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AbstrAct
With the seamless coverage of wireless cellu-

lar networks in modern society, it is interesting 
to consider the shape of wireless cellular cov-
erage. Is the shape a regular hexagon, an irreg-
ular polygon, or another complex geometrical 
shape? Based on fractal theory, the statistical 
characteristic of the wireless cellular coverage 
boundary is determined by the measured wire-
less cellular data collected from Shanghai, China. 
The measured results indicate that the wireless 
cellular coverage boundary presents an extremely 
irregular geometrical shape, which is also called 
a statistical fractal shape. Moreover, the statisti-
cal fractal characteristics of the wireless cellular 
coverage boundary have been validated by val-
ues of the Hurst parameter estimated in angular 
scales. The statistical fractal characteristics of 
the wireless cellular coverage boundary can be 
used to evaluate and design the handoff scheme 
of mobile user terminals in wireless cellular net-
works.

IntroductIon
It is estimated that 90 percent of the world’s pop-
ulation over 6 years old will have a mobile phone 
by 2020, that is, most of the population will be 
covered by wireless cellular networks [1]. The 
coverage shape of a wireless cell is formed by 
the wireless cellular coverage boundary, which is 
connected by all of the farthest locations around 
a base station (BS). The farthest locations are 
also called wireless cellular coverage boundary 
points, where the received wireless signal power 
is equal to the minimum power threshold Pmin 
configured by the cellular network. An important 
challenge for wireless cellular network providers 
is to ensure that mobile users are seamlessly cov-
ered by adjacent BSs, especially those located at 
the edge of wireless cells [2]. Moreover, the user 
handoff between adjacent wireless cell signals 
depends on the wireless cellular coverage bound-
ary in wireless cellular networks. Therefore, the 
shape of the wireless cellular coverage boundary 
is a critical metric for the design, deployment, 
and optimization of wireless cellular networks.

Wireless cellular coverage shapes have been 
investigated for wireless cellular networks over 
the past few decades [3, 4]. Assuming that the 
propagation environment is free space and that 
the BS wireless signal is uniformly radiated in 
all directions, the wireless cellular coverage 
shape should be a circle with the BS located at 

the center in a two-dimensional plane [3]. When 
BSs are assumed to be uniformly deployed with 
equal distances in a wireless cellular network, 
the wireless cellular network service region can 
be split into multiple regular triangles, squares, 
or regular hexagons that seamlessly cover the 
service region without overlaps. Considering 
that a regular hexagon is the closest to a circle 
among all candidate shapes (i.e., regular tri-
angle, square, and regular hexagon), a regular 
hexagon has been widely adopted as the wireless 
cellular coverage model in conventional wire-
less cellular networks [3]. With an increase in 
the density of BSs, existing studies have indi-
cated that the performance of regular hexagon 
wireless cellular networks deviates from the per-
formance of real wireless cellular networks [4]. 
Based on measured data, the locations of BSs 
can be approximated by a Poisson point process 
distribution for wireless cellular networks [4]. 
Moreover, the wireless cell boundaries, which 
are obtained through the Delaunay triangulation 
method by connecting the perpendicular bisector 
lines between each pair of BSs, split the wire-
less cellular network service region into multiple 
irregular polygons that correspond to different 
wireless cellular coverage areas. This stochas-
tic and irregular topology creates the need for 
a so-called Poisson-Voronoi tessellation (PVT) 
method [3]. However, the impact of wireless sig-
nal propagation environments on the wireless 
cell boundary is not considered in the PVT ran-
dom wireless cellular network models. Moreover, 
to simplify system models, the path loss fading 
of a wireless signal in the PVT network model is 
assumed to be equal in all directions if the dis-
tances between receivers and the BS are equal. 
This assumption ignores the anisotropy of path 
loss fading in real wireless signal propagation 
environments. Moreover, conventional geometric 
segmentation methods used to form wireless cell 
boundaries, such as the PVT method, result in 
a smooth wireless cell boundary at small scales. 
However, the measured cellular data indicates 
that the PVT method cannot provide an accu-
rate estimation of real wireless cellular coverage 
shapes [5].

The wireless cellular coverage boundary is 
not smooth at small scales because the wireless 
signal fading in real environments is affected by 
electromagnetic radiation, the atmospheric envi-
ronment, weather status, obstacle distribution, 
and diffraction and scattering effects in different 
propagation directions. Considering the irregular 
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distribution of buildings in urban environments, 
electromagnetic waves are absorbed, reflected, 
scattered, and diffracted in different directions. 
Therefore, in urban environments, wireless 
signals transmitted by BSs undergo different 
amounts of attenuation and fading in different 
directions before arriving at the users. The exist-
ing study in [6] validated that the probability den-
sity function (PDF) of the interference exhibits a 
heavy-tailed characteristic. Moreover, the traffic 
load of cellular networks has been demonstrated 
to manifest the self-similar characteristic, which 
is also conducive to the heavy-tailed distribution 
of traffic load [7]. Essentially, several effects such 
as wireless signal attenuation, network traffic, 
and the interference caused by adjacent BSs may 
affect the shape of the wireless cellular coverage 
boundary. As a consequence, wireless cellular 
coverage boundaries present extremely irregu-
lar shapes at small scales for real wireless cellu-
lar networks. However, it is difficult to describe 
extremely irregular wireless cell boundaries using 
conventional Euclidean geometry methods.

As an important extension of the convention-
al Euclidean geometry theory, fractal geome-
try theory describes geometric shapes between 
extreme geometric orders and full chaos [8]. 
Based on the measured wireless cellular data, 
we utilize the typical wireless signal propagation 
model and the least squares method to estimate 
the path loss coefficient and shadow fading. In 
this case, real wireless signal propagation envi-
ronments are focused, and other potential roots, 
such as the network traffic and the interference 
resulting in heavy-tailed characteristic of wireless 
cellular coverage boundary, are ignored in this 
study. We report that the real wireless cellular 
coverage boundary is a non-smooth boundary 
in urban environments. Furthermore, utilizing 
fractal geometry theory, the real wireless cellular 
coverage boundary has statistical fractal char-
acteristics at angular scales, and real wireless 
signal propagation environments are conducive 
to statistical fractal characteristics of the wire-
less cellular coverage boundary in angular scales. 
The statistical fractal is not an exact fractal that 
can be denoted by an exact fractal expression 
[9]. Compared to an exact fractal, the statistical 
fractal is more suitable for describing geomet-
ric shapes in the real world. The quantization of 
a statistical fractal is typically estimated by the 
value of the Hurst parameter [10]. Three typical 
statistical estimators, that is, the periodogram 
method, the rescaled adjusted range statistic 
(R/S) method, and the variance-time analysis 
method, are utilized to estimate the value of the 
Hurst parameter for real wireless cellular cover-
age boundaries. The estimated results indicate 
that the real wireless cellular coverage boundary 
has the statistical fractal characteristic at angular 
scales. Oppositely, a comparison of the results 

demonstrates that a mathematically derived wire-
less cellular coverage boundary does not have 
statistical fractal characteristics at angular scales. 
Although the experimental measurement in this 
article is carried out in cellular networks, the 
analysis results reflect the coverage characteristic 
of wireless communications considering wireless 
signal propagation environments. Therefore, our 
results can also be used for other wireless com-
munication scenarios, such as WLANs.

MeAsured And derIved 
WIreless cellulAr coverAge shApes

The wireless signal power received at a mobile 
user terminal is measured by a continuous wave 
test signal method that is widely used to evalu-
ate wireless propagation environments [11]. The 
measurement solution in this article is configured 
as follows. A BS equipped with an omnidirection-
al antenna is located at Pingjiang Road, Shang-
hai, China. The BS transmits wireless signals at 
a fixed frequency of 2.6 GHz and a fixed trans-
mission power of 38 dBm. The detailed BS con-
figuration parameters are shown in Table 1. The 
received wireless signal power is measured by 
a mobile user terminal equipped with an omni-
directional antenna that moves along a speci-
fied route, as shown in Fig. 1. The measurement 
data was collected on May 15, 2014. The speci-
fied route passes through office buildings, resi-
dential houses, and green belts in Shanghai. The 
mobile user terminal moved around the cellular 
coverage region to measure the received wireless 
signal power and the corresponding global posi-
tioning system (GPS) data, which facilitated the 
estimation of the distance between the mobile 
user terminal and the BS.

In wireless communications, wireless signal 
fading is typically classified in two parts: large-
scale fading, which includes path loss fading and 
shadow fading, and small-scale fading, which 
includes multipath fading. In practical wireless 
signal measurement applications, the received 
wireless signal power is averaged over several 
wavelengths to eliminate the multipath fading 
effect[12]. In our wireless signal measurements, 
the wireless signal power is averaged over 40 
wavelengths by a mobile user terminal. In this 
case, the small-scale fading is ignored due to the 
averaged multipath fading effect [11]. Moreover, 
the path loss fading is denoted as d–g, where g 
is the path loss coefficient and d is the distance 
between a receiver and a BS. The shadow fading 
is denoted as y. For the derived wireless cellular 
coverage regions, the path loss fading is assumed 
to be equal in all directions of the derived wire-
less cellular coverage regions when the distance 
between a receiver and a BS is the same. Based 
on the measured wireless cellular data, the aver-
age path loss coefficient g is estimated using the 

Table 1. Base station configuration.

Measurement 
environment

GPS location of BS 
Transmission 
power

Feeder loss at 
the antenna

Antenna transmission 
gain (Tx)

Antenna receive gain 
(Rx)

Pingjiang Road,  
Shanghai, China

Latitude = 31.202252  
Longitude = 121.451055

38 dBm 0.5 dB 12 dBi 3 dBi
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least squares method. In addition, the shadow 
fading is assumed to follow a log-normal distri-
bution[13]. Without loss of generality, the shad-
ow fading is assumed to follow a log-normal 
distribution with a mean of m = 0 dB and a stan-
dard deviation of s = 4 dB for the mathemati-
cally derived wireless cellular coverage regions 
[14]. However, for real wireless cellular coverage 
regions, the path loss fading and shadow fading 
are not the same in different propagation direc-
tions and depend on real propagation paths.

In Fig. 2a, the transmission wireless signal 
power presents a power peak at the BS location 
and then uniformly attenuates in all propagation 
directions with increasing distance. Moreover, 
the transmission wireless signal power varies 
smoothly with increasing distance, especially at 
locations far away from the BS. When the mini-
mum received wireless signal power threshold is 
configured as Pr = –110 dBm, the corresponding 
equal power curve at –110 dBm of the received 
wireless signal is plotted to form the derived 
wireless cellular coverage region, as shown in 
Fig. 2b. The derived wireless cellular coverage 
boundary appears as an amoeba around the BS.

Considering the non-uniform distribution 
of different sizes of office buildings and large 
obstacles in real propagation paths, the path loss 
fading should present anisotropy in different 
propagation directions in urban environments. 
In other words, the path loss fading values at dif-
ferent locations are different even though these 
locations have the same distance to the BS in 
real wireless propagation environments. Further-
more, the path loss coefficient is not a constant 
in different propagation directions and depends 
on real propagation paths. In Figs. 2c and 2d, the 
path loss coefficients of different directions are 
estimated using the measured wireless cellular 
data in corresponding directions. Moreover, the 
shadow fading is estimated using a least squares 
method for measured wireless cellular coverage 
regions. Figure 2c shows the transmission wire-

less signal power measured from real propagation 
environments. In Fig. 2c, the transmission wire-
less signal power presents a power peak at the 
BS location and then non-uniformly attenuates 
in different propagation directions with increas-
ing distance. Clear phenomena can be observed, 
with a “mountain top” and a “mountain valley” 
around the power peak, as shown in Fig. 2c. This 
result implies that the path loss fading exhibits 
the expected anisotropy in different propagation 
directions. When the minimum received wire-
less signal power threshold is configured as Pr 
= –110 dBm, the corresponding received wire-
less signal equal power curve with –110 dBm is 
plotted to form the measured wireless cellular 
coverage region, as shown in Fig. 2d. The mea-
sured wireless cellular coverage boundary does 
not have the appearance of an amoeba around 
the BS and presents extreme irregularity at small 
scales. Therefore, it is difficult to describe the 
real wireless cellular boundary using convention-
al Euclidean geometry methods.

MeAsured And derIved WIreless 
cellulAr coverAge boundArIes

To quantitatively analyze the irregularity of wire-
less cellular coverage boundaries, the received 
wireless signal equal power line is discretized for 
evaluating the geometry characteristics in small 
scales. To obtain discrete wireless cellular cov-
erage boundary points, the measured wireless 
cellular coverage region is partitioned into 120 
sections centered at the BS and 3° angular width. 
Moreover, the path loss coefficient is assumed 
to be identical in a section propagation envi-
ronment when the section angle is sufficiently 
small, such as when the section angle is less than 
or equal to 3°. Based on the testing route cir-
cling around the BS, testing points are obtained 
and distributed in the same section with dif-
ferent distances from the BS. Compared with 
a mix of non-line-of-sight (NLOS) and line-of-
sight (LOS) path loss models, a general path loss 
model would be an average of the path loss coef-
ficient in the corresponding section. Moreover, 
the general path loss model does not change the 
relationship with other sections in a cell. Hence, 
a general path loss model is adopted in this study 
by Prd = Prd0

 – 10glog10(d/d0) – ψ [3], where Prd is 
the measured received wireless signal power at a 
mobile user terminal with distance from the BS 
d, Prd0

 is the measured received wireless signal 
power at a reference location with distance from 
the BS d0, and g and ψ are the path loss coef-
ficient and shadow fading, respectively. Based 
on the wireless signal propagation model and 
measured received wireless signal power of test-
ing points in the kth section, the path loss coef-
ficient gk and shadow fading ψk are estimated by 
a least squares method for the kth section of the 
measured wireless cellular coverage region. For 
details, the values of (Prd0

 – Prd) vs. 10log10(d/
d0) are first plotted in a Euclidean coordinate 
system. The wireless signal propagation model is 
fitted by a least squares line formed by measured 
data collected from the kth section. As a result, 
the asymptotic slope of the least squares fits the 
path loss coefficient gk and the asymptotic inter-
cept is the shadow fading ψk in the kth section of 

Figure 1. BS location and measurement route. The BS location is denoted 
by a BS icon, and the gray line is the measurement.

Base station Measurement route
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the measured wireless cellular coverage region. 
When the received wireless signal power thresh-
old at the wireless cellular coverage boundary 
is configured as Prf = Pmin = –110 dBm and 
the reference location d0 is configured as the ith 
testing point in the kth section, the distance fk,i 
between the discrete boundary point and the BS 
is calculated by the wireless signal propagation 
model based on the estimated path loss coef-
ficient gk and shadow fading ψk in the kth sec-
tion of the measured wireless cellular coverage 
region. When all sections of the wireless cellu-
lar coverage region are measured, the distance 
series f of the measured wireless cellular cover-
age boundary is obtained for further statistical 
analysis. The measured wireless cellular coverage 
boundary is plotted in Fig. 3a when all discrete 
boundary points are connected. The average 

path loss coefficient is calculated by the total 
measured wireless cellular data for the derived 
wireless cellular coverage region. Moreover, the 
average path loss coefficient is used for every 
section in the derived wireless cellular coverage 
region, and the shadow fading is estimated by a 
log-normal distribution. Furthermore, a discrete 
boundary point is derived by the wireless channel 
propagation model for a section in the derived 
wireless cellular coverage region. The derived 
wireless cellular coverage boundary is plotted 
in Fig. 3b when all discrete boundary points 
are connected. Comparing Figs. 3a and 3b, the 
measured wireless cellular coverage boundary 
presents a large-scale fluctuation (i.e., a bursty 
characteristic), while the derived wireless cellular 
coverage boundary is a smooth circle.

To analyze the statistical characteristic of the 

Figure 2. Derived and measured received wireless signal power figures. The bright red regions denote the highest received wireless 
signal power, and the ultramarine regions denote the lowest received wireless signal power. The received wireless signal power 
decreases with the color changing from bright red to ultramarine: a) received wireless signal power level based on the derived 
wireless cellular coverage; b) received wireless signal equal power curve based on the derived wireless cellular coverage. The 
black line is the received equal power liner level; the same color region indicates that the value of the wireless signal power is 
between two power values denoted by two black lines; c) received wireless signal power level based on the measured wireless 
cellular coverage; d) received wireless signal equal power curve based on the measured wireless cellular coverage. The black line 
is the received equal power liner level, and the same color region indicates that the value of wireless signal power is between two 
power values denoted by two black lines. 
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Figure 3. Measured and derived wireless cellular coverage boundaries: a) measured wireless cellular coverage shape; the red point 
is the BS, and the blue curve is the measured wireless cellular coverage boundary; b) derived wireless cellular coverage shape; 
the red point is the BS, and the blue curve is the derived wireless cellular coverage boundary; c) PDF of the distance f, where 
the pink points are the statistical probability points generated from the measured wireless cellular coverage boundary and the 
blue curve is the contact line in discrete statistical probability points; d) PDF of the distances f, where the pink points are the 
statistical probability points generated from the derived wireless cellular coverage boundary and the blue curve is the contact line 
in discrete statistical probability points; e) distances f between the discrete boundary point and BS with respect to the angle q in 
the measured wireless cellular coverage boundary; f) distances f between the discrete boundary point and BS with respect to the 
angle q in the derived wireless cellular coverage boundary.
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wireless cellular coverage boundary, let f and 
f be the distances between the BS and a dis-
crete boundary point in the measured wireless 
cellular coverage boundary and derived wireless 
cellular coverage boundary, respectively. Figures 
3c and 3d are the PDF of the distances f  and 
f, respectively. Based on results in Fig. 3d, the 
shape of the PDF of the distance f is a typical 
shape of a Gaussian distribution. Compared to 
the shape in Fig. 3d, the shape of the PDF of 
the distance f presents a heavy-tailed character-
istic in Fig. 3c. The heavy-tailed characteristic 
of the PDF of the distance f implies that some 
small probability events, such as some discrete 
boundary points that are far away from the BS, 
cannot be ignored in forming the distribution of 
a measured wireless cellular coverage boundary. 
Hence, the distribution of a measured wireless 
cellular coverage boundary is a non-Gaussian 
distribution.

Considering the heavy-tailed and bursty 
characteristics in the analysis of the measured 
wireless cellular coverage boundary, we inves-
tigate the measured wireless cellular coverage 
boundary using fractal theory. Unlike conven-
tional fractal studies at temporal scales and spa-
tial scales [15], the fractal study of the measured 
wireless cellular coverage boundary is analyzed 
in angular scales in this article. Without loss 
of generality, an angle denoted as q is between 
the east direction line and a given line that is 
crossed with a discrete boundary point and the 
BS. Figure 3e illustrates distances f between dis-
crete boundary points and the BS with respect 
to the angle q for the measured wireless cellu-
lar coverage boundary. The peak range of the 
distance for the measured wireless cellular cov-
erage boundary exhibits burstinesses when the 
angle is restricted by 0°~10°. When the angle 
q  is extended from 0°~10° to 0°~60°, that is, 
the angle scale is zoomed in six times, the dis-
tance f clearly exhibits burstiness, and the peak 
value of the distance is 34 km. When the angle 
q is extended from 0°~60° to 0°~360°, that is, 
the angle scale is zoomed in six times again, the 
distance f still exhibits clear burstiness, and the 
peak value of the distance is 200 km. Figure 3e 
shows that the burstiness of distances at different 
angular scales of the measured wireless cellu-
lar coverage boundary cannot be smoothed by 
zooming in to angular scales, that is, there is 
always burstiness of the distances at all angular 
scales of the measured wireless cellular coverage 
boundary. This phenomenon is called a fractal 
or self-similarity phenomenon in angular scales 
[16]. Figure 3f illustrates distances f between 
the discrete boundary points and BS with respect 
to the angle q for the derived wireless cellular 
coverage boundary. The peak range of the dis-
tance exhibits burstiness for the derived wire-
less cellular coverage boundary when the angle 
is restricted to the range of 0°~10°. When the 
angle q is extended from 0°~10° to 0°~60°, that 
is, the angular scale is zoomed in six times, the 
peak range of the distance f is nearly smooth. 
When the angle q is extended from 0°~60° to 
0°~360°, that is, the angular scale is zoomed in 
six times again, the peak range of the distance 
f is fully smooth. Figure 3f indicates that the 
burstiness of distances at small angular scales 

can be smoothed with increases in the angular 
scales in the derived wireless cellular coverage 
boundary. Hence, there is no fractal or self-sim-
ilarity phenomenon in the angular scales for the 
mathematically derived wireless cellular coverage 
boundary.

FrActAl evAluAtIon oF the MeAsured 
WIreless cellulAr coverAge boundAry
No exact fractal phenomenon exists in the real 
world. Most of the fractal phenomena observed 
in the real world only have the statistical fractal 
characteristic [6, 7]. Statistical fractal random 
processes present the spectral density power-law 
behavior and the slowly decaying variance char-
acteristic in the frequency and time domains, 
respectively. Moreover, the statistical fractal 
characteristic of random processes is evaluated 
by the Hurst parameter, which can be estimated 
using three typical methods [17].

The Periodogram Method: This method plots 
the logarithm of the spectral density of a series 
vs. the logarithm of frequencies. The Hurst 
parameter can be estimated by H =(1/2)(1 + 
a) where a is the slope in the log-log plot. The 
series has a statistical fractal character if {0.5 < 
H < 1} .

The Rescaled Adjusted Range Statistic (R/S) 
Method: For a random process Xi, the partial 
sum is denoted by 
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A log-log plot of the R/S statistic vs. the number 
of points of the aggregated series should be a 
straight line with the slope being an estimation of 
the Hurst parameter. The random process Xi is 
statistical fractal if the value of the Hurst param-
eter H is in the interval (0.5, 1.0).

The Variance-Time Analysis Method: This 
involves the definition of an aggregated series 
X(m), using different block sizes m. The log-log 
plot of the sample variance vs. the aggregation 
level should be a straight line with the slope b in 
the interval (0, 1) if the data are statistical frac-
tal. In this case, H = 1 – (b/2).

Let X = fi, i = 1,2, … N} and X = {fi, i = 
1, 2, … M} be two independent random process-
es, where N and M are the number of discrete 
measured and derived wireless cellular coverage 
boundary points, and fi and fi are the distances 
between the ith discrete boundary point and the 

Statistical fractal ran-
dom processes present 

the spectral density 
power-law behavior and 

the slowly decaying 
variance characteristic in 
the frequency and time 
domains, respectively. 

Moreover, the statistical 
fractal characteristic of 

random processes is 
evaluated by the Hurst 
parameter, which can 

be estimated using three 
typical methods.
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BS in the measured wireless cellular coverage 
boundary and derived wireless cellular coverage 
boundary, respectively. Figure 4a illustrates the 
values of the Hurst parameter estimated from 
the measured wireless cellular coverage bound-
ary data using the periodogram method, R/S 
method, and variance-time analysis method. On 
the left of Fig. 4a, the periodogram method is 
used to estimate the value of the Hurst parame-
ter based on the spectral density I(w) of the ran-
dom process X = {fi, i = 1, 2, … N} in a log-log 
plot. When the frequency value w approaches 
zero, the spectral density presents a low-power 
decaying behavior in the log-log plot. Utilizing 
a least squares method, the slope, that is, the 
decay rate of the spectral density in the log-log 
plot, is estimated as a = 0.8026. Furthermore, 
the value of the Hurst parameter is calculated by 
H = (1/2)(1 + a) = 0.9013. In the middle of Fig. 
4a, the R/S method is used to estimate the value 
of the Hurst parameter by the R/S statistic of the 
random process X = {fi, i = 1, 2, … N} in a log-
log plot. The R/S statistic increases linearly with 
increases in the length of series n in a log-log 
plot. Utilizing a least squares method, the Hurst 
parameter (i.e., the slope in the log-log plot) is 
estimated as H = 0.8898. On the right of Fig. 
4a, the variance-time analysis method is used to 
estimate the value of the Hurst parameter by the 
variance of the aggregated series of the random 
process X = {fi, i = 1, 2, … N} in a log-log plot. 
The variance of the aggregated series presents a 

slow decaying characteristic with increases in the 
aggregation level m in a log-log plot. Utilizing 
a least squares method, the slope of the sam-
ple variance is estimated as b = 0.2000 in the 
log-log plot. Furthermore, the value of the Hurst 
parameter is calculated to be H = 1 – (b/2) = 
0.9000. Based on the results from the three Hurst 
parameter estimators, the value of the Hurst 
parameter estimated from the measured wireless 
cellular coverage boundary is clearly larger than 
0.5 and is approximately H ≈ 0.9.

Figure 4b illustrates the Hurst parameter 
estimated from the derived wireless cellular 
coverage boundary data by the periodogram 
method, R/S method, and variance-time anal-
ysis method. On the left of Fig. 4b, the peri-
odogram method is used to estimate the value 
of the Hurst parameter by the spectral densi-
ty of the random process X = {fi, i = 1,2, … 
M} in a log-log plot. When the frequency value 
approaches zero, the spectral density remains 
nearly constant in the log-log plot. Utilizing 
the least squares method, the slope, that is, the 
decay speed of spectral density in the log-log 
plot, is estimated to be a = 0.001. Furthermore, 
the value of the Hurst parameter is calculated 
to be H = (1/2)(1 + a) = 0.4995 ≈ 0.5. In the 
middle of Fig. 4b, the R/S method is used to 
estimate the value of the Hurst parameter based 
on the R/S statistic of the random process X = 
{fi, i = 1, 2, … M} in a log-log plot. The R/S 
statistic still linearly increases with increases in 

Figure 4. Statistical fractal of the measured and derived wireless cellular coverage boundaries: a) statistical fractal estimation of the 
measured wireless cellular coverage boundary; the red line is the fitted line based on the measured wireless cellular coverage 
boundary data, where the value of the Hurst parameter is H ≈ 0.9, the blue broken line corresponds to the value of the Hurst 
parameter H = 0.5, and the purple broken line corresponds the value of Hurst parameter H = 1; b) statistical fractal estimation 
of the derived wireless cellular coverage boundary; the blue broken line is the fitted line based on the derived wireless cellular 
coverage boundary data where the value of the Hurst parameter is H = 0.5, and the purple broken line corresponds to the value 
of the Hurst parameter H = 1.
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the length of series n in a log-log plot. Com-
pared to the slopes in the middle of Figs. 4a and 
b, the slope estimated from the derived wireless 
cellular coverage boundary is clearly less than 
the slope estimated from the measured wire-
less cellular coverage boundary in log-log plots. 
Utilizing a least squares method, the Hurst 
parameter (i.e., the rate of increase of the R/S 
statistic) is estimated to be H = 0.5011 ≈ 0.5 . 
On the right of Fig. 4b, the variance-time anal-
ysis method is used to estimate the value of the 
Hurst parameter via the variance of aggregat-
ed series of the random process X = {fi, i = 
1,2, … M} . The variance of aggregated series 
presents a linear decaying characteristic with 
increases in the aggregation level m in a log-
log plot. Utilizing a least squares method, the 
slope of sample variances is estimated to be b 
= 0.9690 in the log-log plot. Furthermore, the 
value of the Hurst parameter is calculated to 
be H = 1 – (b/2) = 0.5155 ≈ 0.5. Based on the 
results from the three Hurst parameter estima-
tors, the value of the Hurst parameter estimat-
ed from the derived wireless cellular coverage 
boundary is H ≈ 0.5.

Compared to the values of the Hurst parame-
ter in Table 2, the values of the Hurst parameter 
estimated from the measured wireless cellular 
coverage boundary is located in the interval (0.5, 
1.0) (i.e., H ≈ 0.9). Therefore, the measured wire-
less cellular coverage boundary has the statistical 
fractal characteristic in angular scales.

Although the measured wireless cellular data 
in this study is collected from the Pingjiang Road, 
Shanghai China, the measurement location was 
not specially selected for the evaluation of the 
wireless cellular coverage boundary. Obstacles 
around the BS are distributed by city planning, 
and no specified changes have been forced on the 
obstacles in the measurement process. Moreover, 
the measurement route includes the wireless sig-
nal propagation fading shaded by office buildings 
and green belts in urban scenarios. Despite the 
slight deviation of the Hurst parameter values 
estimated by the three typical methods, the final 
estimated result of the measured wireless cellular 
coverage boundary can be considered as con-
sistent, that is, the value of Hurst parameter is 
H ≈ 0.9, considering the system error generated 
by estimators themselves. In addition, we also 
analyze other measured wireless cellular data 
from Pingjiang Road on May 23, 2014 and the 

other two BSs located in the urban and suburban 
areas of Shanghai, China. The detailed analysis 
results are illustrated in Table 3. The analysis 
results from all of the measured wireless cellular 
data indicate that the mean values of the Hurst 
parameter estimated from the measured wire-
less cellular coverage boundaries approximate 
0.9. Therefore, the analysis result in this article 
is reasonable, and the real wireless cellular cov-
erage boundary has the statistical fractal charac-
teristic.

conclusIons

Considering the anisotropy fading of wireless sig-
nal propagated in non-free spaces, the statistical 
characteristics of the wireless cellular coverage 
boundary have been measured and analyzed in 
this article. The analyzed results indicate that 
the measured wireless cellular coverage bound-
ary is extremely irregular, and it is difficult to 
depict the measured wireless cellular coverage 
boundary using conventional Euclidean geom-
etry methods. Thus, based on fractal geometry 
theory, the statistical characteristic of the mea-
sured wireless cellular coverage boundary was 
estimated using three typical Hurst parameter 
estimators. Our results validate the fact that the 
real wireless cellular coverage boundary has the 
statistical fractal characteristic in angular scales. 
Therefore, real wireless cellular networks can be 
called wireless fractal cellular networks.

By utilizing fractal geometric theory, random 
processes that exhibit the fractal characteristic 
have been put forward to fit wireless fractal cel-

Table 2. Hurst parameter of the wireless cellular coverage boundary. 

Hurst parameter  
estimation method

Hurst parameter

Measured wireless 
cellular coverage 

boundary

Derived wireless 
cellular coverage 

boundary

Periodogram method 0.9013 0.4995

Rescaled adjusted range  
statistic method

0.9000 0.5011

Variance-time analysis method 0.8898 0.5155

Table 3. Hurst parameters of the other three measured cellular coverage areas.

Hurst parameter  
estimation method

Hurst parameter

Zhangjiang Road, 
Shanghai, China. 
April 22, 2014

Pingjiang Road, 
Shanghai, China. May 
23, 2014

Tianshan Road, 
Shanghai, China. June 
4, 2014

Periodogram method 0.9188 0.9120 0.9096

Rescaled adjusted range 
statistic method

0.9313 0.9420 0.9020

Variance-time analysis 
method

0.8865 0.8673 0.9252

Mean value of Hurst 0.9122 0.9071 0.9096
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lular networks. Therefore, based on the fractal 
characteristic validated in this article, a new sys-
tem model of cellular networks could be built to 
analyze and optimize the performance of random 
cellular networks in the following areas.

Improving Cooperative Transmission Effi-
ciency: Based on our measured data, the distance 
between the wireless cellular coverage boundary 
and the associated BS is more than 180 km in 
specified directions. In this case, the new coop-
erative transmission scheme needs to include 
non-adjacent cooperative BSs located at remote 
regions and further improve the transmission 
efficiency considering direction effects among 
the user and cooperative BSs.

Optimizing Energy Efficiency: Green com-
munication is an important topic for future cel-
lular networks. Based on results in this article, 
a fractal wireless cellular coverage model can be 
expected to describe the wireless cellular cov-
erage areas. Furthermore, the optimal energy 
efficiency of cellular networks can be achieved by 
adjusting the BS transmission power considering 
wireless fractal cellular coverage areas.

Beamforming Technologies: Based on the 
beamforming technologies, new angular power 
control technologies can be developed to 
improve the transmission efficiency and energy 
efficiency of cellular networks. Different from 
conventional power control technologies, which 
adjust the BS transmission power based on the 
channel state information, the new angular 
power control technologies can adaptively adjust 
the transmission power in different directions 
considering the fractal characteristic of wireless 
cellular coverage boundary.
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