<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
PRIVATE "TYPE=PICT;ALT=Heriot-Watt logo"
PRIVATE "TYPE=PICT;ALT=CEE logo"

Information Resource Pages

Welcome to the Software Engineering module for MSc Information Technology Students. These pages are intended to complement the course and contain details of the course as well as some additional material.

Aim of Course

· Develop programming skills

· Introduce principles of software development

· Develop an understanding of good professional practice in software engineering

Structure of Course

· Introduction to Computing and Information Technology

· C++ Programming

· Software Engineering Principles

· More on Unix operating systems

Teaching Details

This module should consist of approximately 100 hours of student effort. This will consist of 3 taught lectures per week and 2 hours for computing labs when help will be available.

Note that you will be given exercises for each aspect of the programming which you are advised to attempt before coming to the help sessions. This will enable you to gain the optimum usage of the help sessions.

One of the aims of this module is to gain experience on the use of UNIX workstations. However, there is no lab of workstations which is large enough to accommodate this class. Therefore the lab sessions will use PC-Caledonia in room 2.50/2.52 and eXceed to access UNIX workstations. At other times, you are encouraged to use the UNIX workstations elsewhere in the department - e.g. the Linux Boxes in rooms G.46 & G.47.

PRIVATE

Information is given here on using eXceed.

Information is given here on using Unix Workstations directly.

Information is given here on installing GCC Compiler on your PC at HOME.

You will be examined on this work as part of the MSc exam in April and you will have to submit an assignment at the end of the course. This assignment will be a larger programming exercise combining the individual elements of programming you have already been taught into a larger project. This assignment will be issued mid term, at the end of the taught programming part of the course and the beginning of the software engineering principles.

ASSIGNMENT

PRIVATE

Feedback on Assignment

Introduction to Computing and Information Technology

· Computers and operating systems

· Computer Structures

· News/Email

· WWW

· Word Processing / Text Formatting

· Spreadsheets

· Unix

C++ Programming

The outline of the programming part of the course is detailed below, and from the links on each of the topics you can access copies of all the source code listed in the notes, some additional example programs and some additional suggested exercises.

The source code given can be copied and compiled as detailed here.

PRIVATE

Programs and Programming

Variables, Data Types, Constants and Operators

Control Constructs

Iteration

Arrays and Structures

Functions

Pointers

File Input and Output

Introduction to Classes

Software Engineering Principles

· Software Development Models

· Requiremnets analysis and specification

· Design

· Implementation

· Validation and Verification

· Organising software projects

More on Unix operating systems

· Shell programming and shell scripts

· Makefiles

Recommended Text

There is no specific recommended text. People tend to have different ideas about what they want from a text book, therefore I would recommend that you look in the bookshop and see what you think of the books. Any book on C++ programming, which starts from the very basics, should cover the C++ programming required for the course. Note that some books may aasume that you have programmed in C before.

 If you have NEVER programmed before, I personally would choose books such as:

Steve Oualline, "Practical C++ Programming", O'Reilly Associates

John Hubbard, "Programming with C++", Schaums Outline Series

NOTE: Full detailed notes will be provided at the lectures.

Announcements

Any announcements regarding the course will be detailed here.

If you have any queries please send email to me at jmb@cee.h>w.ac.uk

NOTE: Clipart from http://www.signgray.demon.co.uk/clipart/

Programs and Programming

PRIVATE

Learning Objectives

Understand the terms source code and executable

Be able to use an editor to enter a source program into a file

Be able to compile the source code to produce the executable

Be able to run the program

Understand the basic layout of a simple program - including the keyword main, the use of the semi-colon and the cout statement

Combine the above to be able to write simple programs to output text to the screen

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Basic Programming

Source Code from Notes

Example

 // Program written October 1997

 // by jmb

#include <iostream.h>

main()

{

 cout <<< "Hello World!\n";

 // \n causes new line

}

Basic Programming

Case Study

PROBLEM:

Write a program to display the text, This is my first program, on the screen.

SOLUTION:

The program must start with #include <iostream.h>as the the program will output text to the screen.

The main body of the program is contained within curly braces which follow the keyword main().

The text is displayed on the screen using the cout statement. Note that this statement requires a semi--colon at the end to indicate the end of the statement.

Comments have also been included to make the programme easier to understand.

// My first program

// Written by jmb

// October 1998

#include <iostream.h>

main()

{

 cout << "This is my first program \n";

 // \n is required to produce newline

}

Basic Programming

Additional Exercises

1. Write a program to display your name, address and telephone number on the screen.

2. Correct the mistakes in the following program, type it in and compile the program.

// Example Program

 Week 1

 April 1997

//

mAin(

 / display data to screen

 cout << "Example Program\n";

 cout << 'for Introduction to Programming Class\n

 cout " Autumn Term 1999/n";

 cout " Illustrates the basic components of C++\n;

}

Programs

1. What is the purpose of #include <iostream.h>?

2. What is a source program? An executable?

3. Is a semi-colon required after a comment?

4. What is wrong with the following statement?

5. cout << Hello World\n;
6. What is wrong with the following statement?

7. COUT << "Hello World\n";
8. What is wrong with the following statement?

9. cout >> "Hello World\n";
10. What is the purpose of the \n ?

11. What is wrong with the following statement?

12. cout << "Hello World"\n;

1. It includes the header file iostream.h>into the source code. This file is required for input and output to the program. Therefore, if the cout statement is used to output text/data to the screen it is required.

2. Source code is the actual C++ program which is typed into the file. This is then compiled into machine code which can be executed by the computer.

3. No - a comment is not a program statement, so does not require to be terminated by a semi-colon.

4. The text to be printed must be within double quotes.

cout << "Hello World\n";
5. Keywords in C++ must be lowercase COUT must be written as cout
6. The output operator is << and not

7. The \n causes the a new line. It is required at the end of Hello WOrld to ensure the cursor returns to the next line.

8. The \n (newline) is text to be printed and must be within the double quotes.

Variables, Data Types, Constants and Operators

PRIVATE

Learning Objectives

Be able to declare variables

Be able to write simple arithmetic expressions

Be able to input values typed at the keyboard into a program using cin

Be able to output values to the screen using cout

Be familiar with the concept of constants

Be able to combine above to write simple programs which require the use to input values, make calculations and output the results

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Test Cases for Tutorial

Variables, Data Types, Constants and Operators

Source Code from Notes

Example 1

// program to add two integer values

// and display result

#include <iostream.h>

main()

{

 // declare variables

 int value1, value2, sum;

 // assign values and compute the result

 value1 = 32;

 value2 = 27;

 sum = value1 + value2;

 // display the result

 cout << "The sum of " << value1 << " and << value2 << " is " <<

 sum << "\n" ;

}

Example 2

This is the example program to calculate the area of a rectangle

#include <iostream.h>

main()

{

 // type definitions

 // 3 variables - length, breadth and area

 float length, breadth, area;

 // input phase - read length and breadth from user

 cout << "Enter the length and breadth\n";

 cin >> length >> breadth;

 // computation - calculate area

 area = length * breadth;

 // output phase

 cout << "The area of the rectangle with length " << length << " and

 breadth " << breadth << " is " << area << "\n";

}

Example 3

This example calculates the average value of three numbers entered by the user.

// Program to calculate the average of three numbers

#include <iostream.h>

main()

{

 float number1,number2,number3;

 float average;

 // Enter values

 cout << "Enter three numbers: ";

 cin >> number1 >> number2 >> number3;

 // calculate average

 average = (number1 + number2 + number3)/3.0;

 // Output result

 cout << "The average value of " << number1 << " , " << number2 <<

 " and " << number3 << " is " << average << "\n";

}

Example 4

This example prompts the user to input a number and then calculates the reciprocal of this number.

// Program to calculate the reciprocal of a number

#include <iostream.h>

main()

{

 float number;

 float reciprocal;

 // Enter Value

 cout <<"Enter a number: ";

 cin >> number;

 // Calculate reciprocal

 reciprocal = 1.0 / number;

 // output result

 cout << "The reciprocal of " << number << " is " << reciprocal << "\n";

}

Example 5

This example illustrates the use of constants. It calculates the area and circumference of a circle, when given the radius.

// program to calculate circumference and area of circle

#include <iostream.h>

main()

{

 const float PI = 3.14156;

 // define variables

 float radius,circumference,area;

 // Input radius

 cout << "Enter the radius: ";

 cin >> radius;

 // calculate radius and circumference

 circumference = PI * 2 * radius;

 area = PI * radius * radius;

 // display results

 cout << "The circumference is " << circumference << " and the rea is " <<

 area << "\n";

}

Variables, Data Types, Constants and Operators

Case Study

PROBLEM:

Write a program to calculate an employees wages. They are paid at a basic rate of £6.65 hour, but are taxed at a rate of 23% and pay a pension contribution of 4% and pay a union subscription of 1.25 per week.

Write a program to read in the hours worked and calculate the take home weekly wages of the employee.

SOLUTION:

The structure of the program will take the following form:-

#include <iostream.h>

// Declare constants

main()

{

 // declare variables

 // prompt user to enter number of hours worked and read in value

 // Calculate wages

 // output weekly wages

}
Constants

We are told that the employee is paid 6.65 per hour is taxed at a rate of 23%, pays 4% pension contributions and a union fee of 1.25. We should make these values be constants - since they have been given to use. In addition, this makes it easier to change these values at a later date and if we use meaningful names will make the program easier to read. Therefore we will declare:-

const float hourly_rate = 6.65;

const float tax_rate = 0.23;

const float pension_rate = 0.04;

const float union_fee = 1.25;
I have converted the percentages to floating point values, since for example 23% = 23/100 * value.

Variables

We are obviously going to require a variable to store the number of hours worked, which we will assume can be a fractional number of hours and therefore use a floating point value. We will also use variables for the gross_pay, pension, tax, deductions and total_pay. All of which will be floating point values.

 float hours, gross_pay, tax, pension, deductions, total_pay;
Input

We require to prompt the user to enter the number of hours worked and then read this into the variable hours .

 cout << "Enter the number of hours worked \n";

 cin >> hours;
Calculation

There are a number of different ways this could be implemented. I have chosen here to do it in a number of different stages. Calculating initially the gross wages and then the deductions.

 gross_pay = hours * hourly_rate;

 tax = gross_pay * tax_rate;

 pension = gross_pay * pension_rate;

 deductions = tax + pension + union_fee;

 total_pay = gross_pay - deductions;
Output

Finally we have to output the result. This can be achieved by the statement

 cout << "The total weekly pay is " << total_pay << "\n";
Total Program

#include <iostream.h>

main()

{

 // Declare constants

 const float hourly_rate = 6.65;

 const float tax_rate = 0.23;

 const float pension_rate = 0.04;

 const float union_fee = 1.25;

 //declare variables

 float hours, gross_pay, tax, pension, deductions, total_pay;

 //prompt user to enter number of hours worked and read in value

 cout << "Enter the number of hours worked \n";

 cin >> hours;

 // Calculate wages

 gross_pay = hours * hourly_rate;

 tax = gross_pay * tax_rate;

 pension = gross_pay * pension_rate;

 deductions = tax + pension + union_fee;

 total_pay = gross_pay - deductions;

 // output weekly wages

 cout << "The total weekly pay is " << total_pay << "\n";

}

Variables, Data Types, Constants and Operators

Additional Exercises

1. Write a program which prompts the user to enter 2 integer values. The program will then print their sum, difference, product, quotient and remainder.

2. Write a program which will prompt the user to enter a positive floating point number. The program will then display the integral part and the fractional part of the number.

For example:-

number = 2.33

integral = 2

fractional = 0.33

3. Write a program which prompts the user to enter a number of days, hours and minutes. The program will then calculate and display this as a total number of minutes.

For example

days = 1

hours = 12

minutes = 15

Total number of minutes = 2175

Variables, Data Types, Constants and Operators

1. What is wrong with this program?

main()

{

 p=47;

 cout << p;

}
2. What is wrong with this declaration?

<t>
int x = y = 95;

3. Write four different C++ statements that subtract 1 from the integer variable x.

4. Which of the following are valid C++ statements? Evaluate the ones which are valid.

· x = 65/5*2

· 65 / 4 = k;

· p = 65(4*7);

· x = 34 - 4 * 7;

· x = 34 - (4 * 7);

· 54 % 5 = h ;

· x = 54 % 7;

1. The #include <iostream.h>is missing and the variable p has not been declared.

2. The equals sign can only be used in a declaration to initialise a variable. Therefore it should be

int x=95, y =95;

3. x = x - 1;

x --;

--x;

x -= 1;

4. missing ;

not valid - should be k = 64/4;

not valid

valid x = 6

valid

not valid

valid x = 5

Control Constructs

PRIVATE

Learning Objectives

Know the relational and logical operators

Be able to use the if statement

Be able to use the if....else statement

Be able to use the else ... if statement to implement multi-way branching

Know when it is suitable to use the switch statement for multi-way branching and be able to implement it

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Test Cases for Tutorials

Control Constructs

Source Code from Notes

Example 1

//Program to calculate absolute value of an integer

#include <iostream.h>

main()

{

 int number;

 //Enter number

 cout << "Enter a number: ";

 cin >> number;

 //test if negative

 if (number < 0)

 number = -number;

 //output results

 cout << "The absolute value is " << number << "\n";

}

Example 2

//Program to test if number is even or odd

#include <iostream.h>

main()

{

 int number,remainder;

 cout << "Enter a number: ";

 cin >> number;

 remainder = number % 2;

 if (remainder ==0)

 cout << "The number is even\n";

 else

 cout << "The number is odd\n";

}

Example 3

//Program to illustrate the use of nested if statements

#include <iostream.h>

main()

{

 int number;

 cout << "Enter a number between 1 and 99: ";

 cin >> number;

 if (number > 0 && number < 100)

 {

 if (number < 10)

 cout << "One digit number\n";

 else

 cout << "Two digit number\n";

 }

 else

 cout << "Number not in range\n";

}

Example 4

#include <iostream.h>

main()

{

 int number, n_digits = 0;

 cout << "Enter a number: ";

 cin >> number;

 if (number = 100)

 n_digits = 3;

 else if (number =10)

 n_digits = 2;

 else if (number =0)

 n_digits = 1;

 else

 cout << "Value out of range\n";

 if (n_digits 0)

 cout << "The number has " << n_digits << " digits\n";

}

Example 5

#include <iostream.h>

main()

{

 char day;

 cout << "Which day?";

 cin >> day

 switch(day){

 case 's': cout << "Weekend\n";

 break;

 case 'm': cout << "Week day\n";

 break;

 case 't': cout << "Week day\n";

 break;

 case 'w': cout << "Week day\n";

 break;

 case 'f': cout << "Week day\n";

 break;

 default: cout << "Not a day\n";

 }

}

Example 6

#include <iostream.h>

main()

{

 char day;

 cout << "Which day?";

 cin >> day;

 switch(day){

 case 's': case 'S': cout << "Weekend\n";

 break;

 case 'm': case 'M': cout << "Week day\n";

 break;

 case 't': case 'T': cout << "Week day\n";

 break;

 case 'w': case 'W': cout << "Week day\n";

 break;

 case 'f': case 'F': cout << "Week day\n";

 break;

 default: cout << "Not a day\n";

 }

}

Example 7

#include <iostream.h>

main()

{

 int input_value;

 cout << "Which day?";

 cin >> input_value;

 switch (input_value){

 case 1: cout << "The day is Monday\n";

 break;

 case 2: cout << "The day is Tuesday\n";

 break;

 case 3: cout << "The day is Wednesday\n";

 break;

 case 4: cout << "The day is Thursday\n";

 break;

 case 5: cout << "The day is Friday\n";

 break;

 case 6: cout << "The day is Saturday\n";

 break;

 case 7: cout << "The day is Sunday\n";

 break;

 default : cout << "Invalid Input\n";

 break;

 }

}

Control Constructs

Case Study

PROBLEM:

Write a program to calculate the commission based wages of a computer salesman. His basic wage is ££50 per week and he is expected to sell at least 10 computers. If he sells more than 10 computers, he receives an extra £5.50 per computer he sells after the 10th computer.

SOLUTION:

The basic algorithm could be drawn as:-

The structure of the program would then be:-

DECLARE CONSTANTS

DECLARE VARIABLES

PROMPT USER TO ENTER NUMBER OF COMPUTERS SOLD

READ IN NUMBER

CALCULATE PAY

 IF SELLS MORE THAN 10

 CALCULATE COMMISSION

OUTPUT PAYMENT

adding the actual code to the above:-

#include <iostream.h>

main()

{

 //DECALRE CONSTANTS

 const float BASIC_PAY = 50;

 const int LEVEL = 10;

 const float COMMISSION = 5.50;

 //DECLARE VARIABLES

 float pay, commission_pay;

 int num_computers;

 //PROMPT USER TO ENTER NUMBER OF COMPUTERS SOLD

 cout << "Please enter number of computers sold: \en";

 //READ IN NUMBER

 cin >> num_computers;

 //CALCULATE PAY

 if (num_computers > level)

 {

 commission_pay = (num_computers - LEVEL)* COMMISSION;

 pay = BASIC_PAY + commission_pay;

 }

 else

 pay = BASIC_PAY ;

 //OUTPUT PAYMENT

 cout << "Your wage for this week is " << pay << " pounds\en";

}
NOTE that this is only one possible solution to the problem.

Try to think of some alternative methods of solving this problem.

Control Constructs

Additional Exercises

1. An employee in a company is paid at a rate of £5.20 per hour. The standard rate is paid for up to 37 hours worked in a week, after which 1.5 times the standard rate is paid. 22% tax is deducted from the gross pay as well as 5% for national insurance and 6% for the company pension scheme. If the employee works less than 20 hours a week, the income tax rate is only 20%.

Write a program to read in the hours worked and calculate the employees pay, displaying the gross salary and all the deductions as well as the net take home pay.

Remember to make proper use of constants.

2. A leap year is a year which is exactly divisible by 4, unless it is exactly divisible by 100 in which case it is only a leap year if it is exactly divisible by 400. Write a program which prompts the user for a year and then displays if it is a leap year or not.

Control Constructs

1. What is wrong with the following?

int x;

if (x=1)

x++;
2. What is wrong with the following?

int x, y, z;

if (x y && < z)

x = y;
3. Write an extract of code to test if the variable x is a positive number?

4. Write an extract to test if the variable x is a positive and even number?

1. The test should be x== 1, with x=1 this will assign the value of 1 to x rather than checking if x is a 1.

2. Assuming that it is intended to compare z to z, the test should be x y && x < z
3. if (x > 0)
4. if (x > 0 && x%2 == 0)

Iteration

PRIVATE

Learning Objectives

Be able to use a while loop

Be able to use a do..while loop

Be able to use a for loop

Know how to change from one type of loop to another

Know when one form of loop is more suitable than another i.e. would not use for loop when checking if input to program is within desired range.

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Iteration

Source Code from Notes

Example 1

This example reverses the digits of a number, and prints out the number in the reverse order. Each digit is displayed as it is extracted by the program. The final call to \fC\s8printf\fR\s0 returns the cursor to the next line as the newline character has not been included within the loop.

#include <iostream.h>

main()

{

 int number, right_digit;

 cout << "Enter your number\n";

 cin >> number;

 while (number !=0)

 {

 right_digit = number % 10;

 cout << right_digit;

 number /= 10;

 }

 cout << "\n";

}

Example 2

This example checks that the input value is in the desired range

#include <iostream.h>

main()

{

 int number;

 const int min = 1;

 const int max = 100;

 number = 0;

 while (number < min || number > max)

 {

 cout << "Enter a number in the range 1 to 100\n";

 cin >> number;

 }

 cout << "the number is in range\n";

}

Example 3

#include <iostream.h>

main()

{

 char letter;

 cout << "Press Y to continue\n";

 do

 {

 letter = getchar();

 } while (letter != 'y' && letter != 'Y');

 cout << "program execution will continue\n";

}

Example 4

The following program creates a conversion table for converting inches to centimetre. The values in the table are calculated for inches in the range 1 to 10 in half inch increments.

#include <iostream.h>

main()

{

 float inches,centimetres;

 // print table header

 cout << "inches\t centimetres\n";

 //calculate and print table entries

 for (inches = 1; inches <=10 ; inches += 0.5)

 {

 centimetres = 2.54 * inches;

 cout << inches << centimetres << "\n";

 }

}

Iteration

Case Study

PROBLEM:

Write a program to calculate the average marks for a class of students. The program will initially prompt for the number of students to be entered and then for each student will ask for their marks for each of the 4 exams the student sat. The program will then calculate the average mark for each student and the average mark for the whole class.

SOLUTION:

The solution to this will take the form:-

where the program repeats for each student the code to enter the student's marks and calculate their average.

This could be implemented using a while loop to produce

//Using While Loop

#include <iostream.h>

main()

{

 int num_students, count;

 float mark1, mark2, mark3, mark4;

 float student_average, class_total = 0, class_average;

 // Enter no. of students

 cout << "Please enter the number of students in the class: ";

 cin >> num_students;

 // set count to zero

 count = 0;

 while (count < num_students)

 {

 // enter 4 marks for each student

 cout << "Please enter the marks for student "

 << count << "\n";

 cin >> mark1 >> mark2 >> mark3 >> mark4;

 // Calculate average

 student_average = (mark1 + mark2 + mark3 + mark4) / 4;

 // Add average to total

 class_total += student_average;

 // Display average

 cout << "The average mark for student " << count

 << " is " << student_average << "\n\n";

 // Increment count for next student

 count ++;

 }

 // Calculate class average

 class_average = class_total / num_students;

 // Output Class average

 cout << "The class average is " << class_average << "\n";

}
When this program is run it produces the following output (with sample figure inserted):-

Please enter the number of students in the class: 4

Please enter the marks for student 0

23 45 63 54

The average mark for student 0 is 46.25

Please enter the marks for student 1

67 87 67 87

The average mark for student 1 is 77

Please enter the marks for student 2

54 65 34 76

The average mark for student 2 is 57.25

Please enter the marks for student 3

34 35 36 25

The average mark for student 3 is 32.5

The class average is 53.25
The program can be drawn schematically to show how it fits in to the flow structure given above. The code used for each part is shown alongside.

The same program could be converted to a for and only the initialisation, loop statement and increment need to be changed. Here is the same program but written with the for loop.

//Using For Loop

#include <iostream.h>

main()

{

 int num_students, count;

 float mark1, mark2, mark3, mark4;

 float student_average, class_total = 0, class_average;

 // Enter no. of students

 cout << "Please enter the number of students in the class: ";

 cin >>num_students;

 // for statement includes initialisation, test and increment

 for (count = 0 ; count < num_students ; count ++)

 {

 // enter 4 marks for each student

 cout << "Please enter the marks for student "

 << count << "\n";

 cin >> mark1 >> mark2 >> mark3 >> mark4;

 // Calculate average

 student_average = (mark1 + mark2 + mark3 + mark4) / 4;

 // Add average to total

 class_total += student_average;

 // Display average

 cout << "The average mark for student " << count

 << " is " << student_average << "\n\n";

 }

 // Calculate class average

 class_average = class_total / num_students;

 // Output Class average

 cout << "The class average is " << class_average << "\n";

}

Iteration

Additional Exercises

1. In the train time table program, add loops to check that the times entered are valid (ie times entered are between 0 and 24 hours for the start and stop times and that the frequency and journey times are between 1 and 60 minutes).

2. Prevent the program from proceeding until suitable values are entered.

3. Write a program which reads in a set of positive value real number values terminated by a negative value and prints out the sum of all these values.

4. Write a program to find the largest, smallest and average values in a collection of n numbers entered by the user where n is the first data item entered.

Iteration

1. Change to following code to a while loop.

int x, y;

for (x=1; x < 57; x+= 2)

y = x;
2. What is wrong with the following?

int n=0;

while (n < 100)

value = n*n;
3. Write a while loop that calculates the sum of all numbers between 0 and 20 inclusive?

4. Convert the above loop to a do ... while loop.

5. Convert the above loop to a for loop.

6. What is wrong with the following?

i = 1;

while (i <= 10)

cout << i;

i++;

1. x = 1;

while (x < 57)

{

y = x;

x += 2;

}
2. The value of n within the loop is never incremented. It will therefore always have a value of 0, which is less than 100, and hence this will produce an infinite loop which will never terminate. The program will therefore never end.

3. int i, sum =0;

i = 0;

while (i <= 100)

{

sum += i;

i++;

}
4. int i, sum =0;

i = 0;

do

{

sum += i;

i++;

}while (i <= 20);
5. int i, sum =0;

for (i=0; i <= 20; i++)

{

sum += i;

}
6. There are no braces around the cout and increment i statements, therefore it will execute only the cout statement within the loop, and an infinite loop will again occur.

Arrays and Structures

PRIVATE

Learning Objectives

Be able to declare an array

Be able to access elements of an array

Be able to sequentially access arrays using loops

Be able to initialise arrays

Understand the use of structures

Be able to declare a structure and access the members of a structure variable

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Arrays and Structures

Source Code from Notes

Example

Program to input each of the temperatures over the 30 days to calculate the average temperature during the period.

// Program to input 30 temperature samples and calculate their average

#include <iostream.h>

main()

{

 const int DURATION = 5;

 int day;

 float temperature[DURATION];

 float average, total;

 //Enter temperature values

 for (day =0; day < DURATION ;day++)

 {

 cout << "Enter temperature of day " << day << "\n";

 cin >> temperature[day];

 }

 // initialise total variable

 total = 0.0;

 // sum temperatures for each day

 for (day=0; day < DURATION; day++)

 {

 total += temperature[day];

 }

 // calculate average

 average = total/DURATION;

 //output result

 cout << "The average temperature is" << average << "\n";

}

Example

The following example reads in a sentence which is terminated by a full stop and calculates the number of lower case vowels in the sentence. An array of char elements is defined. The length of this array is limited to 100 elements.

// Program to count for number of vowels in a sentence

// the sentence must be terminated by a full stop (.)

#include <iostream.h>

main()

{

 const int max_length = 100; //max number of characters in sentence

 char sentence[max_length];

 int i,count,length;

 i = 0;

 count = 0;

 // enter the sentence

 cout << "Enter a sentence terminated by a full stop \n";

 do {

 cin >> sentence[i];

 i++;

 } while(sentence[i-1] != '.' && i < max_length);

 // number of characters in sentence

 length = i;

 // count number of lower case vowels

 for (i=0;i < length;i++) {

 if (sentence[i] == 'a' || sentence[i] == 'e' || sentence[i]

 == 'i' || sentence[i] == 'o' || sentence[i] =='u') {

 count++;

 }

 }

 // output number of vowels

 cout << "The number of lower case vowels is " << count << "\n";

}

Example

Two dimensional array example where the average temperature each month for the last 20 years is declared and the user is then prompted to enter the values

#include <iostream.h>

main()

{

 const int NO_MONTHS = 12;

 const int NO_YEARS = 20;

 float temperature[NO_YEARS][NO_MONTHS];

 int years,month;

 // input values to array

 for (years = 0;years < NO_YEARS;years++)

 {

 for (month=0;month < NO_MONTHS;month++)

 {

 cout << "Enter temperature ";

 cin >> temperature[years][month];

 }

 }

}

Arrays and Structures

Additional Examples

PROBLEM:

Write a program which will read in a sequence of positive integers terminated by -1 to indicate the end of the input. These values will be read into an array and the program should then determine if the sequence is a palindrome.

A palindrome is a sequence of number/characters/words etc which is the same when read from either direction. For example:

2 3 4 5 4 3 2

is a palindrome, since the sequence is the same when read from left to right or from right to left.

2 3 4 5

Is NOT a palindrome.

SOLUTION:

The program does not know how big a sequence will be entered so an array of characters larger than required is declared. The program then reads in the sequence of integers one at a time into the array. After it has read in each integer it checks if it was a -1, if it was -1 it stops reading in. It also checks to ensure that we can't read in any more integers than the size of our array.

Once it has completed reading in the integers, the number of values read in can be determined, as i - 1 since we are not interested in the -1.

We can then search through the array comparing the 1st element with the last, the 2nd element with the 2nd last etc. As soon as we find that they don't match we can terminate the search as we know that the sequence is not a palindrome.

Note that we only have to loop for i < length/2 as we compare the first half of the array to the second half.

<Code:>
#include <iostream.h>

main()

{

 const int SIZE = 100;

 int array[SIZE];

 int i=0, length, palindrome = 1;

 cout << "Enter A sequence of positive integer numbers\n";

 cout << "terminated by -1\n";

 do

 {

 cin >> array[i]);

 i++;

 }while(array[i-1] != -1 && i < SIZE);

 length = i -1; //don't need -1

 for (i=0; i < length/2 && palindrome == 1 ;i++)

 {

 if (array[i] != array[length - i - 1])

 palindrome = 0;

 }

 if (palindrome == 1)

 cout << "array is a palindrome\n";

 else

 cout << "array is not a palindrome\n";

}

Arrays and Structures

Additional Exercises

Write a program to read N integers into each of two arrays X and Y of size 20. The program will prompt the user to enter the values into each of the arrays. The program will then compare each of the elements of X to the corresponding element in Y. Then, in the corresponding element of a third array Z, store:-

1

if X is larger than Y

0

if X is equal to Y

-1

if X is less than Y

Then print out a three column table displaying the contents of the arrays X, Y and Z, followed by a count of the number of elements of X that exceed Y, and a count of the number of elements of X that are less than Y. Make up your own test data.

Declare your arrays to be of a size greater than you will require, (larger than N).

Define a structure to store the x and y coordinates of a point. The user should then be prompted to enter the x and y coordinates for two points, and the program should make use of the structure. The program will then calculate the distance on the x axis between the two points and the distance on the y axis between the two points.

Arrays and Structures

1. Write a declaration for an array of 100 floats.

2. Initialise all elements in this array to have a value of 0

3. Assign a value of 10.5 to the 5th element in the array you have just declared.

4. What is wrong with the following?

int array[10],i;

for (i=0;i < 10;i++)

array[i] = array[i+1];
5. What is wrong with the following?

float index;

float array[9];

for (index=0; index < 9; index++)

array[index] = index;

1. float a[100];
2. int i;

for (i=0;i<100;i++)

a[i] = 0.0;
3. a[4]=10.5;
4. The array has 10 elements,with indexes from 0 to 9, but the last time round the loop i = 9, and hence the code tries to do array[9] = array[10], which would result in an error since a[10] does not exist.

5. The array index must always be an integer and hence the first line should have been

int index;

Functions

PRIVATE

Learning Objectives

Understand the use of the function definition and declaration

Be able to write a function definition given a specification

Be able to call a function

Understand the use of void

Be able to use standard functions

Understand the scope of variables in functions

Understand the use of recursive functions

Understand the use of refernce variables and be able to use them to alter values sent to a function

Understand the concept of Default Arguments and be able to use them

Understand the concept of function overloading

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Test Cases for Tutorial 6

Extra Examples on Recursion

Functions

Source Code from Notes

Example 1

The following program uses a function to calculate the volume of the cube with the largest volume from the dimensions entered by the user for two cubes.

#include <iostream.h>

// function declaration

float cube_volume(float length, float height, float width);

// main body of program

main()

{

 float length1,width1,height1,volume1;

 float length2,width2,height2,volume2;

 // input cube dimensions

 cout << "Enter dimensions of cube 1\n";

 cin >> length1 >> height1 >> width1;

 cout << "Enter dimensions of cube 2\n";

 cin >> length2 >> height2 >> width2;

 // calculate volume

 volume1 = cube_volume(length1,height1,width1);

 volume2 = cube_volume(length2,height2,width2);

 // output results

 if (volume1 > volume2)

 cout << "Cube 1 is largest, its volume is " << volume 1 << "\n";

 else if (volume2 > volume1)

 cout << "Cube 2 is largest, its volume is " << volume2 << "\n";

 else

 cout << "both cubes have equal volumes of " << volume1 << "\n";

}

// function definition

float cube_volume(float length, float height, float width)

{

 float volume;

 volume = length * width * height;

 return(volume);

}

Additional Example - convert Train Timetable from Iteration Tutorial to use functions

// Calculate train time table - using functions

#include <isotream.h>

//Function declarations

int to_24hr(int mins);

int to_mins(int hr_24);

main()

{

 const int wait = 5;

 int start, stop, time;

 int start_min, stop_min;

 int journey_time, freq_time;

 int dep_red,dep_green,dep_yellow,arr_blue;

 int dep_red_min,dep_green_min,dep_yellow_min,arr_blue_min;

 cout << "Enter the journey time (minutes)\n";

 cin >> journey_time;

 cout << "Enter the first train time\n";

 cin >> start;

 cout << "Enter the last train time\n";

 cin >> stop;

 cout << "Enter the frequency time\n";

 cin >> freq_time;

 // convert start and stop times to minutes

 start_min = to_mins(start);

 stop_min = to_mins(stop);

 // table header

 cout << "RED \t GREEN \t YELLOW \t BLUE\n";

 for (time=start_min; time<=stop_min; time+=freq_time)

 {

 // Calculate Times

 dep_red_min = time;

 dep_green_min = (time + journey_time + wait);

 dep_yellow_min = (time + 2*(journey_time + wait));

 arr_blue_min = time + 3*journey_time +2*wait;

 // Convert times to 24 hour clock to display

 dep_red = to_24hr(dep_red_min);

 dep_green = to_24hr(dep_green_min);

 dep_yellow = to_24hr(dep_yellow_min);

 arr_blue = to_24hr(arr_blue_min);

 cout << dep_red << "\t" << dep_green << "\t"

 << dep_yellow << "\t" << arr_blue << "\n";

 }

} // end of main program

// Definition of to_24hr function

int to_24hr(int mins)

{

 int hr, min, total;

 hr = mins/60;

 min = mins%60;

 total = hr*100 + min;

 return (total);

}

// Definition of to_mins function

int to_mins(int hr_24)

{

 int hr, min, total_mins;

 hr = hr_24/100;

 min = hr_24%100;

 total_mins = hr*60 + min;

 return(total_mins);

}

Example - Recursion

// Program to calculate the factorials of positive integers

// Program prints results for integers from 0 to 10

#include <iostream.h>

long factorial (int n);

main()

{

 int j;

 for (j=0;j < 11;j++)

 cout << j << "! = " << factorial(j) << "\n";

}

long factorial (int n)

{

 long result;

 if (n==0)

 result = 1;

 else

 result = n * factorial(n-1);

 return(result);

}

Example

The following program prompts the user for the coordinates of 2 points. It then calculates the length of the line joining the two points.

#include <math.h>

#include <iostream.h>

struct coord {

 float x,y,z;

};

// function declarations

float length (coord point1, coord point2);

float square (float x);

void main (void)

{

 coord p1, p2;

 float line_length;

 cout << "Enter coords of point 1 : ";

 cin >> p1.x >> p1.y >> p1.z;

 cout << "Enter coords of point 2 : ";

 cin >> p2.x >> p2.y >> p2.z;

 line_length = length(p1, p2);

 cout << "Length = " << line_length << "\n";

}

float length (coord point1, coord point2)

{

 float xlen,ylen,zlen;

 float len_sqr;

 xlen = point1.x - point2.x;

 ylen = point1.y - point2.y;

 zlen = point1.z - point2.z;

 len_sqr = square(xlen) + square(ylen) + square(zlen) ;

 return (sqrt(len_sqr));

}

float square (float x)

{

 return ((x)*(x));

}

Example - Reference Variables

This example illustrates how reference variables can be used to permit a function to change values in the calling program.

#include <iostream.h>

void swap(int &ra, int &rb);

main()

{

 int a,b;

 a = 10;

 b = 12;

 swap (a,b);

}

void swap(int &ra, int &rb)

{

 int temp;

 temp = ra;

 ra = rb;

 rb = temp;

}

Example

This example sends an array to the function. The function then calculates both the largest and smallest value stored in the array. These maximum and minimum values stored are then returned to the main calling program as function arguments.

There is a msitake in the notes, the following program is correct and has made MAX be global so the function also knows its value. An alternative solution is given below where MAX is local and is sent to the function.

#include <iostream.h>

#include <math.h>

void max_min(float &max, float &min, float array[]);

const int MAX = 5;

main()

{

 float array1[MAX];

 float array2[MAX];

 float max1, min1;

 float max2, min2;

 int i;

 for (i=0; i<MAX;i++)

 {

 cout << "Enter value "<< i << " of array1\n";

 cin >> array1[i];

 }

 for (i=0; i<MAX;i++)

 {

 cout << "Enter value "<< i << " of array2\n";

 cin >> array2[i];

 }

 max_min(max1,min1,array1);

 max_min(max2,min2,array2);

 cout << "Array 1 : max = " << max1 << " min = " << min1 << "\n";

 cout << "Array 2 : max = " << max2 << " min = " << min2 << "\n";

}

void max_min(float &max, float &min, float array[])

{

 int i;

 min = array[0];

 max = array[0];

 for (i=1;i < MAX;i++)

 {

 if (array[i] max)

 max = array[i];

 if (array[i] < min)

 min = array[i];

 }

}

Alternative Solution

#include <iostream.h>

#include <math.h>

void max_min(int size_array, float &max, float &min, float array[]);

main()

{

 const int MAX = 5;

 float array1[MAX];

 float array2[MAX];

 float max1, min1;

 float max2, min2;

 int i;

 for (i=0; i<MAX;i++)

 {

 cout << "Enter value "<< i << " of array1\n";

 cin >> array1[i];

 }

 for (i=0; i<MAX;i++)

 {

 cout << "Enter value "<< i << " of array2\n";

 cin >> array2[i];

 }

 max_min(MAX, max1,min1,array1);

 max_min(MAX, max2,min2,array2);

 cout << "Array 1 : max = " << max1 << " min = " << min1 << "\n";

 cout << "Array 2 : max = " << max2 << " min = " << min2 << "\n";

}

void max_min(int size_array, float &max, float &min, float array[])

{

 int i;

 min = array[0];

 max = array[0];

 for (i=1;i < size_array;i++)

 {

 if (array[i] max)

 max = array[i];

 if (array[i] < min)

 min = array[i];

 }

}

Example - Sports Timer

A sports timer can time an event returning the elapsed time in seconds. Write a function to convert the time in seconds to hours, minutes and seconds, returning these values as function arguments. The function should be called from a main calling program where the user is prompted to enter the elapsed time in seconds.

Reference variable must be used in the function arguments for hours, minutes and seconds.

#include <iostream.h>

#include <math.h>

// Function Declaration

void change_time(int elapsed_seconds, int &hours, int &mins, int &seconds);

main()

{

 int elapsed_time;

 int time_hours, time_minutes, time_seconds;

 cout << "Enter the time for the event\n";

 cin >> elapsed_time;

 //Function call - send address of variables to change

 change_time(elapsed_time, time_hours, time_minutes, time_seconds);

 // Use variables as normal

 cout << "The number of hours is " << time_hours << " \n";

 cout << "The number of minutes is "<< time_minutes << " \n";

 cout << "The number of seconds is " << time_seconds << " \n";

 cout << "The number of seconds is " << time_seconds << " \n";

}

// Function to convert total in seconds to hours, mins and seconds

void change_time(int elapsed_seconds, int &hours, int &mins, int &seconds)

{

 int tmp_minutes;

 seconds = elapsed_seconds%60;

 tmp_minutes = elapsed_seconds/60;

 mins = tmp_minutes%60;

 hours = tmp_minutes /60;

}

Functions

Additional Examples

There are three additional worked examples:-

PRIVATE

Example 1

Example 2 - using reference variables

Example 3 - Functions and arrays

Example 1

PROBLEM:

Write a function that will display a line of n asterisks on the screen. n will be passed as a argument to the function. After writing the line of n asterisks a new line should be printed.

Write a program to call this function, using it to display a grid of m times n asterisks. The user should be prompted to enters the values for m and n.

SOLUTION:

Considering initially the function, the first thing to consider is

What arguments are to be sent to the function?

Obviously, it needs to be told how many asterisks to write, in this case n which will be integer?

The next thing to consider is what will be returned by the function?

Obviously, the function only prints to screen and therefore does not need to return anything to the main calling program. The return type is therefore void

We can now continue and write the function.

void line (int n)

{

 int i;

 for (i=0; i < n;i++)

 cout << "*";

 cout << "\n";

}
The complete program, has to call this function m times, and so a loop will be used to call the program. The complete solution is then.

#include <iostream.h>

// function declaration */

void line(int n);

main()

{

 int i;

 int m,n;

 cout << "Enter values for m and n \n";

 cin >> m >> n ;

 // Loop to call function m times

 for (i=0; i < m; i++)

 line(n);

}

// function definition

void line (int n)

{

 int i;

 for (i=0; i < n;i++)

 cout << "*";

 cout << "\n";

}

ADDITIONAL EXERCISE

Amend the main program written above, so that the following type of pattern is displayed. This is shown for the case of m = 5.

*

**

SOLUTION

Note that no changes are required to the function, we simply need to amend the main calling program.

#include <iostream.h>

// function declaration

void line(int n);

main()

{

 int i;

 int m;

 cout << "Enter a value for the number of rows\n";

 cin >> m ;

 //Call to function in loop

 for (i=1; i <= m; i++)

 line(i);

}

Example 2

PROBLEM:

Consider the calculation of the roots of the quadratic equation ax2+bx+c=0, assuming that a is non-zero:-

· if b2 4ac is greater than 0, there are two roots given by (-b(((b2-4ac))/2a

· if b2 4ac is equal than 0, there is one root given by -b/2a

· if b2 4ac is less than 0, there are no real roots

Write a function in C++ which will take a, b and c as arguments and returns the roots as function arguments root1 and root2 (as appropriate). The number of roots will be returned through the type specifier.

Write a main program which prompts the user to enter the values of a, b and c. Then after using a call to the function written above, the program will display the number of roots and their values as appropriate.

SOLUTION:

The function has to be sent the arguments a, b and c, it also requires two arguments for the roots. These values will be altered by the program so must be refernec variables. The function returns an integer number for the number of roots. The function declaration will therefore be:-

int root (float a, float b, flot c, float &root1, float &root2);
The rest of the function can now be written.

int root (float a, float b, float c, float &root1, float &root2)

{

 float tmp;

 tmp = b*b - 4*a*c;

 if (tmp 0)

 {

 root1 = (-b + sqrt(tmp))/(2*a);

 root2 = (-b - sqrt(tmp))/(2*a);

 return 2;

 }

 else if (tmp == 0)

 {

 root1 = -b/(2*a);

 return 1;

 }

 else

 return 0;

}
The main program can now be written. Remember to include the function declaration and math.h>as the sqrt function was used.

#include <iostream.h>

#include <math.h>

int root (float a, float b, float c, float &root1, float &root2);

main()

{

 float a,b,c,root1,root2;

 int num_roots;

 cout << "Enter values for a, b and c\n";

 cin >> a >> b >> c;

 num_roots = root(a,b,c,root1, root2);

 if (num_roots == 2)

 cout << "There are 2 real roots with values " << root1

 << " and " << root2 << " \n";

 else if (num_roots == 1)

 cout << "There is 1 real root with value " << root1 <<"\n";

 else

 cout << "There are no real roots\n";

}

Example 3

Arrays can also be sent to functions. Arrays are also special in that the function can change the contents of the array and the main calling program will know about the changes after the function is called.

PROBLEM: Write a function which when sent an array will fill each element of the array with an integer number which is equal to the element number. The function will also be sent the size of the array.

Write a main program to call this function, and then print out the contents of the array.

SOLUTION:

The function will not return anything - hnece the type specifier is void. The function will be sent an array of integers and an integer for the size. In the function prototype, teh size of the array is not enetered in the square brackets for the array - this is left blank. The empty square brackets simply indictate that an array will be sent to the function.

void fill_array(int array[], int size)

{

 int i;

 for (i=0; i < size; i++)

 array[i] = i;

 return;

}
The main program will then take the form:-

#include <iostream.h>

// function declaration

void fill_array(int array[], int size);

main()

{

 int size = 100;

 int array[size];

 // call function

 fill_array(array, size);

 // write out contents of array

 for (i=0; i < size ; i++)

 cout << i << "\t" << array[i] << endl;

}
Note: That to call the function, only the name of the array to sent to the function needs to be given in the function call. (In the notes on points it mentions how the name of an array is a synonym for a pointer to the beginning of the array - hence only the mname needs to be given.

Recursion

These pages contain some further examples of recursion and may help those students who undertake the coursework for AI given by Dr Nick Taylor. The minimax function required for this is best implemented using recursion.

PRIVATE

Hints from Nick about the minimax function

What is recursion?

Recursion is a technique whereby functions can call themselves. Simple recursive functions always have an if..else type of structure. The condition of the if provides an exit from the recursion and is always tested before the recursive call. If this condition is not true, the else part calls the function again, but this time the value of one of the arguments sent to the function will have changed (typically the value of the variable tested in the condition). The value of the argument is changed in such a manner that ultimately the base condition will be true.

This is explained more easily by considering the following examples. For each problem both a recursive and an iterative solution to the problem are presented - compare the structures of each!

Recursion Examples

PRIVATE

Example 1
Multiplication by repeated addition

Example 2
Euclids Algorithm for Greatest Common Divisor

Example 3
Factorial Example

Example 4
Fibonacci Sequence

Multiplication by repeated addition

PROBLEM:

Write a recursive function to perform multiplication of two positive integers (m and n) using only addition. The function will take as its arguments two integers to multiply together (m x n) and will return the product.

Hint: consider the following:

6 x 1 = 6

6 x 2 = 6 + (6 x 1)

6 x 3 = 6 + (6 x 2) = 6 + [6 + (6 x 1)] = 6 + 6 + 6

SOLUTION

This could be extended to the general case that

m x n = m + (m x (n-1))

Therefore, from the above we can repeat the multiplication process by repeatedly calling the function, each time with n decreasing by 1.

The function stops calling itself once n reaches 1. This therefore gives the condition to stop calling the function, since m x 1 is simply m and the result m is returned.

int multiply(int m, int n)

{

 int result;

 if (n == 1)

 result = m;

 else

 result = m + multiply(m, n-1);

 return(result);

}
A recursive function always has a structure using an if..else statement. This allows the function to repeatedly call itself, but provides the condition on which to stop.

EXAMPLE OF OPERATION

Consider what would happen if this function is called for m=6 and n=3. The function tests if n is equal to 1, it isn't so

result = 6 + multiply(6,2);

so the function is recalled this time with m = 6 and n = 2. The function tests if n is equal to 1, it isn't so

result = 6 + multiply(6,1);

so the function is recalled this time with m = 6 and n = 1. The function tests if n is equal to 1, it is so it sets

result = 6;

and returns this value. This then completes the statement

result = 6 + multiply(6,1);

providing the value result equal to 12. This value is then returned, and this then completes the statement

result = 6 + multiply(6,2);

and finally the answer of 18 is returned.

ITERATIVE SOLUTION

This problem could also have been tackled using an iterative solution. An iterative solution uses a loop.

int multiply (int m, int n)

{

 int tot =0;

 while (n 0O

 {

 tot += m;

 n--;

 }

 return tot;

}
<DIV ALIGN=right>

Euclid's Algorithm for Greatest Common Divisor

PROBLEM 2:

Euclids algorithm for calculating the greatest common divisor (GCD) of two positive integers, GCD(m,n) is defined recursively below. The greatest common divisor of two integers is the largest integer that divides them both. For example, the GCD of 9 and 30 is 3.

· GCD(m,n) is n if n<= m and n divides m

· GCD(m,n) is GCD(n,m) if m < n

· GCD(m,n) is GCD(n, remainder of m divided by n) otherwise.

Write a C++ function to implement this algorithm.

SOLUTION

In this case we require an else..if structure because there are 3 possible routes depending on the values of m and n.

If n is less than m and n divides m exactly (ie n%m ==0), then we can stop and the answer is n.

If m is less than n, then recall the function but swap m and n
otherwise, recall function with arguments n and the remainder of m divided by n (m%n)

This is implemented below.

int GCD (int m, int n)

{

 if (n<=m && m%n == 0)

 return n;

 else if (m < n)

 return GCD(n,m);

 else

 return GCD (n, m%n);

}
<DIV ALIGN=right>

Factorials

PROBLEM 3:

Write a recursive function to calculate the factorial of n (n!)

0! = 1

1! = 1

2! = 2 x 1 = 2 x 1!

3! = 3 x 2 x 1 = 3 x 2!

4! = 4 x 3 x 2 x 1 = 4 x 3!

5! = 5 x 4 x 3 x 2 x 1 = 5 x 4!

etc.

n! = n x (n-1)!

SOLUTION:

From the above it is obvious to see a pattern emerging and

n! = n x (n-1)!

Therefore, we can calculate the factorial of n, by multiplying the factorial of n-1 by n. We can calculate the factorial of n-1, by calling the function again, but this time sending it n-1.

This is then repeated since,

(n-1)! = (n-1) x (n-2)!

We want to stop repeatedly calling the function, once n is 0. Hence the condition on the if statement is that the recursion is terminated once n is equal to 0. Otherwise, it recalls the function, but with n-1.

long factorial (int n)

{

 long result;

 if (n==0)

 result = 1;

 else

 result = n * factorial(n-1);

 return(result);

}

ITERATIVE SOLUTION

This could also be implemented iteratively using a loop.

long factorial (int n)

{

 long result;

 int i;

 result = 1;

 for (i=n; i 0 ; i--)

 result *= i;

 return (result);

}
<DIV ALIGN=right>

Fibonacci Sequence

PROBLEM 4:

The Fibonacci numbers are generated by adding together the two previous numbers in the sequence, initialising the 1st two numbers (F1 and F2) to 1. The sequence

 1 1 2 3 5 8 13 21

is then produced, where F3=F2+F1=2, F4 = F3+F2 =3, F5= F4+F3 = 5 etc.

Write a recursive function which returns the nth Fibonacci number (Fn), where n is sent to the function as an argument.

SOLUTION:

The Fibonacci sequence can be generated by repeated calls to the function. We want to keep on calling the function to calculate the 2 previous numbers in the sequence. We want to stop calling the function if n is 1 or n is 2, whereby we know the 1st Fibonacci number (F1) is 1 and the 2nd Fibonacci number (F2) is 1.

int fib (int n)

{

 if (n == 1 || n == 2)

 return 1;

 else

 return (fib(n-1) + fib(n-2));

}

Iterative Solution

This could also have been implemented iteratively as:-

int fib_iterative (int n)

{

 int fib, fib_old1, fib_old2, i;

 if (n <= 2)

 return 1;

 else

 {

 fib_old1 = 1;

 fib_old2 = 1;

 for (i=3; i <=n; i++)

 {

 fib = fib_old1 + fib_old2;

 fib_old2 = fib_old1;

 fib_old1 = fib;

 }

 return (fib);

 }

}
Compare this to the Recursive Solution.

Functions

Additional Exercises

1. The following function raises an integer to a given power (X^n)

int power (int x, int n)

{

int p;

for (p = 1; n 0; n--)

p = p * x;

return p;

}
Add a main program to prompt the user to enter a integer and the desired power then call the function, and finally print out the answer. Remember to add a function prototype.

Revision

2. The power to raise the integer to, n must be a positive integer. Check that the value entered is positive, if it is not do not let the user proceed until a positive value is entered (see notes on Iteration).

3. The above is an iterative method of calculating the value of X^n, write a recursive function to calculate the value of a number (base) raised to a power (power). Assume the power is positive.

4. The Arrays Example looked at writing a program to determine if an array contained a palindrome. Rewrite this exercise, so that you now have a function that when sent an array, will return a 1 if the array is a palindrome and will return a 0 otherwise. The function will be sent the array of integers.

Now re-write the main program to call this function and then display if the array is a palindrome.

Functions

1. Explain the difference between a function declaration and a functions definition? Where is the function declaration placed?

2. Given the following function declarations, explain the meaning of each.

int function1(int a, float b);
void function2(float a, float b, float c);
int function3(void);
float function4(float x);
void function5(void);
3. Write an appropriate function call for each of the function declarations given above.

4. What does the following function do?

float function(float a, float b, float c)

{

float tmp;

tmp = (a + b + c)/ 3.0 ;

return tmp;

}
5. Give an example function call for the above function.

6. Give the function declaration for the function given in question 4.

1. The declaration is contained within the program before the function is called. It is usually outside any function, including the main program. It contains details of the function name, the return type and the types of the function arguments.

The definition contains the actual code of what is to be implemented when the function is called.

2. The function is sent an integer argument which it will refer to as a within the function and a floating point variable, which it will refer to as b within the function. The function will return an integer quantity.

The function is sent 3 floating point arguments and returns no value to the calling program.

The function is sent no arguments but returns an integer.

The function is sent one floating point argument and returns a floating point argument.

The function is sent no variable and returns nothing.

3. Example calls are given below,

int x, z;

float y;

// x and y are assigned some values in the program

z = function1(x, y);
float x,y,z;

// x, y and z assigned values in program

function2(x, y, z);
int a;

a = function3();
float a, b;

// b assigned a value in program

a = function4(b);
function5();

4. It returns the average value of the three values sent to it.

5. x = function(a,b,c);
6. float function(float, float, float); or float function(float a, float b, float c);

Pointers

PRIVATE

Learning Objectives

Understand the concept of pointers which point to memory locations

Know how * and & are used with pointers and what they do

Be able to use command line arguments to input data to programs

Understand the concept of linked lists

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Test Cases for Tutorial 7

Pointers

Source Code from Notes

Example

Example program to read in two numbers from the command line and add them together.

#include <iostream.h>

#include <stdlib.h>

main(int argc,char *argv[])

{

 float a,b,answer;

 // ensure correct number of arguments

 if (argc != 3)

 {

 cout << "Wrong number of arguments for program\n";

 exit(1);

 }

 /* convert argument string to float */

 a = atof(argv[1]);

 b = atof(argv[2]);

 answer = a + b;

 cout << "Answer = " << answer << "\n";

}

Example

This example is more complex and is for a program which requires a flag to indicate what operation should be performed on the two numbers. The flags are indicated by the minus (-) sign.

#include <iostream.h>

#include <stdlib.h>

main(int argc,char *argv[])

{

 int add_flag = 1;

 int sub_flag = 0;

 int mult_flag = 0;

 float a,b;

 argc--;

 argv++;

 while ((argc 0)&&(**argv == '-')){

 switch(*++*argv){

 case 'a' : // add

 add_flag = 1;

 break;

 case 's' : // subtract

 sub_flag = 1;

 add_flag = 0;

 break;

 case 'm' : // multiply

 mult_flag = 1;

 add_flag = 0;

 break;

 default : cout << "Unknown flag\n";

 exit(1);

 }

 argc--;

 argv++;

 }

 if (argc != 2)

 {

 cout << "Wrong number of arguments for program\n";

 exit(1);

 }

 a = atof(argv[0]);

 b = atof(argv[1]);

 if (add_flag == 1)

 cout << "answer = " << a+b << "\n";

 else if (mult_flag == 1)

 cout << "answer = " << a*b << "\n";

 else if (sub_flag ==1)

 cout << "answer = " << a-b << "\n";

}

Pointers

Additional Example

PROBLEM:

Write a program which prompts the user to enter 10 integer numbers into an array. The program will then search the array to find if a zero is present in the array. If a zero is present it will print out the number of elements in the array before the zero occurs.

Write this program making use of pointers to search the array and compare it to writing the solution using arrays only.

SOLUTION:

The program will still need to declare an array of 10 elements as normal. It will also declare a pointer to an integer.

 int array[10];

 int *array_ptr;
The program will then prompt the user to enter the elements into the array. It uses the variable index to count when 10 integers have been entered. The integers are read into successive elements. The name of the array is a pointer to the beginning of the array, this pointer is moved along the array by adding the index to it.

 cout << "Enter 10 numbers \n";

 for (index =0; index < 10; index ++)

 cin >> *(array + index);
The pointer is then set to point to the beginning of the array.

 array_ptr = array;
The program then increments along the array looking for a zero and checking that it has not reached the end of the array.

 while (*array_ptr != 0 && (array_ptr - array < 10))

 array_ptr ++;
This checks if the contents of the array poistion the array_ptr is pointing to contains a zero and if it has yet looked at 10 elements. If both condtions are false it increments the pointer to point to the next element in the array.

Final Program:

#include <iostream.h>

main()

{

 int array[10];

 int *array_ptr;

 int index;

 cout << "Enter 10 numbers \n";

 for (index =0; index < 10; index ++)

 cin >> *(array + index);

 array_ptr = array;

 while (*array_ptr != 0 && (array_ptr - array < 10))

 array_ptr ++;

 if (array_ptr - array < 10)

 cout << "There are " << array_ptr - array <<

 " elements before the zero\n";

 else

 cout << "There is no zero in the array\n";

}
The same program could also have been written using the array and the integer index. No pointers are required.

#include <iostream.h>

main()

{

 int array[10];

 int index;

 cout << "Enter 10 numbers \n";

 for (index =0; index < 10; index ++)

 cin >> array[index];

 // reset index back to 0

 index = 0;

 while (array[index] != 0 && index < 10)

 index ++;

 if (index < 10)

 cout << "There are " << index << " elements before the zero\n";

 else

 cout << "There is no zero in the array\n";

}
Both programs perform the same task.

Pointers

Additional Exercises

1. Write a function strn_comp to compare two strings. The function will return a value TRUE if the strings are the same and FALSE otherwise. Call this function from a main program.

The return value will be of type int with TRUE indicated by a value of 1 and FALSE indicated by a value of 0.

Note: this can be achieved using array indices or pointers to manipulate the string.

2. Rewrite the main program for the example given under Additional Example 2 for Functions to take the values of a, b, and c as command line arguments, instead of prompting the user to enter the values.

Pointers

1. How do you access the memory address of a variable?

2. How do you access the contents of a memory location whose address is stored in a pointer?

3. Given the following declarations:

int *p, *q;

int n;
Which of the following is valid?

· p+q

· p+n

· p-q

· q-n

· n-p

4. Given the following declaration

float a[10];

float *a_ptr;

What do the following statements do? Assume that they are executed in the order given.

· a_ptr = a;
· a_ptr ++;

· *a_ptr = 3.5;
· a_ptr = a_ptr + 5;

· *a_ptr = a[1];

5. When referring to command line arguments what is the argument count?

6. How many arguments are in the following command line?

prog -x -a file1 13
What is stored in argv[2]?

1. The memory address of a variable is accessed using the address operator &. Given the variable x it's address is &
2. The contents of a memory location pointed to by a pointer are accessed using the de-referencing operator (*). The contents of the memory location pointed to by p are accessed by *p.

· p+q - This is invalid. We cannot add two pointers.

· p+n - This is valid. It increments the memory address p points to by n.

· p-q - This is valid. The subtraction of the two pointers gives the number of integer variables stored between the two locations

· q-n - This is valid. It decrements the memory address q points to by n

· n-q - This is invalid. We cannot subtract a pointer from an integer.

· This makes the pointer a_ptr point to the beginning of the array (element number 0 of array a)

· This increments the pointer so it now points to a[1]. The contents of a[1] then becomes 3.5.

· It increments the pointer by 5 places - so it now points to a[6]. It then copies the value of a[1] (3.5) to a[6].

3. The argument count is the number of arguments specified on the command line to run the program.

There are 5 arguments.

argv[2] contains -a

File Input and Output

PRIVATE

Learning Objectives

Be able to open a file to read from or write to

Understand the different modes in which files can be opened

Know how to check if the file has been opened correctly

Be able to read from or write to the file

Be able to close a file after use

Understand how to use functions such as eof()

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Test Cases for Tutorial 8

File Input and Output

Source Code from Notes

Example 1

Example using command line arguments to provide the filenames of the files to be opened.

#include <iostream.h>

main(int argc,char *argv[])

{

 istream fin;

 ostream fout;

 if (argc != 3) {

 cerr << "USAGE: program input_file output_file\n";

 exit(1);

 }

 fin.open(argv[1]);

 fout.open(argv[2]);

 if (!fin)

 {

 cerr << "Can't open file " << argv[1] << " for reading\n";

 exit(1);

 }

 if (!fout)

 {

 cerr << "Can't open file " << argv[2] << " for writing\n";

 exit(1);

 }

 // rest of program

}

Example

For example to open a file called Myfile and write some data to it

#include <fstream.h>

main()

{

 // open text file Myfile for writing

 // now

 ofstream my;

 my.open("Myfile");

 if (!my) // if open didn't work..

 {

 cerr << "Error opening file \n";

 exit(); // output error and quit

 }

 // write to the file

 my << "My name is Judith Bell \n";

}

Example - reading from file and detecting feof

This example opens a file called test. We will assume this file contains a list of floats, which could for example represent the temperature each day for several days. We will then read in these values andcalculate the average value stored in the file.

Note: This program will read the last item in the file twice, since it does not detect the end of file until it tries to read past it.

 // Program to read integers from an input file

 // called test and calculate average

#include<iostream.h>

#include<fstream.h>

main()

{

 ifstream fi;

 float input_value, sum = 0.0, average;

 int no_values = 0;

 fi.open("test");

 if (!fi)

 {

 cout << "Can't open file test\n";

 exit(0);

 }

 while (!fi.eof())

 {

 fi >> input_value;

 sum += input_value;

 no_values ++;

 }

 average = sum / no_values;

 cout << "The average value in file test was " << average << "\n";

 fi.close();

}
Corrected Program

#include<iostream.h>

#include<fstream.h>

main()

{

 ifstream fi;

 float input_value, sum = 0.0, average;

 int no_values = 0;

 fi.open("test");

 if (!fi)

 {

 cout << "Can't open file test\n";

 exit(0);

 }

 fi >> input_value;

 while (!fi.eof())

 {

 sum += input_value;

 no_values ++;

 fi >> input_value;

 }

 average = sum / no_values;

 cout << "The average value in file test was " << average << "\en";

 fi.close();

}
Corrected Program - using arrays

Note: this program also reads file name in as specified by the user.

#include <iostream.h>

#include <fstream.h>

main()

{

 ifstream fi;

 const int max = 100; // declare a larger array than required

 float input_value[max], sum = 0.0, average;

 int i, no_values = 0;

 char file_name[20];

 cout << "enter filename";

 cin >> file_name;

 fi.open(file_name);

 if (!fi)

 {

 cout << "Can't open file test\n";

 exit(0);

 }

 i =0;

 while (!fi.eof()) // read data into array

 {

 fi >> input_value[i];

 i++;

 }

 no_values = i-1; // discard last element in array

 for (i=0; i< no_values;i++) // sum together all values in array

 sum += input_value[i];

 average = sum / no_values;

 cout << "The average file in file test was " << average << "\n";

 fi.close();

}

Example

Here is a program that creates an output file, writes information to it, closes the file and opens it again as an input file and reads in the information.

#include <iostream.h>

#include <fstream.h>

main()

{

 ofstream fo;

 fo.open("test_file");

 if (!fo)

 {

 cout << "Cannot open test_file\en";

 exit(0);

 }

 fo << "Hello\en";

 fo << 101.7;

 fo.close(); // close the file

 ifstream fi;

 fi.open("test_file");

 if (!fi)

 {

 cout << "Cannot open test_file\en";

 exit(0);

 }

 char str[80];

 float x;

 fi >> str;

 fi >> x;

 cout << str << "\en" << x << "\en";

 fi.close();

}

File Input and Output

Additional Example

PROBLEM:

Write a program which reads in text from a file character by character and then writes out the text to another file, but this time in CAPITAL (or UPPER case) letters.

The input and output filenames will be specified as command line arguments.

You will need to use the function toupper(). This function is declared in ctype.h>. It is sent a character and returns the character in upper case through the type specifier.

You will need to use the fgetc() function to preserve the white spaces.

Create your own input file - ie. in nedit create a file called test_in and type in some text. For example

The cat sat on the mat

The output file obtained by running the program should then contain

THE CAT SAT ON THE MAT

SOLUTION:

The first thing the program should do, is check the number of command line arguments and ensure that it is correct (In this case 3 - program name, input filename and output filename). It can then open the input and output files and check that they have been opened, if they are not correctly opened the program will stop.

The program can then proceed and read character by character from the input file. Each character read will then be converted to a capital letter and written to the output file before the next character is read in.

#include <iostream.h>

#include <fstream.h>

#include <ctype.h>

main(int argc, char *argv[])

{

 ifstream fi;

 ofstream fo;

 char lower, upper;

 if (argc != 3)

 {

 cerr << "USAGE: program input_file output_file\n";

 exit(1);

 }

 fi.open(argv[1]);

 if (!fi)

 {

 cout << "Can't open input test file " << argv[1] << "\n";

 exit(0);

 }

 fo.open(argv[2]);

 if (!fo)

 {

 cout << "Can't open output test file " << argv[2] << "\n";

 exit(0);

 }

 lower = fi.get();

 while (!fi.eof())

 {

 upper = toupper(lower);

 fo << upper;

 lower = fi.get();

 }

 fi.close();

 fo.close();

}
Note carefully the loop for reading in and converting the characters. The loop is written in this way to ensure that the End of File is correctly detected. C programs will not detect the end of file until they have tried to read the end of file. Therefore, you will not that the order ensures that the next step afet reading a characetr, is checking if it is the end of file. This is illustrated in the figure below.

If the code had been written as

 while (!feof(fi))

 {

 lower = fgetc(fi);

 upper = toupper(lower);

 fo << upper;

 }
This would have produced an additional character on the end of the output file, since it would have read the end of file character, tried to convert it to upper case and written it to the output file before it checked if it was the end of file. As shown below

If reading values from a file and checking for the end of file always be careful of the End of File Character and take care in the order in which you construct any loops

File Input and Output

Additional Exercises

1. Write a program to read in the marks for a class. The file contains a number to indicate how many students are in the class, and then the name of a student followed by four marks, one for each of the subjects they are studying. The format of the input file is shown below:-

3

bob
10
10
10
10

fred
2
12
14
15

john
3
4
5
6

The program will then calculate the average mark for each student, it will write the name of the student and their average mark to another file. For the example above, the output file will contain

PRIVATE
bob
10

fred
10.75

john
4.5

In addition the program will print the overall average for the class to the screen.

NOTE:

You can assume that the maximum length of the name for any student is 10 characters.

File Input and Output

1. Declare a file pointer, fi
2. Using this file pointer, open the text file file.txt for reading only.

3. Add code to check that the file has been opened correctly.

4. How would the code for question 2 be changed if you wished to open the file for writing rather than reading.

5. Assuming that the file file.txt opened for reading contains a column of integers, give some example to code to read all the numbers into an array.

1. ifstream fi;
2. fi.open("file.txt");
3. if (!fi)

{

cout << "Can't open file file.txt for reading\n";

exit(1);

}
4. oftream fi;
fi.open("file.txt");

5. fi array[i];

while (!fi.eof())

{

i++;

fi array[i];

}

Introduction to Classes

PRIVATE

Learning Objectives

Understand the basic concepts of classes and object orientated programming

Understand the concepts of member functions and member data

Be able to declare a class

Be able to access the members of class

Understand the terms private and public

Be able to create a constructor for a class

PRIVATE

Source Code from Notes

Additional Examples

Quick Check Exercises

Additional Exercises to try

Test Cases for Tutorial 9

Introduction to Classes

Source Code from Notes

Example

Example to illustrate accessing member data and member functions for a class

#include <iostream.h>

//Declaration of Class

class Savings

{

 public:

 unsigned account_number;

 float balance;

 unsigned deposit(unsigned amount)

 {

 balance += amount;

 return balance;

 }

};

//main program which uses class Savings

main()

{

 Savings a; // declare an object a of data type Savings

 Savings b; // declare an object b of data type Savings

 a.account_number = 1; // set account number for a to 1

 a.balance = 0.0; // set balance for a to 0

 a.deposit(10.0); // deposits 10 pounds to a

 b.account_number = 2; // set account number for b to 2

}

Example
#include <iostream.h>

// class declaration

class Rational

{

 public:

 void assign (int, int);

 double convert (); // convert fraction to double

 void invert (); // invert fraction

 void print (); // print as a fraction

 private:

 int num, den;

};

// main program

main()

{

 Rational x;

 x.assign(22,7);

 cout << " x = " ;

 x.print();

 cout << " = " << x.convert() << "\n";

 x.invert();

 cout << "1/x = ";

 x.print();

 cout << "\n";

}

//Rational function definitions

void Rational::assign(int n, int d)

{

 num = n;

 den = d;

}

double Rational::convert()

{

 return double(num)/den;

}

void Rational::invert()

{

 int temp = num;

 num = den;

 den = temp;

}

void Rational::print()

{

 cout << num << "/" << den;

}

Example - Constructor
Add Constructor to Student class example

#include iostream.h><

class Student

{

 public:

 Student()

 {

 module_hours = 0;

 average_marks = 0.0;

 }

 //marks - returns average marks

 float marks()

 {

 return average_marks;

 }

 //hours_worked - returns number of study hours

 float hours_worked()

 {

 return module_hours;

 }

 // other public functions

 private:

 int module_hours;

 float average_marks;

};

int main()

{

 Student s; // create the object and initialise it

 // print out initialised values

 cout << "hours " << s.h>ours_worked()

 << " average_marks " << s.marks() << "\n";

 // rest of main

}

Constrcutor Example - Rational Class
class Rational

{

 public:

 Rational(int n, int d)

 {

 num = n;

 den = d;

 }

 void print();

 private:

 int num,den;

};

main()

{

 Rational x(22,7), y(-2,5);

 cout << "x = ";

 x.print();

 cout << "y = ";

 y.print();

}

Introduction to Classes
Additional Example

PROBLEM:

Implement a Time class. Each object of this class will represent a specific time of the day, storing the hours and minutes as integers. Include a constructor, access functions, a function advance(int h, int m) to advance the current time of day by the specified amount and a function reset(int h, int m) to reset the current time to the specified time. Also include a print function.

Remember to include a normalise() function which checks that 0 <= minutes < 60 and 0 <= hours < 24. If the minutes are outside the specified range increment the hours and calculate the minutes in the correct range. If the number of hours are greater than 24 then decrement by 24. This function will be called automatically each time the time is changed \fIie.\fR by the constructor, the reset and advance functions.

Write a short main program which declares objects of type Time and manipulates them using the functions given.

SOLUTION:

#include <iostream.h>

#include <math.h>

class Time

{

 public:

 Time(int h, int m)

 {

 hour = h;

 min = m;

 normalise();

 }

 int hours() { return hour;}

 int mins() { return min;}

 void advance(int h, int m);

 void reset(int h , int m);

 void print();

 private:

 int hour, min;

 void normalise();

};

void Time::advance(int h, int m)

{

 hour += h;

 min += m;

 normalise();

}

void Time::reset(int h, int m)

{

 hour = h;

 min = m;

 normalise();

}

void Time::print()

{

 cout << hour << ":" << min << "\en";

}

void Time::normalise()

{

 while (min > 60)

 {

 min -= 60;

 hour++;

 }

 while (hour > 24)

 hour -= 24;

}

main()

{

 Time time1(9,31), time2(10, 25);

 cout << "Time1 is ";

 time1.print();

 time1.advance(11,35);

 cout << "Time 1 is ";

 time1.print();

 time1.advance(11,35);

 cout << "Time 1 is ";

 time1.print();

 cout << "Time 2 is ";

 time2.print();

 time2.reset(12,11);

 cout << "Time 2 is ";

 time2.print();

}
The main program is simply to test the class and its member functions

If run the program will produce the following output

Time 1 is 9:31

Time 1 is 21:6

Time 1 is 8:41

Time 2 is 10:25

Time 2 is 12:11
On entering the main program, the contsructor is called to initialse Time1 to containg the time 9:31 and it is called again to initialsise Time2 to be 10:25. The print() member function is then called to display the value of Time1. This is then advanced by 11 hours and 35 minutes and the new time is printed. This is repeated. Time2 is then prointed and is the reset to the time of 12:11 and thus new time is displayed.

Introduction to Classes

1. Example the difference between a public and a private member of a class.
2. Example the difference between a constructor and a destructor
3. What name must a constructor have?
4. What name must a destructor have?

1. A public member is accessible from outside a class. A private member can only be accessed within the class.
2. A constructor function is called automatically whenever we instantiate (create) an object of that class and can be used to inialise the object. A destructor is called automatically whenever the scope of the object terminates (ie at the end of the program)
3. A constructor always has the same name as the class
4. A destructor has the same name as the class but prefixed with a ~ (tilde)

