 7 3.701
Rumania 14 22.489 Letvia 4 2.439
Czech Republic 12 10.290 Slovenia 4 1.978
Hungaria 12 10.092 Estonia 4 1.446
Bulgaria 10 10.230 Cyprus 4 0.752
Slovakia 7 5.393 Malta 3 0.379
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Example

The following diagram shows a scatterplot for these data:

EC Council of Ministers

30 + +

Seats/Votes
- N N
o1 o (@n

S
:

OO 20 40 60 80 100
Inhabitants in 1,000,000

Y
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Example

For the regression lines we find

0.6542z + 3.3924 .

§=0.31862 +7.9581  and ¢

The correlation is 0.8930 for the first data set, and 0.9700 for the second.

EC Council of Ministers

Seats/Votes

0 20 40 60 80 100
Inhabitants in 1,000,000

The combined data set does suggest a logarithmic relationship.
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Non-Linear Relationships

The following four data sets are from Frank J. Anscombe, Graphs in
statistical analysis, The American Statistician 27: 17-21, 1973.

T1 10 8 13 9 11 14 6 4 12 14 5
y1 | 804 695 758 881 833 996 7.24 426 10.84 482 568
o 10 8 13 9 11 14 6 4 12 I 5
y2 | 9.14 8.14 874 877 926 81 6.13 310 913 726 4.74
T3 10 8 13 9 11 14 6 4 12 14 5
ys | 746 6.77 1274 7.11 781 884 6.08 539 815 642 573
) 8 8 8 8 8 8 8 8 8 8 19
ys | 658 Hb76 771 884 847 7.04 525 556 791 689 1250
%@ B34.UC2 Numerical Computation and Statistics in Engineering . .
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Non-Linear Relationships

The correlation and least squares lines are shown in the following list:

r1 = 0.8164 71 = 0.5001z; + 3.0001
ro = 0.8162 U2 = 0.5000z2 4 3.0009
r3 = 0.8163 U3 = 0.4997x5 + 3.0025
rqy = 0.8165 Us = 0.499924 + 3.0017

However, when plotting the data we realize that only the third and fourth
represent strong linear relationships (both with one influential outlier).
The first data set represents a moderate linear relationship, while the
second represents a curved relationship.

]

j B34.UC2 Numerical Computation and Statistics in Engineering
]?

Yvan Petillot Unit 6 — 19



Non-Linear Relationships

15 15
+
10} . 10} e,
+ T +
+
5¢ S +
0 ' 0 |
0 10 20 0 10 15
15 15
+
10¢ 10¢
L+ 7" #+ i
+ 1 $
St St
0 ' 0 ‘
0 10 15 0 10 20
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Confidence Intervals

We want to gain confidence in the least squares regression line. For this
we have to make a couple of assumptions about e:

e For the random variable ¢ we make the assumption that E(¢) = 0.
e The standard deviation of € is a constant o.

e The distribution of € is normal.

e Errors associated with different observations are independent.

Under the assumptions above let s? be

Zz(yz — @z‘)z .

n— 2

—92)g2 . . . . .
Then & 022)8 has a chi-square distribution with n — 2 degrees of freedom,
and s? is an unbiased estimator for o2

The standard deviation of € can be interpreted as follows: We expect
most observations y to lie within 2s of their least squares predicted value

A

Y.
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Confidence Intervals

If we make the four assumptions above then Bl has normal distribution
with mean the true slope of the line and standard deviation

Here we use the notation

Suv = ZZ(’U,Z — ?_L) (Ui — 1_}) = Zz u;v; — %Zz U; Zz U;
and note that

Z(yz — gz)z — Syy — Blsxy .
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Confidence Intervals

We want to find confidence intervals for the slope. The random variable
-8 Bis
831 8/ V Sfm

has a t-distribution with n — 2 degrees of freedom (we cannot use the
normal distribution since 04, Is estimated by 331). Thus, the endpoints
of a (1 — a)100% confidence interval for the slope 5, are

By + tn—2,0/253, where s5 = 5/1/ Sz -

Note that the endpoints of the interval are again of the form

point estimator & ¢,_s /2 estimated standard error of the estimator

W  B34.UC2 Numerical Computation and Statistics in Engineering
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Confidence Intervals

Example. The following data are given:

1 2 3 4 5 6
1 2 2 4 4 6

X;

Yi

Here Y x; =21, > y; =19, Y 27 =91, > y7 = 77 and >_ z;5; = 83.
It follows that

Sex = Zazf—é(z.ﬂvzf = 91_26£

— 175, and
1 21 - 19
Szy = in%—g(zxi)(zyi) = 8-
= 16.5.

]
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Confidence Intervals

Thus we calculate for slope and intercept of the least squares regression

line
" Sx
B = sz = 0.9429,
A A 1 21
Bo = y— iz = 6'19_0'9429'F = —0.13.
.
6/ +
5k
4r + +
3/ 0.9429x — 0.1333]
2 + +
1r +
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Confidence Intervals

An estimator for the variance s? of the error e = y — ¢ is
> (Y — ?)i)2
n— 2

With the data above we find that S,, = 77 — £(19)* = 16.8333 so that

— Syy — Bls:vy :

s2 =1.2755.

The endpoints of the 95% confidence interval for 81 are

R V' 1.2755

V17.5

ey
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Multiple Linear Regression

By way of example we consider multiple linear regression. We consider
the following table of apartment blocks sold in a big city:

#appartments #floors price (in 1,000,000)

60 10 78.2
40 5 45.4
80 10 100.0
30 6 35.7
60 3 80.5
40 6 42.8
90 12 120.4
30 I 90.5

We want to find the equation of a plane (!) allowing to predict the
price z of an apartment block with x apartments and y floors using the

ey
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Multiple Linear Regression

method of least squares.

The equation of the plane is

A

z=ax+ Py+7.
For observed data z; we have the error
€ =2 — 2 = 2 —Ox; — By — 7,

and we try to minimize

E(&,,4) = Z Z (2i — Gx; — By — 7)*
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Multiple Linear Regression

Then
oF . - .
o4 ZZ 2(Zz‘ — az; — By; — 7)(_%)
oF .
~ = 227;—(3&$i— Z'—A —Y,;
T By = )~
oF

57 Z,Q(Zi—&xi—ﬁyi_’w(_l)
Y 1
Thus we have to solve the system of linear equations
0 = —Zzia:i—k&z:x?—kﬁz:xiyi—l—ﬁz:xi

0 = =X 2yi+ad myi+BY y; +92 v
0 = =Y z+a>Xz+0>Y vy +nd

ey
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Multiple Linear Regression

With the data above we find
Sx? = 33200 d o xiy; = 3840 > x; = 480

doyi = 499 > Tz = 40197 >y = 59
Y 22 = 504994 Y vz = 4799.8 > 2z = 593.5

Thus we have to solve the system of linear equations

33200 3840 480 & 40197.0
3840 499 59 Bl = 4799.8
480 59 8 4 593.5

Linear algebra (or MATLAB) tells us that the solution is

A

& =1.3067, B=04813, 4= —7.7611.

We can use the equation of the plane

g = 1.3068x 4 0.4813y — 7.7611

78  B34.UC2 Numerical Computation and Statistics in Engineering
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Multiple Linear Regression

to predict the price of an apartment block with 50 apartments and 5
floors, which will have a predicted price of

z=1.3068 - 50 + 0.4813 - 5 — 7.7611 ~ 59.98

million.

ey
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The Previous Example in MATLAB

>> x = [60 40 80 30 60 40 90 80];

>>y =[105 10 6 3 6 12 7];

>> z = [78.2 45.4 100.0 35.7 80.5 42.8 120.4 90.5];
>> Sxx = sum(X.*X);

>> Syy = sum(y.*y);

>> Szz = sum(z.*z) ;

ans =
1.0e+004 =*
3.2200 0.0499 5.0449
>> Sxy = sum(x.*y);

>> Sxz = sum(x.*z);
>> Syz = sum(z.*y);
>> [Sxx Syy Szz]

ey
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The Previous Example in MATLAB

>> [Sxy Sxz Syz]

ans =
1.0e+004 x
0.3840 4.0197 0.4800
>> [sum(x) sum(y) sum(z)]
ans =
480.0000 59.0000 593.5000
>> A=[Sxx Sxy sum(x); Sxy Syy sum(y); sum(x) sum(y) 8]
A =
32200 3840 480
3840 499 59
480 59 38

>> b=[Sxz; Syz; sum(z)]

]
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The Previous Example in MATLAB

b =
1.0e+004 =*

4.0197
0.4800
0.0594
>> inv(A)
ans =
0.0005 -0.0024 -0.0127
-0.0024 0.0267 -0.0556
-0.0127 -0.0556 1.2996
>> (inv(A)*b)’
ans =
1.3067 0.4813 -7.7611

]
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Example

Example. A study is made into the response time to 911 calls. It is

measured the time (in minutes) it takes the ambulance to arrive at the

scene against the distance (in kilometers) between the station and the

scene. The following data are collected:

dist. x

time y

3.4
2.5

1.8
1.8

4.6
3.0

2.3
2.6

3.1
2.9

dist. x

time y

9.2
3.9

0.6
1.6

2.9
2.3

2.7
2.0

4.0
3.4

dist. x

time y

2.3
2.5

1.0
1.8

6.3
2.6

4.5
2.8

3.9
2.8

]
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Example

To find the least squares regression line § = le + Bo we first calculate

S,. = 33.5573
S,y = 5.3933
Sy, = 10.0367
and thus
. Sy, 10.0367
b S 33.5573 !

Bo = §— (T = 2.5667 —0.2991 -3.2133 = 1.6056.
and the least squares regression line is
y = 0.2991x + 1.6056 .

Next we look at the probability distribution of the random error compo-
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Example

nent ¢. For s? we find

— — = (.1840.
> n—2 13

Thus s = 0.4289.

The endpoints of the 95% confidence interval for 81 are

s 0.4289
= 0.2991 =+ 2.160
VS Vv 33.5573

which gives the interval [0.1392,0.4590]. The following diagram shows
the data set, the least squares regression line, and the two boundary lines

B1 = t13,0.025

for the interval estimating B:

]
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Example

Y
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Summary

e Regression analysis aims to find relationships between variables where
there is an estimated dependency.

e Correlation measures strength and direction of a linear relationship
between two data sets. However, correlation is sensitive to outliers.

e The least squares regression line is the line that fits best best two
data sets. This line minimizes the vertical distance between the
observed values and the predicted values on the line.

e Multiple linear relationships and non-linear relationships can be
tackled with similar methods.
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