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Estimators

Two different type of inferences (here for example about the mean) can be
made from a sample:

e one can estimate the true mean of the population; or

e one can try to decide whether the true mean exceeds same value or
lies within some interval.

Suppose we want to estimate a population parameter 6 (say mean, standard
deviation, or P(‘x < d')). A point estimator for theta is a rule that tells us
how to compute from the sample data a single value 0 (also called a point
estimator) that will serve as an estimator for 6.

An interval estimator is a rule computing an interval to estimate 6.

Example. If x¢,..., 2, is a random sample from a population then z is a
point estimator for the true population mean, whereas [T — s, % + s] is an
interval estimator for the population mean. [
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Bias

An estimator 6 is called unbiased if E(é) = 0. The bias of an estimator is

A

B=FE(@) -9

Unbiased Estimator Biased Estimator

6, 0 6 ©
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MVUE

In addition to unbiasedness we hope for a small standard deviation (or
variance) of the probability distribution of f. An unbiased estimator which
has minimum variance among all unbiased estimators is called a minimum

variance unbiased estimator (MVUE).

If such a MVUE does not exist one prefers the estimator which minimizes
the mean squared error

E[(0 - 0)*].
Note that
E[(6—6)? = E(62) —20E(0) + E@)
— 6> —20E(f) + var, + E(6)

— B? + vary .

R

|

B B34.UC2 Numerical Computation and Statistics in Engineering

Yvan Petillot

Unit4 - 4



MVUE

In particular, if B =0 then
e the mean squared error is equal to the variance of 9, and

e the estimator f that yields the smallest mean squared error is also a
MVUE for 6.

X

Example. If x has binomial distribution with parameters n and p, then =
is an unbiased estimator for p.

Indeed, since E(z) = np it follows that E(2) = 1E(z) = tnp = p. ]

x
n
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MVUE

Example. If s? is the variance of a random sample from an infinite
population then E(s*) = o?, the true population variance, hence s is
an unbiased estimator for o (regardless of the nature of the sampled
population). Here we use that s* = _1[2 x? — =(3°, )%, and the fact

that for any random variable, E(y°) = o, + E(y)*.

1 | 1
B = — X, B6) - 2B w0
n — | 7 n 7
1 | 1
e GRS BTG ael) Se]
1 | 1 1
= no’ +nu® — — -no’ — —('n,u)ﬂ
n—11 n n
= ! (no?® — o?] = o?
n—1 '
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An Example

Consider the following three density functions:

1

plr) = 5 26_(“3_“)2/(2"2) for —oo < x < 00,

To

1

plr) = T+ @ =07 for —oo < x < 00,

1
plr) = o for —c <x — pu < ¢, and 0 else.

c

The first is the normal distribution, the second the Cauchy distribution,
and the third the uniform distribution. All three have mean pu.

In theory we have at least three estimators for i from a given sample,
namely Z (mean), & (median), Z. (average between the two extreme
observations).
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An Example

e |f the sample comes from a normal distribution, Z is the best of the
estimators as it is the MVUE.

e |f the sample comes from a Cauchy distribution then x and z. are bad
estimators, whereas 7 is quite good (the MVUE is not known). Z is
bad because it is sensitive to outliers, and the heavy tails of the Cauchy
distribution will make such outliers very probable.

e If the distribution is uniform then Z. is the best estimator. =z, is
sensitive to outliers, but the lack of tails makes such observations

impossible.
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An Example

Cauchy vs Normal Distribution
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Maximum Likelihood Estimators

Let x4,...,x, be a random sample. The likelihood of the sample is defined
as

o L =P(xy,...,2,) =[], Plx;)
if the x; are discrete random variables;
o [ = p(xla s 7xn) — Hzp(xz)

if the x; are continuous random variables. (Note that p(z1,...,x,) is
the density function of

F(x1,...,xn) = Pty < x1,...,t, <x,).)

The maximum likelihood estimator for 6 (or a list of parameters 64, ..., 0;)
is the estimator 6 (or 64, ...,0,) that maximizes L.
In practice one often maximizes the logarithm of p(x1,...,z,), which

Is easier to calculate and gives the same estimator since the logarithm
function is strictly increasing.
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Maximum Likelihood Estimators

Example. Let z{,...,2z, be a random sample of n observations of a

random variable x with exponential density function

e B
B

0 else.

if 0 <z < o0,
p(r) =

What is the maximum likelihood estimator B for 37

The joint density function is L(8) = gze2i ~*/%, and

InL = —nlnﬁ—l—zl—xi/ﬁ

Setting d;%L equal to 0 gives

p* B

or =235 x; Thus B = Z is the maximum likelihood estimator for 3. [
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Maximum Likelihood Estimators

Example. What is the maximum likelihood estimator of the success
probability 6 of a random sample from a population with binomial
probability distribution?

Here L(A) = ()6%(1 — #)"*, and we maximize

InL(0) = In (") +zlnf+ (n—2z)In(1—6).

x
Then
dlnL_O+x_n—x
do 0 1—-6°
and thus z — 0z =60n — 0z, or 6 = ~. []

Example. On 20 cold days a student gets his car started on the third, first,
fifth, first, second, third, first, seventh, second, fourth, eighth, fourth, third,
first, fifth, sixth, second, first, second, and sixth try. If the distribution
of this random variable is modeled by a geometric probability distribution,
what is the maximum likelihood estimator for 67
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Maximum Likelihood Estimators

The probability for success in the zth try is
0(1 —0)*!
forz =1,2,3,.... Then L(#) =[], 0(1 —0)*~1 = *(1 — §)(=:i%)=" and
InL(#) =nlnb+ (>, z; —n)In(1l —0), thus
dL n ) .xi—n

ET 1—6

The necessary condition for a maximum is thus

n—n@z@Zixi—né’,

1

= .

2.i Ti
For our data, n = 10 and z = 3.35, so that an estimator is given by 0.299.
[]

or 0 =
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The Confidence Coefficient

We continue with interval estimators. The two numbers computed by

an interval estimator are the endpoints of the confidence interval. The
confidence coefficient for a confidence interval is the probability that the
interval will contain the true (to be estimated) parameter.

A

As an example we consider the case when 6 is approximately normally

A

distributed with mean E(6) = 6 and error (standard deviation) 0. Then

Y

o’

<

Is approximately a standard random variable. We are looking for values 2z’
such that

P(—Z <z2<72)=1-q,

for 1 — « the confidence coefficient of the interval [—2, 2’]. From the graph
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The Confidence Coefficient

we see that 2’ = 2,/2, which is the
unique 2’ such that P(z < 2/) =
a /2. Substituting back the defi-
nition of z we find that for given
confidence coefficient 1 — o the
confidence interval for 6 is

[é — Za/204, é + za/gaé] :
where 2,2 is the unique 2’ such
that P(z < 2') = a/2 for the nor-
mally distributed random variable
z with mean 0 and standard devi-
ation 1.

The Confidence Coefficient
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Estimating the Mean

If the sampling size n is large (n > 30) then Z, the sampling mean,

is approximately normally distributed with mean E(Z) = u, the true
population mean, and o; = o/+4/n. Thus Z is an unbiased estimator for p,
and z is also the MVUE for p. Since the distribution of x is approximately
normal we can use the previous analysis to get the endpoints of the

(1 — a)100% confidence interval for u as

T =* Za/20-j =T x ,'504/2i

?
Vn
where z, /2 is the z-value that locates from —oo to z,/2 an area a/2 under

the standard normal density function.
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Estimating the Mean

If the population is smaller, or if the value of ¢ has to be approximated by
the sample deviation (sample error) s, then the t¢-distribution with n — 1
degrees of freedom replaces the normal distribution so that the endpoints

of the (1 — a)100% confidence interval for ;. become
p ot T toja—
L a/20z = X a/QT 9
n

where 1,5 is the t-value that locates from —oo to t,/2 an area a/2 under
the density function of the ¢-distribution with n — 1 degrees of freedom.
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Estimating the Mean

Example. Time between server failures is recorded and for a sample of
20 failures the values £ = 1500 hours and s = 210 hours are computed.
What is the 95% confidence interval for the mean based on this sample?

To apply the theory we have to assume a normal distribution for the
time between server failures. Then z = 5;\/5% has a t¢-distribution and for
a = 0.05 we find the endpoints of the confidence interval as

S 210
T Lt ly0——= = 1500 £ 2.093 —— = 1500 = 98.282.
12 n V20
]
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Estimating the Mean

Example. [f a random sample of size 20 of a normal population with
standard deviation 12.3 has mean 83.2, then we construct the confidence
intervals with the following endpoints:

e 90%: 83.2 4+ 250523 =83.24+1.64523 = 83.2 4+ 4.524

V20 V20
e 95%: 83.2 + 20_025% — 83.2 + 1.9603—2-_3 — 83.2 4+ 5.390

e 909%: 83.2 + zomm% = 83.2+ 2.5763—2-_3 — 83.2 4+ 7.084

If the standard deviation of the population has to be estimated as well, and
if 12.3 is an estimate based on the sample then the endpoints change as

follows:
e 90%: 83.2+ t19,0_05§—é_g =83.2+ 1.7293—2-_3 = 83.2 +4.755
o 95%: 83.2 % tigp025 5 = 83.2 £ 12.093 22 = 83.2 £ 5.756
o 99%: 83.2 £ tig 0005 i = 83.2 £ 2.861 22 = 83.2 £ 7.868

]
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Estimating the Mean

Example. Readings from a machine show the following values:

11.3968 4.1666 0.8273 18.4765 7.8963
6.3828 6.4634 2.0181 5.2051 6.4615
16.7264 1.1679 3.2379 0.2825 3.0543
3.4829 0.6679 2.5763 6.3852 1.5892

What is the 95% confidence interval for the mean?

Here £ = 5.4232, and s = 5.0388, thus the 95% confidence interval has
endpoints

= 5.4232 £+ 2.358.

S
T =+ t19,0.025

’ v 20
(The numbers are random numbers for an exponential distribution with
mean 4.) In theory our results do not apply since the sampling size is too

small and the distribution is not bell-shaped! [

5
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Estimating the Mean

Example. A company selling easy-to-assemble furniture wants to
determine how long it takes to assemble a chest of drawers Bialitt. Using
the following data (in minutes) gathered from 15 volunteers we construct

a 95% confidence interval.

84.3487  59.6883 95.5066 98.7535 70.0706
116.8183 116.7833 92.2473  99.5458 96.4928
89.2658 107.5158 81.2337 136.6637 90.2721

Here Z = 95.6804 and s = 19.1003. Thus the confidence interval has

endpoints
s
T + t14,0_025 \/ﬁ — 956804 + 105784 .
(The data are random numbers from a normal distribution with mean 93

and standard deviation 20.) ]
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Estimating the Difference Between Means

If £z; and Z, are the values of the means and standard deviation of
independent random samples of size n; and n, from normal populations
with known standard deviations o1 and o9 respectively, then
2 2

_ _ o1 + 03

T1—To) X2 —=

(Z4 2) £ Zaj2 L+ 75
are the endpoints of a (1 — «)100% confidence interval for the difference
between the means p; — uo. (By the central limit theorem this confidence
interval can also be used for independent random samples from non-normal
populations if ny,ny > 30, or for even smaller samples when the density
functions of the populations are known to be bell-shaped.)
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Estimating the Difference Between Means

If 01 and o9 are to be estimated by the samples standard deviations then
the endpoints of the (1 — «)100% confidence interval for the difference
between the means are

1 1

(fl - 3_32) =+ ta/2,n1+n2—23P — + — 3
ny Uy

where

nl—l—n2—2

\/ (ny — 1)s2 + (ny — 1)83
Sp — .

2

(sp is called the pooled estimator for o, and is unbiased.) Here the only

assumption is that the two populations are normal.
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Estimating the Difference Between Means

Example. Two machines make wires. 10 measurements taken in 1 minute

intervals from both machines show the following diameters:

[: 1.0429 1.0627 0.9203 0.9280 1.0286
0.9800 1.0345 1.0408 1.0356 1.0645

II: 1.0001 1.0157 0.9439 0.9794 0.9753
0.9319 0.9877 0.9483 1.0225 0.9558

What is a 95% confidence interval for pq — p97?
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Estimating the Difference Between Means

Here ny = no = 10, 7 = 1.0138, s; = 0.0526, zo = 0.9761, and
sp = 0.0309. Thus Z; — Zo = 0.0377 and s% = (s} + s3) = 0.00186.

The endpoints of the interval are thus

| 2
0.0377 % t15,0.0255P 0 0.0377 £ 2.101 - 0.0136 = 0.0377 £ 0.0287 .

(The data are random numbers for normal distributions with mean and
standard deviations 1.0, 0.05, and 0.98, 0.03 respectively.)

The analysis shows slightly more: Since we are 95% confident that the
difference between the means is within the interval

(0.0090, 0.0664]

(which does not contain 0), we are also 95% confident that the means of
the diameters of wires produced by the two machines differ. ]
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Estimating Proportions

We often try to estimate proportions, probabilities, or percentages such as
faulty transistors, faulty lights, etc. If the sample size is large the corre-

sponding random variable has approximately a binomial distribution (even
though we often sample without replacement), and can be approximated

by a normal distribution.

T

Thus, if 6 denotes the true probability and § = ~ its estimate derived from
a sample of size n then we can assert with (1 — «)100% confidence that
the error we make is less than

A(1— 0
Za/g\/% .
z—nb

Indeed, 2z = =F = Tesics Is approximately a standard normal random
0(1—

variable and thus

— nb
i < Zap2) <1—a.

P%_&”2§.V%ﬂﬂ-—0)_
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Estimating Proportions

Approximating 6 by f under the radical and solving for 6 gives

P (—za/Q\/né(l — ) <nb—z< za/Q\/né(l — é))
. V/nf(1— ) . V/nd(1— )

= P — — Za/2 §0§_+Za/2
n n n n
. (1 — 6 . A(1— 0
= P H—Za/g\/ )<0<0+Zo¢/2\/ )
n n
< 11—«
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Estimating Proportions

Example. A study is made to determine the proportion of people aged
between 16 and 25 that use use the internet. If 316 out of 400 young people

316

use the internet, what is a 95% confidence interval for p = {55 = 0.797?

Here n = 400, ) = 0.79, and zp 095 = 1.960. With 95% confidence the

maximum error we make is

79 -0.21
1.960\/0 -0 ~ 0.0399,

400
i.e., the interval is [0.79 — 0.0399,0.79 + 0.0399]. [l
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Estimating Differences in Proportions

We often estimate differences between proportions (differences between
males and females in favor of a certain candidate, difference between the
percentage of faulty transistors manufactured by two machines, etc.).

If we have two samples x; and x5 of size n; and ng respectively, then
él — ég — ;"1—1 — % IS an estimator for the difference between the two
proportions. If both n; and ny are large then 0, — By is approximately
normally distributed with mean 6; — 65 the difference between the true

proportions, and variance

(1= 6)  6(1—6)

n1 D)

Putting everything together and estimating 6, and 65 by f; and 6 we find
the endpoints of the (1 — «)100% confidence interval to be

(6, — b) iza/2\/91(1 —6,) n 02(1 — 63) |

ni D)
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Estimating Differences in Proportions

Example. Voters are questioned after they went to the ballots. Out of
212 male voters 76 voted for candidate A, and out of 179 female voters b7
voted for the same candidate. What is a 99% confidence interval for the
difference between the percentages of voters voting for candidate A?

Here n; = 212, 6, = 212 = 0.3585 and ny = 179, 65 = = (0.3184. The
endpoints of the interval are thus

179

0.3585 - 0.6415 n 0.3184 - 0.6816
212 179

= (0.3585 — 0.3184) + 2.575\/

= 0.0401 £ v/0.0011 + 0.0012
= 0.0401 £ 0.0479.
The interval is thus [—0.0078,0.0880], which includes 0. This means that

the case that there is no difference in voting habits among males and
females is included. [l
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Summary

e Estimators are used to estimate population parameters from samples.
We distinguish point estimators and interval estimators.

e In addition to unbiasedness we hope for a small standard deviation of
the probability distribution of the estimator. An unbiased estimator
with smallest variance among all unbiased estimators is called the
minimum variance unbiased estimator (MVUE).

e (Good estimators are often found the the method of maximum likelihood,
which finds that parameter value which makes the observed sample
most likely.

e The confidence coefficient for a confidence interval is the probability
that the interval will contain the true population parameter.
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