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Abstract—It is widely recognized that, in addition to the quality-
of-service (QoS), energy efficiency is also a key parameter in
designing and evaluating mobile multimedia communication sys-
tems, which has catalyzed great interest in recent literature. In this
paper, an energy-efficiency model is first proposed for multiple-
input–multiple-output orthogonal frequency-division multiplex-
ing (MIMO-OFDM) mobile multimedia communication systems
with statistical QoS constraints. Employing the channel-matrix
singular value decomposition (SVD) method, all subchannels are
classified by their channel characteristics. Furthermore, the mul-
tichannel joint optimization problem in conventional MIMO-
OFDM communication systems is transformed into a multitarget
single-channel optimization problem by grouping all subchan-
nels. Therefore, a closed-form solution of the energy-efficiency
optimization is derived for MIMO-OFDM mobile multimedia
communication systems. As a consequence, an energy-efficiency
optimized power allocation (EEOPA) algorithm is proposed to
improve the energy efficiency of MIMO-OFDM mobile multime-
dia communication systems. Simulation comparisons validate that
the proposed EEOPA algorithm can guarantee the required QoS
with high energy efficiency in MIMO-OFDM mobile multimedia
communication systems.

Index Terms—Energy efficiency, MIMO-OFDM, multimedia
communications, performance analysis.
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I. INTRODUCTION

W ITH the rapid development in information and com-
munication technology (ICT), the energy consumption

problem of ICT industry, which causes about 2% of world-
wide CO2 emissions yearly and burdens the electrical bills
of network operators [1], has drawn universal attention. Mo-
tivated by the demand for improving the energy efficiency in
mobile multimedia communication systems, various resource-
allocation optimization schemes aiming at enhancing energy
efficiency have become one of the mainstreams in mobile mul-
timedia communication systems, including transmission power
allocation [2], [3], bandwidth allocation [4]–[6], subchannel al-
location [7], etc. Multiple-input–multiple-output (MIMO) tech-
nologies can create independent parallel channels to transmit
data streams, which improves spectral efficiency and system
capacity without increasing the bandwidth requirement [8].
Orthogonal frequency-division multiplexing (OFDM) tech-
nologies eliminate the multipath effect by transforming
frequency-selective channels into flat channels. As a combi-
nation of MIMO and OFDM technologies, the MIMO-OFDM
technologies are widely used in mobile multimedia commu-
nication systems. However, how to improve energy efficiency
with a QoS constraint is an indispensable problem in MIMO-
OFDM mobile multimedia communication systems.

The energy efficiency has become one of the hot studies
in MIMO wireless communication systems in the last decade
[9]–[14]. An energy-efficiency model for Poisson–Voronoi tes-
sellation cellular networks considering spatial distributions of
traffic load and power consumption was proposed [9]. The
energy–bandwidth efficiency tradeoff in MIMO multihop wire-
less networks was studied, and the effects of different numbers
of antennas on the energy–bandwidth efficiency tradeoff were
investigated in [10]. An accurate closed-form approximation of
the tradeoff between energy efficiency and spectral efficiency
over the MIMO Rayleigh fading channel was derived by con-
sidering different types of power consumption models [11].
A relay cooperation scheme was proposed to investigate the
tradeoff between spectral efficiency and energy efficiency in
multicell MIMO cellular networks [12]. The energy efficiency–
spectral efficiency tradeoff of the uplink of a multiuser cellular
virtual MIMO system with decode-and-forward-type protocols
was studied in [13]. The tradeoff between spectral efficiency
and energy efficiency was investigated in the relay-aided mul-
ticell MIMO cellular network by comparing both the signal
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forwarding and interference forwarding relaying paradigms
[14]. In our earlier work, we explored the tradeoff between
the operating power and the embodied power contained in
the manufacturing process of infrastructure equipment from a
life-cycle perspective [1]. In this paper, we further investigate
the energy-efficiency optimization for MIMO-OFDM mobile
multimedia communication systems.

Based on the Wishart matrix theory [15]–[18], numerous
channel models have been proposed in the literature for MIMO
communication systems [19]–[26]. A closed-form joint prob-
ability density function (pdf) of eigenvalues of the Wishart
matrix was derived for evaluating the performance of MIMO
communication systems [19]. Moreover, a closed-form expres-
sion for the marginal pdf (mpdf) of the ordered eigenvalues of
complex noncentral Wishart matrices was derived to analyze
the performance of singular value decomposition (SVD) in
MIMO communication systems with Rician fading channels
[20]. Based on the distribution of eigenvalues of a Wishart
matrix, the performance of high spectral efficiency MIMO com-
munication systems with multiple phase-shift keying signals in
a flat Rayleigh fading environment was investigated in terms
of symbol error probabilities [21]. Furthermore, the cumulative
density functions (cdfs) of the largest and smallest eigenval-
ues of a central correlated Wishart matrix were investigated
to evaluate the error probability of a MIMO maximal ratio
combining (MRC) communication system with perfect channel
state information (CSI) at both the transmitter and receiver [22].
Based on the pdf and the cdf of the maximum eigenvalue of
double-correlated complex Wishart matrices, the exact expres-
sions for the pdf of the output SNR were derived for MIMO-
MRC communication systems with Rayleigh fading channels
[23]. The closed-form expressions for the outage probability of
MIMO-MRC communication systems with Rician fading chan-
nels were derived under the condition of the largest eigenvalue
distribution of central complex Wishart matrices in the noncen-
tral case [24]. Furthermore, The closed-form expressions for
the outage probability of MIMO-MRC communication systems
with and without cochannel interference were derived by using
cdfs of a Wishart matrix [25]. Meanwhile, the pdf of the
smallest eigenvalue of a Wishart matrix was applied to select
antennas to improve the capacity of MIMO communication
systems [26]. However, most existing studies mainly worked
on the joint pdf of eigenvalues of a Wishart matrix to measure
the channel performance for MIMO communication systems.
In this paper, subchannels’ gains derived from the marginal
probability distribution of a Wishart matrix is investigated to
implement energy-efficiency optimization in MIMO-OFDM
mobile multimedia communication systems.

In conventional mobile multimedia communication systems,
many studies have been carried out [27]–[33]. In terms of the
corresponding QoS demand of different throughput levels in
MIMO communication systems, an effective antenna assign-
ment scheme and an access control scheme were proposed in
[27]. A downlink QoS evaluation scheme was proposed from
the viewpoint of mobile users in orthogonal frequency-division
multiple-access (OFDMA) wireless cellular networks [28]. To
guarantee the QoS in wireless networks, a statistical QoS
constraint model was built to analyze the queue characteristics

of data transmissions [29]. The energy efficiency in fading
channels under QoS constraints was analyzed in [30], where the
effective capacity was considered as a measure of the maximum
throughput under certain statistical QoS constraints. Based on
the effective capacity of the block fading channel model, a QoS-
driven power and rate adaptation scheme over wireless links
was proposed for mobile wireless networks [31]. Furthermore,
by integrating information theory with the effective capacity,
some QoS-driven power and rate adaptation schemes were pro-
posed for diversity and multiplexing systems [32]. Simulation
results showed that multichannel communication systems can
achieve both high throughput and stringent QoS at the same
time. Aiming at optimizing the energy consumption, the key
tradeoffs between energy efficiency and link-level QoS metrics
were analyzed in different wireless communication scenarios
[33]. However, there has been few research work addressing
the problem of optimizing the energy efficiency under different
QoS constraints in MIMO-OFDM mobile multimedia commu-
nication systems.

Motivated by aforementioned gaps, this paper is devoted to
the energy-efficiency optimization with statistical QoS con-
straints in MIMO-OFDM mobile multimedia communication
systems with statistical QoS constraints, which uses a statistical
exponent to measure the queue characteristics of data trans-
mission in wireless systems. All subchannels in MIMO-OFDM
communication systems are first grouped by their channel
gains. On this basis, a novel subchannel grouping scheme is
developed to allocate the corresponding transmission power to
each of the subchannels in different groups, which simplifies
the multichannel optimization problem to a multitarget single-
channel optimization problem. The main contributions of this
paper are summarized as follows.

1) An energy-efficiency model with statistical QoS con-
straints is proposed for MIMO-OFDM mobile multime-
dia communication systems.

2) A subchannel grouping scheme is designed by us-
ing the channel-matrix SVD method, which simplifies
the multichannel optimization problem to a multitarget
single-channel optimization problem. Based on mpdfs of
subchannels in different groups, a closed-form solution
of energy-efficiency optimization is derived for MIMO-
OFDM mobile multimedia communication systems.

3) A novel algorithm is developed to optimize the energy
efficiency in MIMO-OFDM mobile multimedia com-
munication systems. Numerical results validate that the
proposed algorithm improves the energy efficiency of
MIMO-OFDM mobile multimedia communication sys-
tems with statistical QoS constraints.

The remainder of this paper is organized as follows. The
system model is introduced in Section II. In Section III, the
energy-efficiency model of MIMO-OFDM mobile multimedia
communication systems with statistical QoS constraints is pro-
posed. Based on the subchannel grouping scheme, a closed-
form solution of energy-efficiency optimization is derived for
MIMO-OFDM mobile multimedia communication systems in
Section IV. Moreover, a novel transmission power-allocation
algorithm is presented. Numerical results are shown in
Section V. Finally, Section VI concludes this paper.
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Fig. 1. MIMO-OFDM system model.

II. SYSTEM MODEL

The MIMO-OFDM mobile multimedia communication sys-
tem is shown in Fig. 1. It has an Mr ×Mt antenna matrix, N
subcarriers, and S OFDM symbols, where Mt is the number of
transmit antennas, and Mr is the number of receive antennas.
We denote B as the system bandwidth and Tf as the frame
duration. The OFDM signals are assumed transmitted within
frame duration. Then, the received signal of the MIMO-OFDM
communication system can be expressed as follows:

yk[i] = Hkxk[i] + n (1)

where yk[i] and xk[i] are the received signal vector and trans-
mitted signal vector at the kth (k = 1, 2, . . . , N) subcarrier of
the ith (i = 1, 2, . . . , S) OFDM symbol, respectively. Hk is the
frequency-domain channel matrix at the kth subcarrier, and n is
the additive noise vector. Let C denote the complex space; then,
we have yk ∈ C

Mr , xk ∈ C
Mt , Hk ∈ C

Mr×Mt , and n ∈ C
Mr .

Without loss of generality, we assume E{nnH} = IMr×Mr ,
where E{·} denotes the expectation operator.

Discrete-time channels are assumed to experience a block
fading, in which the frame duration is shorter than the channel
coherence time. Based on this assumption, the channel gain
is invariant within frame duration Tf but varies independently
from one frame to another. In each frame duration, the channel
at each subcarrier is divided into M (M = min(Mt, Mr)) par-
allel single-input–single-output (SISO) channels by the SVD

method. As a consequence, a total number of M ×N parallel
space–frequency subchannels can be generated in each OFDM
symbol. Transmitters are assumed to obtain the CSI from
receivers without delay via feedback channels. Furthermore, an
average transmission power constraint P is configured for each
subchannel in the MIMO-OFDM communication system. With
this average transmission power constraint, transmitters are able
to perform power control adaptively according to the feedback
CSI and system QoS constraints so that the energy efficiency
in the MIMO-OFDM mobile multimedia communication sys-
tem can be optimized. To facilitate reading, the notations and
symbols used in this paper are listed in Table I.

III. ENERGY-EFFICIENCY MODELING OF

MULTIPLE-INPUT–MULTIPLE-OUTPUT–ORTHOGONAL

FREQUENCY DIVISION MULTIPLEXING MOBILE

MULTIMEDIA COMMUNICATION SYSTEMS

By applying the SVD method to the channel matrix Hk

at each subcarrier, where Hk ∈ C
Mr×Mt(k = 1, 2, . . . , N),

we have

Hk = Uk

√
Δ̃kV

H
k (2)

where Uk ∈ C
Mr×Mr , and Vk ∈ C

Mt×Mt are unitary
matrices. When Mr � Mt, we have block matrix Δ̃k = [Δk,

0Mr,Mt−Mr
]; otherwise, when Mr < Mt, we have Δ̃k = [Δk,
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TABLE I
NOTATIONS AND SYMBOLS USED IN THIS PAPER

0Mt,Mr−Mt
]T , where Δk = diag(λ1, k, . . . , λM,k), and

λm,k � 0, ∀m = 1, . . . ,M , k = 1, . . . , N . {λm,k}Mm=1

denotes the subchannel gain set at the kth subcarrier. In this
way, the MIMO channel at each subcarrier is decomposed into
M parallel SISO subchannels by the SVD method. Therefore,
M ×N parallel space–frequency subchannels are obtained at
N orthogonal subcarriers for each OFDM symbol.

In traditional energy-efficiency optimization research,
Shannon capacity is usually used as the index, which
measures the system output. However, in any practical wireless
communication systems, the system capacity is obviously less
than Shannon capacity, particularly in the scenario with a strict
QoS constraint. In this paper, the effective capacity of each
subchannel is taken as the practical data rate with a certain QoS
constraint. The total effective capacity of M ×N subchannels
is configured as the system output, and the total transmission
power allocated to M ×N subchannels is configured as the
system input. As a consequence, the energy efficiency of
MIMO-OFDM mobile multimedia communication systems is
defined as follows:

η =
Ctotal(θ)

E{Ptotal}
=

M∑
m=1

N∑
k=1

Ce(θ)m,k

E{Ptotal}
(3)

where Ce(θ)m,k(m = 1, 2, . . . , M, k = 1, 2, . . . , N) is the
effective capacity of the mth subchannel over the kth subcarrier,

and E{Ptotal} is the expectation of the total transmission power
allocated to all M ×N subchannels. θ is the QoS statistical
exponent, which indicates the exponential decay rate of QoS
violation probabilities [31]. A smaller θ corresponds to a slower
decay rate, which implies that the multimedia communication
system provides a looser QoS guarantee, whereas a larger θ
leads to a faster decay rate, which means that a higher QoS
requirement should be supported.

Practical MIMO-OFDM mobile multimedia communication
systems involve multiple services, such as speech and video
services, which are sensitive to the delay parameter. Different
services in MIMO-OFDM mobile multimedia communication
systems have different QoS constraints. In view of this, the ef-
fective capacity of each subchannel depends on the correspond-
ing QoS constraint. A statistical QoS constraint is adopted to
evaluate the effective capacity of each subchannel, which is
calculated as the system practical output in MIMO-OFDM mo-
bile multimedia communication systems. Assuming the fading
process over wireless channels is independent among frames
and keeps invariant within a frame duration, the effective ca-
pacity Ce(θ) for a subchannel with QoS statistical exponent θ
in MIMO-OFDM mobile multimedia communication systems
is expressed as follows [31]:

Ce(θ) = − 1
θ
log
(
E{e−θR}

)
(4a)

R =TfB log2 (1 + μ(θ, λ)λ) (4b)
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where R denotes the instantaneous bit rate within a frame
duration, λ denotes the subchannel gain, and μ(θ, λ) denotes
the transmission power allocated to a subchannel.

After SVD of channel matrices at N orthogonal subcarriers,
M ×N parallel subchannels are obtained. The channel gain
over each of these M ×N parallel subchannels follows a mpdf.
Assuming pΓm, k

(λ) as the mpdf of channel gain over the mth
(m = 1, 2, . . . ,M) subchannel at the kth (k = 1, 2, . . . , N)
orthogonal subcarrier, then the corresponding effective capac-
ity Ce(θ)m,k over the mth subchannel at the kth orthogonal
subcarrier is derived as

Ce(θ)m,k

=−1
θ
log

⎛⎝ ∞∫
0

e−θTfB log2(1+μm, k(θ,λ)λ)pΓm, k
(λ)dλ

⎞⎠ (5)

where μm,k(θ, λ) is the transmission power allocated to the
mth subchannel at the kth orthogonal subcarrier.

Considering the practical power consumption limitation at
transmitters, an average transmission power constraint P over
each subchannel is derived as

P =

∞∫
0

μm,k(θ, λ)pΓm, k
(λ)dλ

∀m=1, 2, . . . ,M ; k=1, 2, . . . , N. (6)

With the average transmission power constraint, the expectation
of transmission power E{Ptotal} is given by

E{Ptotal} = P ×M ×N. (7)

By substituting (6) and (7) into (3), we derive the energy-
efficiency model as model as

η=

M∑
m=1

N∑
k=1

−1
θ log

(∞∫
0

e−θTfB log2(1+μm, k(θ,λ)λ)pΓm, k
(λ)dλ

)
P×M×N

.

(8)

From (8), the energy efficiency of MIMO-OFDM mo-
bile multimedia communication systems depends on the
mpdf pΓm, k

(λ)(m = 1, 2, . . . ,M ; k = 1, 2, . . . , N) over M ×
N subchannels. Since there is a relationship between the mpdf
pΓm, k

(λ) and statistical characteristics of the subchannel, the
marginal distribution characteristics of each subchannel gain is
investigated to optimize the energy efficiency in MIMO-OFDM
mobile multimedia communication systems.

IV. ENERGY-EFFICIENCY OPTIMIZATION OF MOBILE

MULTIMEDIA COMMUNICATION SYSTEMS

In MIMO wireless communication systems, statistical char-
acteristics of channel gain depend on the eigenvalues’ dis-
tribution of Hermitian channel matrix HHH , where H is
the channel matrix [34]–[36]. When the elements of H are
complex valued with real and imaginary parts each governed
by a normal distribution N(0, 1/2) with mean value of 0 and

variance value of 1/2, the Hermitian channel matrix W =
HHH is called a central Wishart channel matrix [15]–[17],
[19]. In this case, E{H} = 0, and wireless channels have the
Rayleigh fading characteristic. If E{H} �= 0, W = HHH is a
noncentral Wishart channel matrix, and wireless channels have
the Rician fading characteristic [20].

Based on SVD results of the wireless channel matrix, sub-
channels at each orthogonal subcarrier are sorted in a de-
scending order of channel gains. Starting from the joint pdf
of eigenvalues of the Wishart channel matrix, the channel
gain mpdf of subchannels ordered at the mth position in the
descending order of channel gains is derived. Furthermore, all
subchannels at N subcarriers are grouped according to their
mpdfs. In terms of subchannel grouping results, a closed-form
solution is derived to optimize the energy efficiency of MIMO-
OFDM mobile multimedia communication systems here.

A. Optimization Solution of Energy Efficiency

To maximize the energy efficiency of MIMO-OFDM mo-
bile multimedia communication systems with statistical QoS
constraints, the optimization problem can be formulated as (9),
where ηopt is the optimized energy efficiency.

From the problem formulation in (9) and (10), shown at
the bottom of the next page, it is remarkable that the energy
efficiency of MIMO-OFDM mobile multimedia communica-
tion systems depends on transmission power-allocation results
μm,k(θ, λ) over M ×N subchannels. In this case, the opti-
mization problem in (9) and (10) is a multichannel optimization
problem, which is intractable to obtain a closed-form solution
in mathematics.

In most studies on MIMO wireless communication systems,
the energy-efficiency optimization problem is solved by a
single-channel optimization model [32]. How to change the
multichannel energy-efficiency optimization problem into the
single-channel energy-efficiency optimization problem and de-
rive a closed-form solution are great challenges in this paper.
Without loss of generality, the optimized transmission power
allocation of single subchannel μopt(θ, λ) is expressed as
follows [32]:

μopt(θ, λ) =

{
1

Λ
1

β+1 λ
β

β+1

− 1
λ , λ � Λ

0, λ < Λ
(11a)

β = θTfB/ log 2 (11b)

where Λ is the transmission power-allocation threshold over a
subchannel, and β is the normalized QoS exponent.

It is critical to determine the transmission power-allocation
threshold Λ for the implementation of optimized transmission
power allocation in (11a). An average transmission power
constraint P is configured for each subchannel; thus, the trans-
mission power-allocation threshold of each subchannel should
satisfy the following constraint:

∞∫
Λm, k

⎛⎝ 1

Λ
1

β+1

m,kλ
β

β+1

− 1
λ

⎞⎠ pΓm, k
(λ)dλ ≤ P (12)
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where Λm,k(m = 1, 2, . . . , M ; k = 1, 2, . . . , N) is the trans-
mission power-allocation threshold of the mth subchannel at
the kth subcarrier.

Assuming that the channel matrix Hk(k = 1, 2, . . . , N)
at each subcarrier is a complex matrix and its elements are
complex valued with real and imaginary parts, each governed
by a normal distribution N(0, 1/2) with a mean value of 0 and
a variance value of 1/2, elements of Hk then follow an inde-
pendent and identically distributed circular symmetric complex
Gaussian distribution with zero mean and unit variance. In this
case, wireless channels between transmit and receive antennas
are Rayleigh fading channels with unit energy.

Denote Q = max(Mt, Mr), and set W̃ as an M ×M
Hermitian matrix as follows:

W̃ =

{
HkH

H
k , Mr < Mt

HH
k Hk, Mr � Mt.

(13)

Then, W̃ is a central Wishart matrix. The joint pdf of ordered
eigenvalues of W̃ follows Wishart distributions [37] as

p(λ1, λ2, . . . , λM )

= K−1
M,Qe

−
M∑
i=1

λi M∏
i=1

λQ−M
i

∏
1� i� j�M

(λi − λj)
2 (14)

where λ1, λ2, . . . , λM (λ1 � λ2 � · · · � λM ) are ordered
eigenvalues of W̃, and KM,Q is a normalizing factor, which is
denoted as follows:

KM,Q =

M∏
i=1

(Q− i)!(M − i)!. (15)

Based on SVD results of channel matrix Hk, ordered
eigenvalues of matrix HH

k Hk are denoted by elements
λ1, k, λ2, k, . . . , λM,k of diagonal matrix Δk. This means that
subchannel gains λ1, k, . . . , λM,k at the kth subcarrier can be
denoted by eigenvalues of the Wishart matrix W̃. When sub-
channel gains at each subcarrier are sorted in descending order,
i.e., ∀ 1 � i � j � M , 1 � k � N , λi, k � λj, k, the

ordered subchannel gains can be denoted by the ordered eigen-
values λ1, λ2, . . . , λM (λ1 � λ2 � · · · � λM ) of Wishart
matrix W̃, which follow the joint pdf p(λ1, λ2, . . . , λM ) of the
ordered eigenvalues of Wishart matrix W̃. After subchannel
gains at each subcarrier are sorted in descending order, the mpdf
of the mth (1 � n � M ) subchannel gain at the kth subcarrier
pΓm, k

(λ) is derived as

pΓm, k
(λ) =

∫
. . .︸ ︷︷ ︸

M−1

∫
p(λ1, λ2, . . . , λM )dλidλi+1 · · · dλj

(1 � i < j � M and i �= n, j �= n). (16)

After subchannels at each subcarrier are sorted by subchannel
gains, subchannels with the same order position at different
orthogonal subcarriers have the identical mpdf based on (16).
According to this property, a subchannel grouping scheme is
proposed for subchannels at different orthogonal subcarriers:

1) Sort subchannels at each orthogonal subcarriers by a
descending order of subchannel gains: λ1, k � λ2,k �
· · · � λM,k � 0, k = 1, 2, . . . , N .

2) For n = 1: M , select the subchannels with the same
order position at different orthogonal subcarriers (λn,1,
λn,2, . . . , λn,N ) into different channel groups.

3) Repeat steps 1 and 2 for all OFDM symbols.
4) M groups with the same order position subchannels are

obtained.

Since subchannels in the same group have an identical mpdf,
the mpdf of subchannels in the nth group pΓn, k

(λ) (1 � n �
M, 1 � k � N) is simply denoted pΓn

(λ)(1 � n � M).
Based on the proposed subchannel grouping scheme, we can

optimize the effective capacity of each grouped subchannels
according to their mpdfs in (16), in which all subchannels
in the same group have an identical mpdf. In this process,
the multichannel joint optimization problem is transformed
into a multitarget single-channel optimization problem, which
significantly reduces the complexity of energy-efficiency

ηopt = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M∑

m=1

N∑
k=1

− 1
θ log

(∞∫
0

e−θTfB log2(1+μm, k(θ,λ)λ)pΓm, k
(λ)dλ

)
P ×M ×N

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=

max

{
M∑

m=1

N∑
k=1

− 1
θ log

(∞∫
0

e−θTfB log2(1+μm, k(θ,λ)λ)pΓm, k
(λ)dλ

)}
P ×M ×N

(9)

s.t.

∞∫
0

μm,k(θ, λ)pΓm, k
(λ)dλ ≤ P ∀m = 1, 2, . . . ,M ; k = 1, 2, . . . , N (10)
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optimization. By substituting (16) into (12), the average power
constraint is derived as

∞∫
Λn

(
1

Λ
1

β+1
n λ

β
β+1

− 1
λ

)

×

⎛⎜⎜⎝∫ . . .︸ ︷︷ ︸
M−1

∫
p(λ1, λ2, . . . , λM )dλidλi+1 . . . dλj

⎞⎟⎟⎠
× dλ ≤ P , 1 � i < j � M ; i �= n; j �= n (17)

where Λn (1 � n � M) is the transmission power-allocation
threshold of the nth-group subchannels. Based on the transmis-
sion power-allocation threshold for each grouped subchannels
in (17), the optimized transmission power allocation for the nth-
group subchannels is formulated as follows:

μoptn(θ, λ) =

{
1

Λ
1

β+1
n λ

β
β+1

− 1
λ , λ � Λn

0, λ < Λn

(18)

where μoptn(θ, λ) is the optimized transmission power al-
located for subchannels in the nth group. Therefore, the
optimized energy efficiency of MIMO-OFDM mobile multime-
dia communication systems with statistical QoS constraints is
derived as

ηopt =

M∑
n=1

−N
θ log

(∞∫
0

e−θTfB log2(1+μopt_n(θ,λ)λ)pΓn
(λ)dλ

)
P ×M ×N

(19)

= − 1

θ × P ×M

M∑
n=1

log

×

⎛⎝ ∞∫
0

e−θTfB log2(1+μopt_n(θ,λ)λ)pΓn
(λ)dλ

⎞⎠ . (20)

B. Algorithm Design

The core idea of energy-efficiency optimized power-
allocation algorithm (EEOPA) with statistical QoS constraints
for MIMO-OFDM mobile multimedia communication systems
is described as follows. First, the SVD method is applied for
the channel matrix Hk, k = 1, 2, . . . , N , at each orthogonal
subcarrier to obtain M ×N parallel space–frequency subchan-
nels. Second, subchannels at each subcarrier are pushed into
a subchannel gain set, where subchannels are sorted by the
subchannel gain in descending order, and then, the subchannels
with the same order position in the subchannel gain set are
selected into the same group. Since the subchannels within the
same group have the identical mpdf, the transmission power-
allocation threshold for the subchannels within the same group
is identical. Therefore, the optimized transmission power allo-
cation for the grouped subchannels is implemented to improve
the energy efficiency of MIMO-OFDM mobile multimedia

communication systems. The detailed EEOPA algorithm is
shown in Algorithm 1.

Algorithm 1 EEOPA.

Input: Mt, Mr, N , Hk, P , B, Tf , θ;
Initialization: Decompose the MIMO-OFDM channel ma-

trix Hk(k = 1, 2, . . . , N) into M ×N space–frequency sub-
channels through the SVD method.

Begin:

1) Sort subchannel gains of each subcarrier in decreasing order
as follows:

λ1, k � λ2,k � · · · � λM,k (k = 1, 2, . . . , N). (21)

2) Assign λn,1, λn,2, . . . , λn,N from all N subcarriers into the
nth-group subchannel set as follows:

Group_n={λn,1, λn,2, . . . , λn,N}, n=1, 2, . . . ,M. (22)

3) for n = 1 : M do
Calculate the optimized transmission power-allocation

threshold Λn for Group_n
according to the average power constraint as follows:

∞∫
Λn

(
1

Λ
1

β+1
n λ

β
β+1

− 1
λ

)
pΓn(λ)dλ ≤ P . (23)

Execute the optimized transmission power-allocation pol-
icy for Group_n as follows:

μopt_n(θ, λ) =

{
1

Λ
1

β+1
n λ

β
β+1

− 1
λ , λ � Λn

0, λ < Λn.
(24)

Calculate the optimized effective capacity for Group_n: as
follows:

Ce(θ)opt_n

=−N
θ
log

⎛⎝ ∞∫
0

e−θTfB log2(1+μopt_n(θ,λ)λ)pΓn
(λ)dλ

⎞⎠ . (25)

end for
4) Calculate the optimized energy efficiency of the MIMO-

OFDM mobile multimedia communication system as fol-
lows:

ηopt = − 1

θ × P ×M

M∑
n=1

log

×

⎛⎝ ∞∫
0

e−θTfB log2(1+μopt_n(θ,λ)λ)pΓn
(λ)dλ

⎞⎠ . (26)

end Begin
Output: Λn, ηopt.
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V. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

In the proposed algorithm, the transmission power-allocation
threshold Λn is the core parameter to optimize the energy
efficiency of MIMO-OFDM mobile multimedia communica-
tion systems. The configuration of the transmission power-
allocation threshold Λn depends on the mpdf of each grouped
subchannels. Without loss of generation, the number of trans-
mitter and receiver antennas is configured as Mt = 4 and
Mr = 4, respectively. Based on the extension of (16), mpdfs
of each grouped subchannels are extended as

pΓ1
(λ)

= −4e−4λ − (1/36)e−λ

× (144 − 432λ+ 648λ2 − 408λ3 + 126λ4 − 18λ5 + λ6)

+ (1/12)e−3λ

× (144 − 144λ+ 72λ2 + 56λ3 + 46λ4 + 10λ5 + λ6)

− (1/72)e−2λ(864 − 1728λ+ 1728λ2 − 192λ3

+ 96λ4 − 96λ5 + 32λ6 − 4λ7 + λ8) (27)

pΓ2
(λ)

= 12e−4λ − (1/6)e−3λ

× (144 − 144λ+ 72λ2 + 56λ3 + 46λ4 + 10λ5 + λ6)

+ (1/72)e−2λ(864 − 1728λ+ 1728λ2 − 192λ3

+ 96λ4 − 96λ5 + 32λ6 − 4λ7 + λ8) (28)

pΓ3
(λ)

= −12e−4λ + (1/12)e−3λ

× (144 − 144λ+ 72λ2 + 56λ3 + 46λ4 + 10λ5 + λ6)

(29)

pΓ4
(λ) = 4e−4λ. (30)

By substituting (27)–(30) into (12), the transmission power-
allocation threshold Λn can be calculated. To analyze the
performance of the transmission power-allocation threshold,
some default parameters are configured as Tf = 1 ms and B =
1 MHz. The numerical results are shown in Figs. 2 and 3. Fig. 2
shows numerical results of the transmission power-allocation
threshold Λn with respect to each grouped subchannels
considering different QoS statistical exponents θ. For each of
the grouped subchannels, the transmission power-allocation
threshold Λn decreases with the increase in the QoS exponent
θ. Considering subchannels are sorted by the descending
order of subchannel gains, the subchannel gain of subchannel
groups decreases with the increase in group indexes. Therefore,
the transmission power-allocation threshold Λn increases
with the increase in subchannel gains in subchannel groups
when the QoS exponent θ � 10−3. When the QoS exponent
θ > 10−3, the transmission power-allocation threshold Λn

starts to decrease with the increase in subchannel gains in
subchannel groups.

Fig. 2. Transmission power-allocation threshold Λn with respect to each
grouped subchannels considering different QoS statistical exponents θ.

Fig. 3. Transmission power-allocation threshold Λn with respect to each
grouped subchannels considering different average power constraints P .

Fig. 3 shows the transmission power-allocation threshold Λn

with respect to each grouped subchannels considering different
average power constraints P . For each grouped subchannels,
the transmission power-allocation threshold Λn decreases with
the increase in the average power constraint P . When P �
0.13, the transmission power-allocation threshold Λn increases
with the increase in subchannel gains in subchannel groups.
When P > 0.13, the transmission power-allocation threshold
Λn start to decrease with the increase in subchannel gains in
subchannel groups.

To evaluate the energy efficiency and the effective capacity
of MIMO-OFDM mobile multimedia communication systems,
three typical scenarios with different antenna numbers are
configured in Figs. 4 and 5: 1) Mt = 2 and Mr = 2; 2) Mt =
3 and Mr = 2; and 3) Mt = 4 and Mr = 4. Fig. 4 shows
the impact of QoS statistical exponents θ on the effective
capacity of MIMO-OFDM mobile multimedia communication
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Fig. 4. Effective capacity Ctotal(θ) with respect to the QoS statistical expo-
nent θ considering different scenarios.

Fig. 5. Energy efficiency η with respect to the QoS statistical exponent θ
considering different scenarios.

systems in three different scenarios. From the curves in Fig. 4,
the effective capacity decreases with the increase in the QoS
statistical exponent θ. This happens because the larger values
of θ correspond to the higher QoS requirements, which result
in a smaller number of subchannels being selected to satisfy the
higher QoS requirements. When the QoS statistical exponent
θ is fixed, the effective capacity increases with the number of
antennas in MIMO-OFDM mobile multimedia communication
systems. This result indicates the channel spatial multiplexing
can improve the effective capacity of MIMO-OFDM mobile
multimedia communication systems.

Fig. 5 shows the impact of QoS statistical exponents θ on
the energy efficiency of MIMO-OFDM mobile multimedia
communication systems in three different scenarios. From the
curves in Fig. 5, the energy efficiency decreases with the in-
crease in the QoS statistical exponent θ. This occurs because the
larger values of θ correspond to the higher QoS requirements,
which result in fewer subchannels being selected to satisfy the

Fig. 6. Impact of the average power constraint on the energy efficiency η and
the effective capacity Ctotal(θ).

higher QoS requirements. This result conduces to the effective
capacity is decreased. If the total transmission power is con-
stant, the decreased effective capacity will lead to the decrease
in the energy efficiency in communication systems. When
the QoS statistical exponent θ is fixed, the energy efficiency
increases with the number of antennas in MIMO-OFDM mobile
multimedia communication systems. This result indicates that
the channel spatial multiplexing can improve the energy effi-
ciency of MIMO-OFDM mobile multimedia communication
systems.

When the QoS statistical exponent is fixed as θ = 10−3, the
impact of the average power constraint on the energy efficiency
and the effective capacity of MIMO-OFDM mobile multimedia
communication systems is investigated in Fig. 6. In Fig. 6, the
energy efficiency decreases with the increase in the average
power constraint, and the effective capacity increases with the
increase in the average power constraint. This result implies that
there is an optimization tradeoff between the energy efficiency
and effective capacity in MIMO-OFDM mobile multimedia
communication systems: As the transmission power increases,
which leads to larger effective capacity, the energy consumption
of the system also rises; therefore, the larger power input results
in the decline of energy efficiency.

To analyze the performance of the EEOPA algorithm, the
traditional average power allocation (APA) algorithm [38], i.e.,
every subchannel with the equal transmission power algorithm
is compared with the EEOPA algorithm in Figs. 7–10. Three
typical scenarios with different antenna numbers are configured
in Figs. 7–10: 1) Mt = 2 and Mr = 2; 2) Mt = 3 and Mr = 2;
and 3) Mt = 4 and Mr = 4. In Fig. 7, the effect of the QoS
statistical exponent θ on the energy efficiency of EEOPA and
APA algorithms is investigated with constant average power
constraint P = 0.1 W. Considering changes of the QoS statis-
tical exponent, the energy efficiency of the EEOPA algorithm
is always higher than the energy efficiency of the APA algo-
rithm in three scenarios. In Fig. 8, the impact of the average
power constraint on the energy efficiency of EEOPA and APA
algorithms is evaluated with the fixed QoS statistical exponent
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Fig. 7. Energy efficiency η of the EEOPA and APA algorithms as variation of
QoS statistical exponent θ under different scenarios.

Fig. 8. Energy efficiency η of the EEOPA and APA algorithms as variation of
average power constraint P under different scenarios.

Fig. 9. Effective capacity Ctotal(θ) of the EEOPA and APA algorithms as
variation of QoS statistical exponent θ under different scenarios.

Fig. 10. Effective capacity Ctotal(θ) of the EEOPA and APA algorithms as
variation of average power constraint P under different scenarios.

θ = 10−3. Considering changes of the average power con-
straint, the energy efficiency of the EEOPA algorithm is always
higher than the energy efficiency of the APA algorithm in three
scenarios. In Fig. 9, the effect of the QoS statistical exponent θ
on the effective capacity of the EEOPA and APA algorithms is
compared with constant average power constraint P = 0.1 W.
Considering changes of the QoS statistical exponent, the effec-
tive capacity of the EEOPA algorithm is always higher than
the effective capacity of the APA algorithm in three scenarios.
In Fig. 10, the impact of the average power constraint on the
effective capacity of EEOPA and APA algorithms is evaluated
with the fixed QoS statistical exponent θ = 10−3. Considering
changes of the average power constraint, the effective capacity
of the EEOPA algorithm is always higher than the effective
capacity of the APA algorithm in three scenarios. Based on the
given comparison results, our proposed EEOPA algorithm can
improve the energy efficiency and effective capacity of MIMO-
OFDM mobile multimedia communication systems.

VI. CONCLUSION

In this paper, an energy-efficiency model is proposed for
MIMO-OFDM mobile multimedia communication systems
with statistical QoS constraints. An energy-efficiency optimiza-
tion scheme is presented based on the subchannel grouping
method, in which the complex multichannel joint optimiza-
tion problem is simplified into a multitarget single-channel
optimization problem. A closed-form solution of the energy-
efficiency optimization is derived for MIMO-OFDM mobile
multimedia communication systems. Moreover, a novel algo-
rithm, i.e., EEOPA, is designed to improve the energy effi-
ciency of MIMO-OFDM mobile multimedia communication
systems. Compared with the traditional APA algorithm, sim-
ulation results demonstrate that our proposed algorithm has
advantages on improving the energy efficiency and effective
capacity of MIMO-OFDM mobile multimedia communication
systems with QoS constraints.
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