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Random Variables

A random variable is a function taking numerical values which is defined
over a sample space. Such a random variable is called discrete if it only
takes countably many values.

Example. A quality control engineer checks randomly the content of bags,
each containing 100 resistors. He selects 2 resistors and measures whether
they match the specification (exact value plus or minus 10% tolerance).
The number of resistors not matching the specification is a discrete random
variable.

Another random variable would be the function taking values 0 and 1, for
the outcomes that there are faulty resistors in the bag, or not. [l

The probability distribution of a random variable is a table, graph, or
formula that gives for each possible value of the random variable its
probability. The requirements are that

0<p(z)<1 and Dot P(@) = 1.
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Random Variables

The following two diagrams show examples of discrete probability distribu-

tions:

Binomial Distribution, n =10, p =0.3

Poisson Distribution, A =2
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Expected Value

For a discrete random variable = with probability distribution p(x) the
expected value (or mean) is defined as

w=FE(x)=) z-p(z).

all x

Example. We consider throwing a fair die 6000 times. We expect roughly
1000 outcomes of each possible observations 1,..., 6. Thus the arithmetic
mean of such an experiment will be approximately

1000 1000 1000
o 42— - +6—— =35,
6000 i 6000 i i 6000
The expected value is 2?21 ip(i) = % -+ 21 = 3.5, as expected. ]
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Expected Value

Let z be any discrete random variable with probability distribution p(z),
and let g be any function of z. Then the expected value of g(x) is defined

as

Elg(x)] =) g(z)-p(z).

all

The variance of a discrete random variable x with probability distribution

p(x) is defined as
o’ = E[(z — )],

the standard deviation is defined as 0 = \/E[(z — p)?].

Example. We return to the example of throwing a die. For the variance

we find
2 21 o1 21
o= (1-3.5) 6—|—(2—3.5) 6—|—-~+(6—3.5) 6%2.917.
For the standard deviation we find o ~ 1.708. []
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Properties of the Expected Value

Let = be a discrete random variable with probability distribution p(z).
c) = c, for every constant c;

E(
E(cx) = cE(x), for every constant c;

o Elgi(x) + g2(x)] = Elg1(2)] + Elga()],
for any two functions ¢g;, g2 on .

It follows the important formula that

For the proof of this formula note that
0° = Ellzx —p)?] = Elz*—2ux+ 1]
= El2*] - 2uE[z] + p* B[]
= B[] = 2up +p* .
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The Binomial Probability Distribution

Example.
e T[ossing a coin 10 times.

e Questioning 100 people on Princess Street in Edinburgh whether they
know that Madonna’'s wedding takes place in a Scottish castle.

e Checking whether lots of transistors contain faulty transistors or not.

[l

These experiments or observations are all examples of what is called a
binomial experiment (the corresponding discrete random variable is called
a binomial random variable).
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The Binomial Probability Distribution

The examples have the following common characteristics:

e The experiment consists of n identical trials.

e In each trial there are exactly two possible outcomes (yes/no,
pass/failure, or success/failure), denoted here 0 and 1 (for success).

e The probabilities for the outcomes 0 and 1 are the same in each trial
(the trials are independent). These probabilities are usually denoted

p=P('l")andg=1—p= P('0").
e The discrete (binomial) random variable is the number of successes

(i.e., of 1's) in the n trials.
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The Binomial Probability Distribution

The binomial probability distribution is given by the formula

p(z) = <Z>p‘”q”‘m, z€40,...,n},
where
e p is the probability of a success in a single trial, and ¢ = 1 — p;
e 1 is the number of trials; and

e 1 is the number of successes.

The expected value (mean) and standard deviation are given by

L =mnp and o = \/npq.
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The Binomial Probability Distribution

n=10,p=0.3 n=10,p=0.5
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The Binomial Probability Distribution

n=10,p=0.7 n=30,p=0.7
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The Binomial Probability Distribution

n=4p=0.2

Example. Tests show that about
20% of all private wells in some spe- o4t .

cific region are contaminated. What oal

are the probabilities that in a random
0.2r

sample of 4 wells exactly 2, fewer than +

2, or at least 2 wells are contami- o4

+
nated? 05 : ; : :

Here n = 4, p = 0.2 (success for being contaminated). We find

P(z=2") = (;)0.220.8%2=0.1536,
P(z<?2) = P(z=0)+P(z=1)=(7)0.2°0.8"+ (})0.2'0.8° = 0.8192,
P(z>2) = P(z=2)+P(z=3)+P(z=4")

= 0.1536 + (5)0.2%0.8" + (;})0.2*0.8° = 0.1808.

036
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The Geometric Probability Distribution

Example. Customers wait in line to be served at a wicket. Per time
interval the probability that a customer is served is 10%. What is the
probability that a customer has to wait 15 time intervals before being
served? ]

Such and similar events are modeled by the geometric probability distribu-
tion. Each time interval we have an ‘independent experiment’ which can
succeed or fail with success probability p (as for the binomial probability
distribution). To be successful in the xth try we need z — 1 failures (with
probability ¢ = 1 — p) and one success (with probability p).
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The Geometric Probability Distribution

The data for the geometric probability distribution are

o p(x) =pg“ !, xr=1,2,...,
where x is the number of trials until the first success: and

o p=_,ando= /5%

Geometric Probability Distribution, p = 0.1

+

0.1

0.08 *+

0.061 +

0.041 +

0.02¢ +
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The Geometric Probability Distribution

Example. The average life expectancy of a fuse is 15 months. What is
the probability that the fuse will last exactly 20 months?

We have that p = 15 (months), or p = -, which is the probability that a

fuse will break. For 2 = 20 we obtain

P('z =20") : (1 i)20—1,

15 15
which is approximately 0.018. For o we find v/210 = 14.49. [l
Geometric Probability Distribution, p = 1/15 Geometric Cummulative Distribution, p = 1/15
+ ‘ ‘ ‘ ‘ ! ‘ ‘
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The Hypergeometric Distribution

The binomial and the geometric probability distribution are to be applied
if, after observing a result, the sample is put back into the population.
However, in practice, we often sample without replacement:

Example.

o If we test a bag of 1000 resistors whether they meet the specification
we usually won't put back the tested items.

e Suppose people are randomly selected at Princess Street in Edinburgh
to fill in a questionnaire about a new product. When people are
approached they are usually first asked whether they have already
taken part in this marketing research.

e A big manufacturing company maintains their machines on a regular
basis. Suppose that on average 15% of the machines need repair.
What is the probability that among the five machines inspected this
week, one of them needs repair?
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The Hypergeometric Distribution

e A box of 1000 fuses is tested one by one until the first defective fuse
is found. Supposing that about 5% of the fuses are defective, what is
the probability that a defective fuse is among the first 5 fuses tested?

[l

Such and similar random variables have a hypergeometric probability
distribution:

e The populations consists if N objects.
e The possible outcomes of the experiment are success or failure.

e Each sample of size n is equally likely to be drawn.
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The Hypergeometric Distribution

The data for the hypergeometric probability distribution are
() (i)
)

p(x) = Oon—N+r<z<n,r,

where
e NV is the number of elements in the population;
e 1 is the number in the population for success;
e 1 is the number of elements drawn; and
e r is the number of successes in the n randomly drawn elements.

The mean and standard deviation are given by

r (N —7)n(N —n)
p=n=, and 0\/ NZ(N — 1) :
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The Hypergeometric Distribution

If we write p = & then 4 =np and o = \/%np(l — p). This shows that
the binomial and the hypergeometric distributions have the same expected
value, but different standard deviations. The correction factor % Is less

than 1, but close to 1 if n is small relative to V.

n =10, N =1000, r =200, p =0.2

0.4

n=10,N=50,r=10,p =0.2

0.4
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The Hypergeometric Distribution

Example. A retailer sells computers. He buys lots of 10 motherboards

from a manufacturer who sells them cheaply, but also offers low quality.

Suppose the current lot contains one defective item. If the retailer usually
tests 4 items per lot, what is the probability that the lot is accepted?

Here N =10, r =1, and n = 4, and we are looking for P(‘z = 0"), which

IS
Pl —0) — (()() _ 1-9-8-7-61-2-3-4
(140) 1-2-3-4 10-9-8-7
6
= 1
We would use the same calculation if we would only know that on average
10% of the motherboards are faulty. ]
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The Hypergeometric Distribution

Example. We test lots of 100 fuses. On average 5% of the fuses are
defective. If we test 4 fuses, what is the probability that we accept the

current lot?

Again, the random variable is hypergeometric, and since N = 100 is large
we can assume that there are 5 defective fuses in this lot. We find

5\ (95 51 95!
ey - OO _ B
5 5195!

95-94-93-92-91

100-99-98-97-96
~ 0.7696.

Later we will see how reliable this value is, as we don’t know the exact

number of faulty fuses in this lot. ]
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The Poisson Distribution

The Poisson probability distribution provides a model for the frequency of
events, like the number people arriving at a counter, the number of plane
crashes per month, or the number of micro-cracks in steel. (Micro-cracks
in steel wheels of the German high-speed train ICE led to a disastrous rail
accident in 1998.) The characteristics of a Poisson random variable are as

follows:

e The experiment consists of counting events in a particular unit (time,

area, volume, etc.).

e The probability that an event occurs in a given unit is the same for

every unit.

e The number of events that occur in one unit is independent of the

number of events that occur in other units.
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The Poisson Distribution

The Poisson probability distribution with mean A is given by the formula

AZe~A

— (x=0,1,2,...),
!

p(x)

where e is the constant 2.71828. The expected value and standard deviation

dare
=N\, and c=v\.
Poisson Distribution,A =5 Poisson Distribution, A = 10
0.2 0.2
+ +
0.15f N + 0.15f
+ +
+ +
1 + 1
0.1 0.1 N +
+ +
0.05¢ 0.05} |
+ + +
+ +
O-| ‘ + + + ‘
0 5 10 15 0 5 10 15
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The Poisson Distribution

Example. Suppose customers ar- A=
rive at a counter at an average rate vt
0.2¢
of 6 per minute, and suppose that the .
random variable ‘customer arrival’ has
a Poisson distribution. What is the 0.1f *
probability that in a half-minute inter- : +
val at most one new customer arrives? 0 S
0 5 10 15
Here A = & = 3 customers per half-
] Cummulative Distribution,A =3
minute. So 1 R
i H | H i ! 0.8 *
P(z <1 P(lz=0)4+P('z=1")
+
e—330 e 33! 0.6/
0! 11
L +
4 0.4
e3 )
0.2/
which equals approximately 0.199. [ i |
0 5 10 15
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The Poisson Distribution

As an example we will verify that the Poisson probability distribution p(z)
really is a distribution, and that the mean is .

We note first that 0 < p(z) for all values of x. Also, since

0
€ = 9
z!

=0
I =e et =300 A = 7% €A — $7% (), which shows that
p( )<1andZallx ( )_1
For the mean we calculate
P P
E(z) = Z%x = 0—|—Z:1x ]

|
T/
| >
p
| 8
=| I

|

p
[M]¢
Q)
S| L
| >
K

|

>
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Continuous Random Variables

Many random variables arising in practice are not discrete. Examples
are the strength of a beam, the height of a person, or the capacity of a

conductor. Such random variables are called continuous.

A practical problem arises, as it is impossible to assign finite amounts of
probabilities to uncountably many values of the real line (or some interval)
so that the values add up to 1. Thus, continuous probability distributions

are usually based on cumulative distribution functions.

The cumulative distribution F'(x) of a random variable x is the function

F(xg) = P('x < xp') .
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Continuous Random Variables

n=10,p=0.3 Binomial CDF, n =10,p =0.3
0.35 1 R
+ ] +
0.3 0l |
+
0.251
+ +
0.6 1
0.2f +
0.15) 1 04l . ]
+
0.1f +
0.2} ]
0.05¢ 1 +
+ +
O I I I + 4= -+ O-"- 1 1 I I
0 2 4 6 8 10 0 2 4 6 8 10
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Continuous Random Variables

Poisson PD,A =3

0.2

0.1

10

0.8f

0.6

0.4f

0.2¢

Poisson CDF,A =3

+

+

+

¥ =+
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Density Functions

If F'is the cumulative distribution of a continuous random variable x then
the density function p(x) for x is given by

_dr
- dx

(provided that F' is differentiable). It follows that

p(x)

Flz) = / " () dt

— o0

Moreover, the density function always satisfies the following two properties:
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Density Functions

0.2r
0.1r
F(xo)
0 I
0 2 4 6 8 8 10
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Expected Values

Let us recall from calculus that an integral is a limit process of a summation.
Finding
x0
F(xg) = / p(z)dr

— o0

for a continuous random variable is analogous to finding

Flzo) = 3 pla)

r<xg

for a discrete random variable. Thus, we define the expected value

analogous to the discrete case.
The expected value of a continuous random variable x with density function
p(z) is given by

J = B(z) = /_OO to(t) dt

. @)

8 B34.UC2 Numerical Computation and Statistics in Engineering

Yvan Petillot Unit 2 - 31



Expected Values

If g is any function we define the expected value of g(x) as

Elg(z)] = / " gt dt.

provided that these integrals exist. The standard deviation i1s 0 =
v E[(z — u)?]. Note that

e F(c) = c, for every constant c;

o F(cx) = cE(x), for every constant c;

e Elgi(z) + g2(x)] = Elgi(z)] + Elg2()],
for any two functions g1, g on .
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An Example

Example. We consider the density function

ez if0<z< oo,

1
p=4"
0 else.

This density function is everywhere positive, and for x < 0, F(z) =
[ p(t)dt =0, whereas for z > 0

T z1
Flz) = / o(t) di = / Lot
—00 0 2
— [—6_%}53 — 60—6_% — 1—6_%
0

In particular,

r—00

/_OO p(t)dt = lim F(x)

(VS
|

1-0 = 1.

= 11— lim e~
r—r0o0
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An Example

For the expected value we find

0. @) 0 1 "
no= / tp(t)dt:/ tie_idt

x at
— : 1 at __ €
= ;3520 0 tie 2 dt ‘/te —g(at—l)
1 b, 1 ’
= — lim |4e72(2= — 1)
2 T—00 2 0

— %[0—460(—0—1)] = 2.

A similar calculation shows that E(z?%) = 8, so that 0 = \/FE(2?) — p? =
v8 — 4 = 2. Finally, to do another calculation,

4
1 t t4
Pu—o<zx<p+o) = /—e‘idt = —e 2
0 2 0
1
= —e 46 = l——= = 0.8647.
e
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An Example

The empirical rule of Unit 1 suggested 68%. O]
Exponential Density Funtion, f =2 Cumulative Distribution, =2
06 T T T T 1
0.8}
0.4+
0.6}
0.4}
0.2F
0.2}
0O 2 4 6 8 10 O0 2 4 6 8 10
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The Uniform Probability Distribution

If we select randomly a number in the interval [a, b] then the corresponding
random variable x is called a uniform random variable. Its density function
IS

— ifa<z <,
—a

0 else.

For the mean and standard deviation one finds

a+b b—a V3
= and o= =—(b—a).
2 2v/3 6
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The Uniform Probability Distribution

Example. A manufacturer of wires believes that one of her machines
makes wires with diameter uniformly distributed between 0.98 and 1.03
millimeters.

The mean of the thickness is 2£2%8 = 1.005 millimeters, and the standard
deviation is o = ¥2(1.03 — 0.98) = 0.014 millimeters.

Uniform Density Funciton, [0.98,1.03]

The density function for this uniform 21

1

random variable is p = oz = 20 for

098 < z < 1.03, and 0 elsewhere. %7

And, for example, ol

1.00
P(‘z < 1.00) :/ 20 dt
0

19.5¢
.98
= 20[1.00 — 0.98]
9 L L L L
_ 04 . 10.96 0.98 1 1.02 1.04
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The Normal Probability Distribution

The normal probability distribution was suggested by C. F. Gauss as
a model of the relative frequency distribution of errors (for example in
measurements). The density function of this probability distribution is

1 _ (z=p)?
e 202 — 0o <zr<oo,

p(r) = o

where 1 and o denote the mean and standard deviation, respectively (so
these two values are parameters of the normal probability distribution).

Normal Distribution,p=4,0=1 Normal Distribution,p=4,0=2
0.4 0.4
0.3¢ 1 0.3
0.2
0.1
0




The Normal Probability Distribution

The standard normal random variable has mean 0 and variance 1:

Normal Density Function,u=0,0=1

0.4

0.3}

0.21

0.1r

% 4 =2 o 2 a4 s
In practice it is enough to have tables for the standard normal probability
distribution: Given a random variable  the variable 2 = =~* has mean (

and standard deviation 1.
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The Normal Probability Distribution

Example. Suppose a normally distributed random variable = has mean 10
and standard deviation 3. Find P(‘z < 11") using tables.

We set 2z = $_310, which has standard normal distribution. The z-value 11

corresponds to the z-value 2512 = £. Then the table shows P(‘z < 11') =

P(z<3)=P('2<0)+P(0<2<3)~.5+0.1293 =0.6293. O

Why is this justified? In the integral calculating P(‘z < 11') we substitute

72 =L Then £ =1 3pnd
o dx o

, , | R
P('x <10") = / e 22 dzx

- o OV 2T

= e 2 dz
oo V2T

= P('z2<3%').
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The Normal Probability Distribution

Example. An amplifier is built using two integrated circuits. Both have
a life-length that is normally distributed, the first with mean 36000 hours
and standard deviation 8000 hours, the second with mean 38000 hours and
standard deviation 10000 hours. Which of the two integrated circuits is

more likely to last at least 40.000 hours?

In both cases we ask for P(‘z > 40000') = 1 — P(‘z <40000"). The
corresponding values for the standardized normal random variables z; and

z are z; = 3, and zp = ;. Thus
P(‘z; > 40000') = 1 — P(‘z; < 1) ~ 1 — (0.5 + 0.1915) = 0.3085,

and similarly, P(‘xy > 40000") =1 — P('z5 < %) ~1—(0.5+0.0793) =
0.4207. Thus, the second integrated circuit is more likely to last more than
40000 hours. ]
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The Gamma Distribution

Many continuous random variables can only take positive values, like height,
thickness, life expectations of transistors, etc. Such random variables are
often modeled by gamma type random variables. The corresponding density
functions contain two parameters «, 5. The first is known as the shape

parameter, the second as the scale parameter.

Gamma Density Functions,a=1,3,6,=1

0.8
0.71
06| a=1
0.51
0.4r
0.3r a=3

0.2f a=6

0.1}

0O 2 4 6 8 10 12

8 B34.UC2 Numerical Computation and Statistics in Engineering

Yvan Petillot Unit 2 — 42



The Gamma Distribution

The density function is given by

a—l_% .
% f0<z<oo a,0>0,

p(r) =
0 else,

where T'(a) = [;” t*"'e~" dt. The mean and standard deviation are
uw=af and o=\ afb?.

The gamma function plays an important role in mathematics. It holds
that I'(aw + 1) = al'(«), and T'(1) = 1, so that for integer values of «,
['(a) = al. In general there is no closed form for the gamma function, and
its values are approximated and taken from tables.
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The Gamma Distribution

Example. A manufacturer of CPU’s knows that the relative frequency
complaints from customers (in weeks) about total failures is modeled by
a gamma distribution with o« = 2 and = 4. Exactly 12 weeks after
the quality control department was restructured the next (first) major
complaint arrives. Does this suggest that the restructuring resulted in an
improvement of quality control?

We calculate 4 = a8 = 8 and ¢ = 4v/2 ~ 5.657. The value z = 12
lies well within one standard deviation from the (old) mean, so we would
not consider it an exceptional value. Thus there is insufficient evidence to

indicate an improvement in quality control given just this data. ]
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The Chi-Square Distribution

The x? (chi-square) probability distribution plays an important role in
statistics. The distribution is a special case of the gamma distribution for
o =3 and 8 =2 (v is called the number of degrees of freedom):

where c(x?) = —=+—. For mean and standard deviation one finds
251(%)

b ="v and o=V2.
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The Exponential Density Function

The exponential density function is a gamma density function with o =1,
e B
plr) = — >0,

with mean . = [ and standard deviation o = (3. The corresponding
random variable models for example the length of time between events
(arrivals at a counter, requests to a CPU, etc) when the probability of an
arrival in an interval is independent from arrivals in other intervals. This
distribution also models the life expectancy of equipment or products,
provided that the probability that the equipment will last ¢ more time
intervals is the same as for a new product (this holds for well-maintained
equipment).

If the arrival of events follows a Poisson distribution with mean % (arrivals

1
B
per unit interval), then the time interval between two successive arrivals is
modeled by the exponential distribution with mean £.
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The Weibull Density Function

As the gamma probability distribution the Weibull probability distribution is
often used to model length of life of products, equipment, or components.
The density function is

@ le™F  ifz >0,

S IR

else,

with shape parameter o and scale parameter 3. Moreover,

o o= /Ba[N(222) - T(22L)]

For o = 1 we get the exponential density function.
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The Weibull Density Function

The Weibull cumulative distribution has a closed form; after substituting

y = z* and dy = ax® ! dz we find

Flx <xg) = —x* e F da

N o B
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The Weibull Density Function

Example. The length of life in years of a component in a camera is
known to have a Weibull distribution with &« = 2 and 8 = 100. What is
the probability that the component will last at least 6 years?

We are looking for P(‘xz > 6') which is

Plx>6") = 1—P('z<6)

= 1—(1—e¢ ™)
1

36
€ 100

~ (0.698.
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Summary

e Random variables are functions assigning numerical values to each
simple event of a sample space. We distinguish discrete and continuous
random variables.

e The probability distribution of a discrete random variable is a function
that gives for each event the probability that the event occurs.

e The expected value E(z) is the mean, the standard deviation the
square root of E[(z — E(z))?].

e Examples of discrete probability distribution are the binomial, geomet-
ric, hypergeometric and the Poisson distribution.

e For continuous random variables we have to give the cumulative
probability distribution.
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Summary

e The relative frequency distribution for a population with continuous
random variable can be modeled using a density function p(z) (usually
a smooth curve) such that

p(z) >0 and /_OO p(x)dr=1.

0. @)

e Examples are the uniform distribution, normal distribution, gamma
distribution, the exponential distribution and the Weibull distribution.
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