HERIOT-WATT UNIVERSITY

DEPARTMENT OF COMPUTING AND ELECTRICAL ENGINEERING

22.3SA1/22.3MB1 - Tutorial Matlab

Objectives:

Matlab is a high level language that is very easy to use and very powerful. It comes with a wealth of libraries and toolboxes, that you can use directly, so that you don't need to program low level functions. It enables to display results very easily on graphs and images. To get started with it, you need to understand how to manipulate and represent data, and how to find information about the available functions.

During this session, you will learn:

1- How to start matlab.

2- How you can find out all the information you need.

3- How to create simple vectors and matrices.

4- What functions are available and how to find them.

5- How to plot graphs of functions.

6- How to write a script.

After this hour, you will know most of what you need to know about Matlab and should definitely know how to go on learning about it on your own…So the "programming" aspect won't be an issue any more, and you will be able to use matlab as a tool to help you with you math, electronics, electromagnetics, signal processing, control and automation….Programming languages don't come any easier!

Starting Matlab:

To start Matlab, double click on the matlab icon on the desktop. The main matlab window with the command line prompt ">>" should appear.

Matlab is an interpreted language. This means that the instructions you give to it are processed and interpreted by the computer directly, as opposed to for instance C: in C, when you write a program, you first need to compile it before it can be executed by the machine.

There is two ways to give instructions to matlab:

1- On the command line, after the prompt ">>": if you type an instruction, matlab executes it and gives you the result.

2- Through a script or a function, whose code is written in a text file with the .m extension. Scripts contain lists of instructions, just as could be written on the command line. To execute a script, just type the name of the .m file (without the .m extension) on the command line
. When a script is launched, all the instructions it contains are executed successively. Functions are modular scripts that can take in arguments. They won't be detailed here, but you can look at the on-line help to find out about them.

Bear in mind that in matlab, all data is stored into matrices. A scalar (real) number is a 1 by 1 matrix. A vector is a 1 by N matrix.

The help command:

You can get help on all commands in matlab by typing (beware, matlab is case sensitive!):

>> help command

For instance, try typing

>> help help

And read what pops up in the screen…That should give you plenty of information on how to find information on topics. For instance, if you are looking for the cosine function, type

>> lookfor cosine

and then…

>> help cos

Note that if you press the "up" and "down" arrows on your keyboard, this enables you to recall previous commands.

Creating a vector or a matrix:

Type :

>> x = [1 2 3 4 5 4 3 2 1];

>> x

>> who

>> whos

>> y = [6; 7; 8; 9; 0; 9; 8; 7; 6]

(note that is there is a semicolon at the end of the instruction, matlab doesn't expand the result of the instruction)

>>y'

>> z = [1 2 3; 4 5 6; 7 8 9; 0 1 2]

Operators:

The colon operator:

A way to define quickly some vectors is to use the ":" operator. Type for instance (and observe the results):

>> a = 0:10

>> b = -5:10

>> c = 0:2:10

>> d = 10:-2:-5

>> e = 0:0.01:4.2

>> f = -pi:0.01:pi

You can see that these instructions are of the form lower limit: increment: upper limit
An other way to define elementary vectors that only contain ones and zeros: get help on zeros, ones, randn …

Try:

>> g = zeros(2,4)

>> h = ones(5,3)

Arithmetic operator:

These are the standard operators. (+ plus, - minus, / divide, * multiply, ^ exponent)

Try

>> 3^2

>> y'

>> x+y'

>> x*y

>> 3*x

The operators (/ , * and ^) have got a matrix counterpart (respectively ./ , .* and .^), which apply the operation element by element. For instance, compare: x*y and x.*y.

Type:

>> x^2

>> x.^2

>> x.*x

>> x*x

if you type ">>whos" now, you will see that you have a lot of variables in the workspace. Type ">>clear", and ">>whos" again….

The functions available and the toolboxes

Type:

>> help elfun

>> help specfun

>> help elmat

to see some of what's there. Try out some of the functions.

For instance, type:

>> t =-pi:0.01:pi;

>> c = cos(t);

>> s = sin(t);

Plotting functions.

Type

>> figure

>> plot(s)

>> figure

>> plot(t,s)

>> figure

>> plot(t,s,'g',t,c,'r')

Type help plot if you haven't already done it to see more possibilities.

Try and modify the axis, put a title and labels on the x- and y- axes…

Add a title, a label on the x-axis.

Now, go to file>new>m-file and open a new m-file. Copy in it all the instructions you've been using to plot your function with its title etc. and paste them into the file (don't omit to get rid of the command prompt ">>"). Save the file locally under the name of your choice (MyFirstScript.m is a popular option if you don't feel inspired today). Now at the command prompt, type:

>> clear

>> close all

>> MyFirstScript

(or whatever the name of your script was…)

And the set of instructions should execute…

Go back to the .m file, and before any instruction, type explanations on what your script does, starting each line with a "%" - this means it is a comment. Save your file and go back to the workspace. Now type:

>> help MyFirstScript

Get some more practice in plotting other functions, for instance:

[image: image1.wmf]2

2

1

1

)

(

x

a

x

f

+

=

 for x = -15…15, with a = 1; (try with x=-15:15 and with x=-15:0.1:15)

[image: image2.wmf])

(

tan

)

(

1

2

a

x

x

f

-

-

=

 for x = -15…15, with a = 1;

[image: image3.wmf]x

x

f

p

p

sin

3

=

You can also use matlab to plot nice curves of the different functions used in lectures and tutorials (exp(t), cos(6t)+cos(4t)….)

Scripts and Functions:

You've already written your first elementary script. Standard branching and looping instructions can be used as well: "for" loops, "if" statements etc… To find out about their syntax, type "help" for these different instructions.

Functions differ from scripts in that they take explicit in and out arguments. Type "help" function to know more and see examples. As all other matlab commands, a function can be called within a script of from the command line.

Conclusion:

Well, that's you started…Now, hopefully, matlab should feel more like a help to solve the problems in your assignments…

� Matlab needs to "see" this file. For this, it should either be physically in your current directory (type ">>pwd" to find out where you are), or the path to its location should be known by matlab (type ">>path" to see the full path; type ">>help path" if you need to change it).

matlabStarter.doc
4

_1064732912.unknown

_1064732933.unknown

_1064732892

