
1382 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 3, MARCH 2016

Cooperative Wideband Spectrum Sensing
Over Fading Channels

Hongjian Sun, Senior Member, IEEE, Arumugam Nallanathan, Senior Member, IEEE,
Shuguang Cui, Fellow, IEEE, and Cheng-Xiang Wang, Senior Member, IEEE

Abstract—In cognitive radio (CR) systems, it is crucial for sec-
ondary users to reliably detect spectral opportunities across a wide
frequency range. This paper studies a novel multirate sub-Nyquist
spectrum sensing (MS3) system capable of performing wideband
spectrum sensing in a cooperative CR network over fading chan-
nels. The aliasing effects of sub-Nyquist sampling are modeled.
To mitigate such effects, different sub-Nyquist sampling rates are
applied such that the numbers of samples at different CRs are
consecutive prime numbers. Moreover, the performance of MS3

over fading channels (Rayleigh fading and lognormal fading) is
analyzed in the form of bounds on the probabilities of detection
and false alarm. The key finding is that the wideband spectrum
can be sensed using sub-Nyquist sampling rates in MS3 over fading
channels, without the need for spectral recovery. In addition, the
aliasing effects can be mitigated by the use of different sub-Nyquist
sampling rates in a multirate sub-Nyquist sampling system.

Index Terms—Cognitive radio (CR), lognormal fading,
Rayleigh fading, sub-Nyquist sampling, wideband spectrum
sensing.

I. INTRODUCTION

A crucial requirement of cognitive radios (CRs) is that
they must be able to rapidly find and make good use of

spectral opportunities without causing harmful interference to
the primary user (PU) [1], [2]. The ability of finding spectral
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opportunities is called spectrum sensing, which is considered
one of the most critical components in a CR system. When
the frequency range is sufficiently narrow such that the channel
frequency response can be considered flat, narrow-band spec-
trum sensing algorithms can be applied, e.g., matched filtering,
cyclostationary feature detection, and energy detection [3], [4].
Horgan and Murphy [5] analyzed the performance of energy
detection over Nakagami-m fading channels. Sofotasios et al.
[6] investigated the case of applying energy detection over gen-
eralized κ−μ and κ−μ extreme fading channels. The analysis
was then extended to the case of cooperative spectrum sensing
where each CR can transmit its decision or measurement to a
fusion center (FC) where a final decision is made. A simple
fusion scheme used in the FC is a hard-decision fusion, which
fuses decisions from multiple CRs. It is upper bounded by
the soft-decision fusion scheme (i.e., a square-law combining
scheme [7]), where infinite precision energy vectors are trans-
mitted to the FC. Herath et al. [8] and Atapattu et al. [9], [10]
further analyzed the performance of energy detection on the
signal processed by maximal ratio combining (MRC), equal
gain combining (EGC), and selection combining (SC) schemes
over Nakagami-m and Rician fading channels, together with
shadowing effects.

Ideally, we hope that, if a PU reappears, CRs have sev-
eral other possible vacant subbands to access, facilitating a
seamless handoff from one spectral channel to another. Unfor-
tunately, aforesaid narrow-band spectrum sensing algorithms
ignore the diversified individual spectral opportunities across
the wideband spectrum. Driven by the desire of exploiting
wider bandwidth in CR networks, revolutionary wideband spec-
trum sensing techniques become increasingly important and
deserve exploratory research [11]. In previous work, Quan et al.
[12], [13] proposed a multiband joint detection (MJD) approach
that can sense the primary signal over a wide frequency range.
It has been shown that MJD has superior performance for wide-
band spectrum sensing. In [14], Tian and Giannakis studied
a wavelet detection approach, which could adapt parameters
to a dynamic wideband spectrum. Furthermore, they elegantly
applied the compressed sensing (CS) theory to implement wide-
band spectrum sensing by using sub-Nyquist sampling tech-
niques in [15]. Later on, the CS-based approach has attracted
much attention [16]–[21], owing to its advantage of using much
fewer samples to perform wideband spectrum sensing. In our
previous work [23], to save system energy, an adaptive CS-
based spectrum sensing approach was proposed that could find
the best spectral recovery with high confidence. Unfortunately,
using CS-based approaches, the spectral recovery requires high
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computational complexity, leading to a high spectrum sensing
overhead that may be a serious issue in CRs with restricted
computational resources.

The major contributions of this paper can be summarized as
follows.

• We introduce a multirate sub-Nyquist spectrum sensing
(MS3) approach for cooperative wideband spectrum sens-
ing in a CR network. Since the spectral occupancy is
low, sub-Nyquist sampling is adopted in each sampling
channel to wrap the sparse spectrum occupancy map.
The effects caused by sub-Nyquist sampling are analyzed,
and the test statistic is represented by a reduced data set
obtained from multichannel sub-Nyquist sampling.

• We propose to use different sampling rates in different
sampling channels (equivalently different CRs) for im-
proving the spectrum sensing performance. Specifically,
in the same observation time, the numbers of samples
in different sampling channels are chosen as different
consecutive prime numbers.

• We mathematically analyze the performance of MS3 over
fading channels and derive some closed-form bounds for
the average probabilities of false alarm and detection.

The key advantage of MS3 is that the wideband spectrum
usage can be detected directly from a few sub-Nyquist samples
without full spectral recovery that is usually required by other
sub-Nyquist techniques. Compared with the existing spectrum
sensing methods, MS3 can achieve better wideband spectrum
sensing performance with lower implementation complexity.

The remainder of this paper is organized as follows.
Section II introduces traditional spectrum sensing using energy
detector. In Section III, we propose the wideband spectrum
sensing approach, i.e., MS3. The performance analysis of MS3

fusing faded signals is given in Section IV. Section V presents
simulation results, with conclusions given in Section VI.

II. TRADITIONAL SPECTRUM SENSING USING

ENERGY DETECTION

Let us assume that all CRs keep quiet during the spectrum
sensing interval as enforced by protocols, e.g., via the medium-
access-control layer [12]. Therefore, the observed spectral
energy arises only from PUs and the background noise. Addi-
tionally, we assume that, on each frequency bin, at most one
PU sends data, e.g., when the orthogonal frequency-division
multiple-access transmission scheme is used by PUs. The total
bandwidth of the signal sensed at each CR is W (in Hertz).
Over an observation time T , if the sampling rate f (f ≥ 2W ) is
adopted, a sequence of Nyquist samples will be obtained with
the length of fT . The observation time T is chosen such that
fT is a nonprime natural number, e.g., T = 14/f ; thus, fT can
be written as fT = JN , where both J and N are natural num-
bers. Furthermore, this length-JN sequence is divided into J
equal-length segments, and each segment has the length ofN . If
we use xc,i(t) (t ∈ [0, T ]) to represent the continuous-time sig-
nal received at CR i, after Nyquist sampling, the sampled sig-
nal can be denoted xi[n] = xc,i(n/f), n = 0, 1, . . . , JN − 1.

At CR i, the sampled signal of segment j (j ∈ [1, J ]) can be
written as

xi,j [n] =

{
xc,i

(
(j−1)N+n

f

)
, n = 0, 1, . . . , N − 1

0, otherwise.
(1)

The discrete Fourier transform (DFT) spectrum of the sampled
signal in segment j, i.e.,

−−→
Xi,j , is given by

Xi,j [k]=

N−1∑
n=0

xi,j [n]e
−j2πkn/N , k=0, 1, . . . , N−1 (2)

where j =
√
−1. We model spectrum sensing on frequency bin

k as a binary hypothesis test, i.e., H0,k (absence of PU) and
H1,k (presence of PU) [13]

Xi,j [k] =

{
Zi,j[k], H0,k or k ∈ Ω′

i

Hi,j [k]Si,j [k] + Zi,j [k], H1,k or k ∈ Ωi

(3)

where Zi,j [k] is complex additive white Gaussian noise
(AWGN) with zero mean and variance δ2i,k, i.e., Zi,j [k] ∼
CN (0, δ2i,k); Hi,j [k] denotes the discrete frequency response
between the PU and CR i; Si,j [k] is assumed a deterministic
signal sent by the PU on frequency bin k; Ωi denotes the
spectral support such that Ωi = {k|PU presents at Xi,j [k]}; and
Ω′

i = {k|PU does not present at Xi,j [k]}. Here, we consider
that all CRs are sensing the same spectrum caused by the
same set of PUs such that the sets Ω = Ω1 = · · · = Ωi. In
addition, for simplicity, we assume that the noise variance
δ2i,k is normalized to be 1. The observation time T is chosen
to be smaller than the channel coherence time such that the
magnitude of Hi,j [k] remains constant within T at each CR,
i.e., constant |Hi,j [k]| over different segment j.

Since an energy detector does not require any prior in-
formation about the transmitted primary signal, with lower
complexity than other spectrum sensing schemes [22], we adopt
the energy detection approach in this paper. The received signal
energy at each frequency bin can be calculated as

Ei[k] =

J∑
j=1

|Xi,j [k]|2 , k = 0, 1, . . . , N − 1. (4)

The decision rule on frequency bin k is then given by

Ei[k]
H1,k

�
H0,k

λk, k = 0, 1, . . . , N − 1 (5)

where λk is the detection threshold. The signal energy distribu-
tion on frequency bin k can be modeled as [22]

Ei[k] ∼
{
χ2
2J , H0,k or k ∈ Ω′

i

χ2
2J (2γi[k]) , H1,k or k ∈ Ωi

(6)

where γi[k]
Δ
=(|Hi[k]Si[k]|2/δ2i,k) denotes the signal-to-noise

ratio (SNR) on the frequency bin k at CR i, χ2
2J denotes the

central chi-square distribution, andχ2
2J(2γi[k]) denotes the non-

central chi-square distribution. Both of these distributions have
2J degrees of freedom, and 2γi[k] denotes the noncentrality
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Fig. 1. Block diagram of MS3 system.

parameter. The probabilities of false alarm and detection are
given by [22]

PNyq
f,i,k = Pr (Ei[k] > λk|H0,k) =

Γ
(
J, λk

2

)
Γ(J)

(7)

PNyq
d,i,k = Pr (Ei[k] > λk|H1,k) = QJ

(√
2γi[k],

√
λk

)
(8)

where Γ(a) denotes the gamma function, Γ(a, x) denotes
the upper incomplete gamma function, and Qu(a, x) is
the generalized Marcum Q-function defined by Qu(a, x) =

(1/au−1)
∫∞
x tue−

a2+t2

2 Iu−1(at)dt in which Iv(a) is the vth-
order modified Bessel function of the first kind.

III. MULTIRATE SUB-NYQUIST SPECTRUM SENSING

It is difficult to realize wideband spectrum sensing since
it requires a high-speed analog-to-digital-converter (ADC) for
Nyquist rate sampling. We now present an MS3 scheme using
multiple low-rate sub-Nyquist samplers to implement wideband
spectrum sensing in a CR network.

A. System Description

Consider that there are v synchronized CRs collaborating for
wideband spectrum sensing, and the FC could be one of the CRs
and have good channel gain with the other CRs (e.g., geograph-
ically nearby). Due to low primary spectral occupancy [15], the
received signals at CRs are naturally sparse in the frequency

domain. Here, we assume that the Nyquist DFT spectrum
−−→
Xi,j

defined in (2) is s-sparse (s 	 N), which implies that only the
largest s out of N components need to be counted. The spectral
sparsity level, i.e., s, can be obtained from sparsity estimation
[18] or other methods. As shown in Fig. 1, MS3 consists of
several CRs, each of which has one wideband filter, one low-
rate sampler, and a fast Fourier transform (FFT) device, where
the wideband filters are set to have a bandwidth of W . The
operation of MS3 can be described as follows.

1) As the coordinator of MS3, the FC allocates different
sub-Nyquist sampling rates to different CRs according to
Theorem 1.

2) CRs perform sub-Nyquist samplings during the observa-
tion time T .

3) The sub-Nyquist DFT spectrum is calculated by using
sub-Nyquist samples and an FFT device.

4) The signal energy vectors are formed by using the sub-
Nyquist DFT spectrum.

5) The CRs transmit these signal energy vectors, i.e.,
�Es,1, . . . , �Es,v as calculated in (15), to the FC by using
a dedicated common control channel.

6) The received data from all CRs is fused in the FC to form
a test statistic.

7) The FC chooses the detection threshold and performs
binary hypothesis tests.

8) The FC shares the detection results with all CRs via the
dedicated control channel.

B. Sub-Nyquist Sampling and Data Combining

At CR i, we use sub-Nyquist rate fi (fi < 2W ≤ f) to
sample the continuous-time signal xc,i(t). The sampled signal
can be denoted as yi[n] = xc,i(n/fi), n = 0, 1, . . . , JMi − 1
where JMi = fiT and Mi is chosen to be a natural number.
The sampled signal is then divided into J equal-length seg-
ments. The segment j (j ∈ [1, J ]) can be written as

yi,j[n] =

{
xc,i

(
(j−1)Mi+n

fi

)
, n = 0, 1, . . . ,Mi − 1

0, otherwise.
(9)

The DFT spectrum of the sampled signal of segment j (j ∈
[1, J ]) is then given by

Yi,j [m] =

Mi−1∑
n=0

yi,j [n]e
−j2πmn/Mi , m = 0, 1, . . . ,Mi − 1.

(10)

With the aid of Poisson summation formula [24], the DFT
spectrum of sub-Nyquist samples can be represented by the
DFT spectrum of Nyquist samples as proved in Appendix A

Yi,j [m] =
Mi

N

∞∑
l=−∞

Xi,j [m+ lMi], m = 0, 1, . . . ,Mi − 1

(11)

where l is an unknown integer within [0, N/Mi − 1] such that
m+ lMi ∈ Ωi.

One issue caused by sub-Nyquist sampling is signal over-
lapping in Yi,j [m]. However, if we choose parameter N such
that N � s and let the sub-Nyquist sampling rate satisfy Mi ∼
O(

√
N), the probability of signal overlapping is very small (as

proved in Appendix B). As such, we only focus on two cases:
no signal on frequency bin m and one signal on frequency bin
m. In the first case, only noise exists. In the second case, only a
single l is active in (11), and the other terms in the summation of
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(11) can be modeled as noise based on (3). Thus, the following
holds from (3) and (11):

Yi,j [m]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mi

N

∑
ν
Zi,j [m+ νMi], first case

Mi

N Xi,j [m+ lMi]

+Mi

N

∑
ν �=l

Zi,j [m+ νMi], second case.
(12)

Furthermore, using (3) and (12), we can model the DFT spec-
trum distribution of sub-Nyquist samples by√

N

Mi
Yi,j

[
|k|mod (Mi)

]

∼

⎧⎪⎨⎪⎩
CN
(

0, δ2s,i,k

)
, k ∈ Ω′

i

CN
(√

Mi

N Hi,j [k]Si,j [k], δ
2
s,i,k

)
, k ∈ Ωi

(13)

where δ2s,i,k is the noise variance of the sub-Nyquist DFT
spectrum, which can be represented by the noise variance of
the Nyquist DFT spectrum using (11), i.e.,

δ2s,i,k =

⌈
N

Mi

⌉
︸ ︷︷ ︸

No. of sums

⎛⎜⎜⎜⎝Mi

N

√
N

Mi︸ ︷︷ ︸
Scaling of Yi,j

⎞⎟⎟⎟⎠
2

δ2i,k ≈ δ2i,k (14)

where �N/Mi� (the smallest integer not less than (N/Mi))
denotes the number of summations in (11).

The signal energy of the sub-Nyquist DFT spectrum at each
CR node is then calculated as

Es,i[m] =
J∑

j=1

|Yi,j [m]|2 , m = 0, 1, . . . ,Mi − 1 (15)

whose distribution can be modeled with (13) and (15) as

N

Mi
Es,i

[
|k|mod (Mi)

]
∼
{
χ2
2J , k ∈ Ω′

i

χ2
2J

(
2Mi

N γi[k]
)
, k ∈ Ωi

(16)

where the length of energy vector �Es,i is Mi. We note that,
due to the sub-Nyquist sampling, the noise is folded from the
whole bandwidth onto all signals of interest as shown in (12).
As a result, comparing (16) with (6), we find that the received
SNR in the sub-Nyquist sampling channel i is degraded from
γi to (Mi/N)γi. This SNR degradation depends on the ratio
between the number of samples at the sub-Nyquist rate and that
of at the Nyquist rate (i.e., (Mi/N)).

In MS3, the signal energy vectors �Es,1, . . . , �Es,v calculated
in (15) are then transmitted from CRs to the FC, which leads to
a test statistic, i.e.,

Ês[k] =

v∑
i=1

N

Mi
Es,i

[
|k|mod (Mi)

]
, k = 0, 1, . . . , N − 1

(17)

where (N/Mi) is a scaling factor to reconcile the different
noise variance of CRs caused by different sub-Nyquist sam-

pling rates. To test whether the PU is present or not, we adopt
the following decision rule:

Ês[k]
H1,k

�
H0,k

λk, k = 0, 1, . . . , N − 1. (18)

To analyze the performance of the decision rule in (18), we
aim to model Ês through the use of (16) and (17). However, this
is very challenging since different energy vectors in (17) may
contain different mirror images of the original PU frequencies.
To assist the analysis, we divide the set Ω′

i of (16) into two
disjoint subsets Ω′

A,i and Ω′
U,i such that Ω′

A,i ∪ Ω′
U,i = Ω′

i

and Ω′
A,i ∩ Ω′

U,i = ∅. Here, let Ω′
A,i denote a set of aliased

frequencies (i.e., false frequencies appear as mirror images of
the original PU frequencies around the sub-Nyquist sampling
frequency), and Ω′

U,i represent a set of unaffected/unoccupied
frequencies. Accordingly, the set Ω′

A,i can be written as

Ω′
A,i

Δ
=
{
k|k= |m|mod (Mi) + lMi, k ∈ [0, N − 1],m ∈ Ωi

}
(19)

where |m|mod (Mi) is used for describing the aliasing effect due
to sub-Nyquist sampling, and lMi is used for accounting for the
index extension from 0, . . . ,Mi − 1 to 0, . . . , N − 1 in (17).
Consequently, the set Ω′

U,i can be defined as

Ω′
U,i

Δ
=
{
k|k �∈ Ω′

A,i, k ∈ Ω′
i

}
. (20)

Note that the aliased-frequency set Ω′
A,i can lead to the same

distribution as that of Ωi due to the aliasing effect. Thus, we
can model (N/Mi) �Es,i using (16) as

N

Mi
Es,i[k] ∼

⎧⎪⎨⎪⎩
χ2
2J , k ∈ Ω′

U,i

χ2
2J

(
2Mi

N γi[m]
)
, k ∈ Ω′

A,i,m ∈ Ωi

χ2
2J

(
2Mi

N γi[k]
)
, k ∈ Ωi.

(21)

where γi[m] denotes the SNR on the frequency bin m, which is
related to the observed frequency bin k by k = |m|mod (Mi) +
lMi, as shown in (19). Such a representation is used for
explaining the aliasing effect: observing a frequency bin k, we
may find spectral component from another frequency bin m,
which folds back to k due to sub-Nyquist sampling.

Revisiting (17), we find that summing up energy vectors from

different CRs will result in two new sets: Ω′
A

Δ
= ∪v

i=1Ω
′
A,i and

Ω′
U

Δ
= ∩v

i=1Ω
′
U,i, where Ω′

A denotes the set of aliased frequen-
cies, and Ω′

U is the set of unaffected/unoccupied frequencies
of Ês due to the sum operation. The definition of the set Ω′

U

is based on the fact that the frequency bin k of Ês can be
classified as unaffected/unoccupied only if k ∈ Ω′

U,i ∀i ∈ [1, v].

Furthermore, since Ês[k], k ∈ Ω′
U is only affected by the noise,

we can model it by the central chi-square distribution with
2Jv degrees of freedom. On the other hand, the definition
of Ω′

A is due to the fact that the frequency bin k of Ês can
be classified as aliased if k ∈ Ω′

A,i in one or more than one
channels (i.e., CRs). For convenience, let Υk denote the set of
CRs in which each CR can generate aliased frequencies on the
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frequency bin k, i.e., Υk
Δ
= {i|k ∈ Ω′

A,i}. Additionally, apply-
ing the property of the sum of noncentral chi-square variables
to (17), we can model Ês[k], k ∈ Ω′

A as a noncentral chi-square
distribution with 2Jv degrees of freedom and noncentrality
parameter of 2

∑
i∈Υk

(Mi/N)γi[m] by using (16). Based on

the given discussions, the distribution of Ês can be modeled as

Ês[k] ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χ2
2Jv, k ∈ Ω′

U

χ2
2Jv

(
2
N

∑
i∈Υk

Miγi[m]

)
, k ∈ Ω′

A,m ∈ Ω

χ2
2Jv

(
2
N

v∑
i=1

Miγi[k]

)
, k ∈ Ω

(22)

where both k ∈ Ω′
U and k ∈ Ω′

A mean that the frequency bin k
is not used by PUs, thus corresponding to the hypothesis H0,k.
The former case denotes that there are no aliased frequencies
on the frequency bin k, whereas the latter case implies that
there are card(Υk) aliased frequencies on the frequency bin k.
Here, card(Υk) means the cardinality of the set Υk, i.e., the
number of elements of the set Υk, which is equivalent to the
number of CRs that have aliased frequencies on the frequency
bin k. Thus, when analyzing the probability of false alarm, we
know that the former case leads to a lower probability of false
alarm since Ês[k], k ∈ Ω′

U contains noise only. In contrast, the
latter case Ês[k], k ∈ Ω′

A leads to a higher probability of false
alarm since it contains not only noise energy but also the energy
of aliased frequencies due to sub-Nyquist sampling. Hence,
the probability of false alarm on the frequency bin k can be
bounded by considering two cases k ∈ Ω′

U and k ∈ Ω′
A in (22)

and applying similar approach used in (6)–(8), i.e.,

Γ
(
Jv, λk

2

)
Γ(Jv)

≤ Pf,k ≤ QJv

⎛⎝√ 2
N

∑
i∈Υk

Miγi[m],
√
λk

⎞⎠ .

(23)

C. Multirate Sub-Nyquist Spectrum Sensing

To improve the probability of false alarm, we shall reduce the
number of elements in the set Υk in (23). This is mainly because
the sum term

∑
i∈Υk

Miγi[m] will decrease as the number of
elements in the set Υk decreases, thus leading to a smaller
upper bound on the probability of false alarm. Obviously, the
card(Υk) is affected by sub-Nyquist sampling rates since the
card(Υk) describes how many CRs have aliased frequencies
on the frequency bin k, which are originally caused by sub-
Nyquist rate sampling. Using the same sub-Nyquist sampling
rates in MS3 is not recommended because it could lead to
card(Υk) = v, resulting in a high probability of false alarm.
Hence, we focus on applying different sub-Nyquist sampling
rates in MS3. For choosing sub-Nyquist sampling rates that
can reduce the card(Υk), we start from the simplest case (for
the purpose of analysis) where we only have one original PU
frequency, i.e., only one frequency bin k1 ∈ Ω is occupied by
the PU and the spectral sparsity level s = 1.

Lemma 1: If the numbers of samples at multiple CRs,
i.e., M1,M2, . . . ,Mv, are different primes and meet the
requirement of

MiMj > N ∀ i �= j ∈ [1, v]. (24)

Two or more CRs cannot have mirrored frequencies on the same
frequency bin.

The proof of Lemma 1 is given in Appendix C.
Second, considering the case where we have multiple origi-

nal PU frequencies, we reach the following conclusion.
Lemma 2: If the numbers of samples at multiple CRs satisfy

the conditions in Lemma 1, the number of elements in the set
Υk will be bounded by the sparsity level s.

Proof: Based on the result of Lemma 1, only one CR can
map the original frequency bin kj ∈ Ωi to the aliased frequency

in Ω′
A. Furthermore, recall Υk

Δ
= {i|k ∈ Ω′

A,i} and the
definition of Ω′

A,i in (19), we know card(Υk) ≤ card(Ωi) = s.
�

Based on these two Lemmas, we quantify the detection
performance of MS3 as follows.

Theorem 1: In MS3, different sub-Nyquist sampling rates are
adopted at different CRs such that the numbers of samples at
CRs, i.e., M1,M2, . . . ,Mv, are different consecutive primes
and meet the requirement of MiMj > N ∀i �= j ∈ [1, v]. Using
the decision rule of (18), we can obtain the probabilities of false
alarm and detection with the following bounds:

Γ
(
Jv, λk

2

)
Γ(Jv)

≤Pf,k

≤QJv

⎛⎜⎝
√√√√ 2

N

∑
i∈Υk,card(Υk)≤s

Miγi[k],
√
λk

⎞⎟⎠
(25)

Pd,k ≥QJv

⎛⎝√√√√ 2
N

v∑
i=1

Miγi[k],
√
λk

⎞⎠ . (26)

Proof: Using (23) and the bound card(Υk) ≤ s, (25) fol-
lows. Furthermore, when the energy of one spectral component
in Ω maps to another spectral component in Ω, the proba-
bility of detection will increase. Thus, the inequality of (26)
holds. �

Remark 1: It is worth noting that the exact expression of the
probabilities of false alarm and detection cannot be obtained
in MS3 systems. This is mainly caused by the aliasing effects
of sub-Nyquist sampling, which unpredictably fold original
frequencies back to different but unknown frequency bins. In
detail, the set Ω′

A,i in (21) is unknown and different from that
of the other channel because of the sub-Nyquist sampling and
unknown Ωi (the purpose of spectrum sensing is to find it).
Therefore, the set Ω′

A in (22) is typically unknown, making us
impossible to know the exact expression of the probability of
false alarm. This also occurs for analyzing the probability of
detection.

Remark 2: It is worth noting to emphasize that the proposed
sub-Nyquist system cannot achieve the same performance as
the counterpart multi-CR Nyquist system due to its sub-Nyquist
operations; however, it can obtain comparable spectrum sensing
performance to a single-CR Nyquist system (at the same total
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sampling rate) with better flexibility and scalability. In partic-
ular, comparing (8) with (26), we find that the performance of
MS3 is comparable to the single-CR system when

∑v
i=1 Mi �

N , where “�” means approximately equal, given that

Pd,k ≥QJv

⎛⎝√√√√ 2
N

v∑
i=1

Miγi[k],
√
λk

⎞⎠ (27)

�QJv

(√
2γi[k],

√
λk

)
QJv

(√
2γi[k],

√
λk

)
>QJ

(√
2γi[k],

√
λk

)
=PNyquist

d,i,k (28)

and the probabilities of false alarm are similar when the sparsity
level s is sufficiently small. Additionally, we note that MS3

is more flexible and scalable than the single-CR Nyquist-
sampling based detection system, since both the sub-Nyquist
sampling rates at CRs and the number of CRs can be flexibly
chosen to meet the condition

∑v
i=1 Mi � N . Furthermore, we

emphasize that MS3 is applicable to the scenario of insufficient
measurements, i.e.,

∑v
i=1 Mi < N .

Remark 3: It is shown from Theorem 1 that the sampling
rates in MS3 can be set much lower than the Nyquist rate since
Mi ∼ O(

√
N). On the other hand, a higher average sampling

rate can provide us with tighter bounds since the probability
of signal overlapping in the aliased spectrum can be reduced
with a larger Mi in each sampling channel, as discussed in
Section III-B. Thus, there is a tradeoff between the bound accu-
racy and the sampling rate saving. It should be emphasized that
there is no exact closed-form expression for the probabilities
in Theorem 1 since the exact number of CRs that have aliased
frequencies on the frequency bin k cannot be quantified. More-
over, we note that the upper and lower bounds in Theorem 1
can be easily computed since the Marcum-Q function can be
efficiently computed using power series expansions [25]. Under
the Neyman–Pearson criterion, we should design a test with the
constraint ofPf,k ≤ α. In such a scenario, we must let the upper
bound of (25) to be α and solve the detection threshold λk from
the inverse of the Marcum-Q function. It has been shown in [26]
that the detection threshold can be calculated with low com-
putational complexity. In addition, to calculate the detection
threshold, the noise power is required to be known at the FC.

IV. MULTIRATE SUB-NYQUIST SPECTRUM SENSING OVER

FADING CHANNELS

Here, we consider that the primary signals are propagated
from PUs to CRs over fading channels, subject to either a
Rayleigh or lognormal distribution. Recalling the fusion rule
in (17), we find that it is difficult to model the distribution
of the sum of weighted independent random variables in (17)
over fading channels. Hence, we use the sum of uniformly
weighted random variables to approximate the sum of differ-
ently weighted random variables in Theorem 1, i.e.,

2
v∑

i=1

Miγi

N
� 2M

N

v∑
i=1

γi = ψγv

2
∑

i∈Υk

Miγi

N
� 2M

N

∑
i∈Υk

γi = ψγs (29)

where M is the average of Mi over multiple CRs,

ψ
Δ
= (2M/N), γv

Δ
=
∑v

i=1 γi, and γs
Δ
=
∑

i∈Υk
γi. We note

that the given approximation accuracy mainly depends on
|M −Mi|/N , where a smaller |M −Mi|/N corresponds to
a more accurate approximation. Since M1, . . . ,Mv are chosen
to be v different consecutive prime numbers and the distance
between primes could be very small compared with N , the
parameter |M −Mi|/N approaches zero as N increases. Thus,
the given approximation has little impact on the final result for
large Ns.

A. Rayleigh Distribution

If the magnitudes of received primary signals at different CRs
follow Rayleigh distributions, the SNRs will follow exponential
distributions. Hence, γv and γs follow gamma distributions:

f(γv) =
γv−1
v

γvΓ(v)
e−

γv
γ , γv ≥ 0

f(γs) =
γs−1
s

γsΓ(s)
e−

γs
γ , γs ≥ 0 (30)

where γ = E(|HS|2/δ2) denotes the average SNR over multi-
ple CRs, and f(·) denotes a generic probability density function
(pdf) of its argument.

The bounds for the average probabilities of false alarm and
detection in MS3 can be obtained by averaging (25) and (26)
over all possible SNRs, respectively.

Theorem 2: If the magnitudes of received signals at different
CRs follow Rayleigh distribution, the average probabilities of
false alarm (Pf,k) and detection (Pd,k) in MS3 will have the
following bounds:

Γ(Jv, λk

2 )

Γ(Jv)
≤ Pf,k ≤Θ(s, Jv, ψ, γ[k], λk) (31)

Pd,k ≥Θ(v, Jv, ψ, γ[k], λk) (32)

where Θ(x, Jv, ψ, γ, λ) is defined as

Θ=

(
1 +

ψγ

2

)−x ∞∑
n=0

Cn
n+x−1

(
ψγ

ψγ + 2

)n Γ
(
n+ Jv, λ

2

)
Γ(n+ Jv)

(33)

in which Cb
a is the binomial coefficient, i.e., Cb

a =
(b!/(a!(b− a)!)).

The proof of Theorem 2 is given in Appendix D.
Remark 4: From Theorem 2, we have 0 ≤ Θ ≤ 1 since

the term (Γ(a, b)/Γ(a)) ∈ [0, 1] and the remaining terms can
be simplified to 1. In addition, it can be proved that Θ is a
monotonically increasing function with respect to ψ, γ, and x,
respectively. Therefore, both probabilities will either increase
or remain the same when the average sampling rate and the
average SNR increase, more sampling channels will lead to a
higher probability of detection, and the average probability of
false alarm can be reduced with smaller s.

Remark 5: Since (33) contains infinite sums, its computa-
tional complexity is directly related to the number of computed
terms, which are required to obtain specific accuracy. As the
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number of computed terms (i.e., P ) varies, the magnitude of
the truncation error can be written as

TΘ(P )

=

(
1 +

ψγ

2

)−x ∞∑
n=P

Cn
n+x−1

(
ψγ

ψγ + 2

)n Γ
(
n+ Jv, λ

2

)
Γ(n+ Jv)

(34)

≤
(

1 +
ψγ

2

)−x ∞∑
n=P

Cn
n+x−1

(
ψγ

ψγ + 2

)n

(35)

= 1 −
(

1 +
ψγ

2

)−x P−1∑
n=0

Cn
n+x−1

(
ψγ

ψγ + 2

)n

(36)

where the inequality of (35) holds for (Γ(n, (λ/2))/Γ(n)) ≤ 1,
and (36) is obtained by using the binomial expansion. It can be
shown that (33) converges very quickly. For example, to achieve
double-precision accuracy, only P = 30 ∼ 40 calculated terms
are required; therefore, the bounds are tractable. To solve for
the detection threshold λk, we could use the lower bound on
Pf,k in (32). This is due to the fact that the lower bound can
approximate Pf,k very well, as analyzed in Appendix D.

B. Lognormal Distribution

The strength of the transmitted primary signal may also be
affected by shadowing from buildings, hills, and other objects.
A common model is that the received power fluctuates with a
lognormal distribution. In such a scenario, the pdf of the SNR
at CR i, i.e., f(γi), is given by

f(γi) =
ξ√

2πσiγi
exp

(
− (10 log10(γi)− γi)

2

2σ2
i

)
, γi > 0

(37)

where ξ = 10/ ln(10), and σi (in decibels) denotes the standard
deviation of 10 log10 γi at CR i. Note that the pdf in (37) can be
closely approximated by a Wald distribution [22], [27]

f(γi) =

√
ηi
2π

γ
−3/2
i exp

(
−ηi(γi − θi)

2

2θ2i γi

)
, γi > 0

(38)

where θi = E(γi) denotes the expectation of γi, and ηi is the
shape parameter for CR i. Via the method of moments, the
parameters ηi, θi and γi, σi are related as follows:

θi = exp

(
γi

ξ
+

σ2
i

2ξ2

)
, ηi =

θi

exp
(

σ2
i

ξ2

)
− 1

. (39)

In the proposed system, the condition (ηi/θ
2
i ) =

(E(γi)/Var(γi)) = b (constant) can be satisfied. Thus, γs
and γv also follow the Wald distribution [28]. The pdfs of γs
and γv are given by

f(γs) =

√
sη

2π
γ−3/2
s exp

(
−η(γs − sθ)2

2sθ2γs

)
, γs > 0 (40)

f(γv) =

√
vη

2π
γ−3/2
v exp

(
−η(γv − vθ)2

2vθ2γv

)
, γv > 0 (41)

where η and θ denote the averages of ηi and θi, respectively.

Theorem 3: If the magnitudes of received signals at different
CRs follow lognormal distributions, the average probabilities
of false alarm (P̃f,k) and detection (P̃d,k) in MS3 will be
bounded as

Γ(Jv, λk

2 )

Γ(Jv)
≤ P̃f,k ≤ Λ (s, Jv, ψ, λk, θ[k], η[k]) (42)

P̃d,k ≥Λ (v, Jv, ψ, λk, θ[k], η[k]) (43)

where Λ(x, Jv, ψ, λ, θ, η) is defined by

Λ =

√
2xη
π

e
η
θ

∞∑
n=0

(
ψ
2

)n
Γ
(
n+ Jv, λ

2

)
n!Γ(n+ Jv)

×
(√

x2ηθ2

xψθ2 + η

)n− 1
2

Kn− 1
2

(√
η(xψθ2 + η)

θ2

)
(44)

in which Kn−(1/2)(a) denotes the modified Bessel function of
the second kind with order n− (1/2).

The proof of Theorem 3 is given in Appendix E.
Remark 6: Because (44) contains infinite sums, the trun-

cation error TΛ(P ) must be considered. Similar to (35), the
truncation error can be written as

TΛ(P ) ≤ 1 −
√

2xη
π

e
η
θ

P−1∑
n=0

(
ψ
2

)n (√
x2ηθ2

xψθ2+η

)n− 1
2

n!

×Kn− 1
2

(√
η(xψθ2 + η)

θ2

)
. (45)

V. SIMULATION RESULTS AND ANALYSIS

In our simulations, we assume that the CRs are organized, as
shown in Fig. 1, and adopt the following configurations unless
otherwise stated. We use the wideband analog signal model in
[29]; thus. the received signal xc,i(t) at CR i has the following
form:

xc,i(t) =

Nb∑
l=1

|Hi,l|
√
ElBl sinc (Bl(t−Δ))

× cos (2πfl(t−Δ)) + z(t) (46)

whereNb denotes the number of nonoverlapping subbands; sinc
sinc(x) = sin(πx)/(πx), Δ denotes a random time offset, z(t)
is AWGN, i.e., z(t) ∼ N (0, 1); El is the transmit power at PU,
and Hi,l denotes the discrete frequency response between the
PU and CR i in subband l. We assume that there are v = 22
CRs in the CR network and the channels from PUs to CRs are
independent and subject to fading. The received signal xc,i(t)
consists of Nb = 6 nonoverlapping subbands. The lth subband
is in the frequency range of [fl − (Bl/2), fl + (Bl/2)], where
the bandwidth Bl = 1 ∼ 10 MHz, and fl denotes the center
frequency. The center frequency of the subband l is randomly
located within [(Bl/2),W − (Bl/2)] (i.e., fl ∈ [(Bl/2),W −
(Bl/2)]), where the overall signal bandwidth W = 10 GHz.
In MS3, the received signal is sampled by using different
sub-Nyquist rates at different CRs for T = 20 μs. To be
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Fig. 2. Comparisons of simulation results and theoretical bounds on the
probabilities of false alarm and detection in Theorems 1 and 2, respectively,
when MS3 combining (a) nonfaded signals and (b) Rayleigh faded signals with
the received SNR = 5 dB at CRs.

specific, the numbers of samples at multiple CRs are chosen
following Theorem 1, and we choose the first prime M1 ≈
a
√
N (a ≥ 1), along with its v − 1 neighboring and consec-

utive primes in the increasing direction. The spectral observa-
tions are obtained by applying an FFT to these sub-Nyquist
samples in each channel. Then, the signal energy is calculated
in the spectral domain using (15), and the energy vectors are
transmitted from the CRs to the FC using dedicated common
control channels. In the FC, we form the test statistic with
(17). We define the compression rate as the ratio between the
number of samples at the sub-Nyquist rate and the number of
samples at the Nyquist rate, i.e., (M/N), where M denotes
the average number of sub-Nyquist samples at CRs. Spectrum
sensing results are obtained by using the decision rule (18) and
varying the detection threshold λk .

In Fig. 2, we verify the theoretical results in (25) and (26) and
(31) and (32) by comparing these bounds with the simulated
results. It shows that the bounds on the probabilities of false
alarm and detection can predict the simulated results. Fig. 2 also
shows that the lower bound on the probability of detection can
successfully predict the trend of simulated results. Fig. 3 shows
the receiver operating characteristic (ROC) curves of MS3 when
combining nonfaded and faded signals. When the average SNR
as received at CRs is 5 dB, the performance of MS3 combining
faded signals is roughly the same as that of combining nonfaded
signals since the strength of the signal is mostly masked by the
noise. In contrast, the detection performance of MS3 combining
nonfaded signals outperforms that of combining faded signals
when SNR = 10 dB. In addition, we see that the performance
of MS3 combining lognormal shadowed signals is the poorest.
Nonetheless, even for lognormal shadowed signals, MS3 has
a probability of nearly 90% for detecting the presence of PUs
when the probability of false alarm is 10%, with the compres-
sion rate of (M/N) = 0.0219.

Fig. 3. ROC curves of MS3 for combining nonfaded signals or faded signals
when the compression rate (M/N) = 0.0219 and the number of segments
J = 5. The wideband signal is observed by 22 CRs at different sampling rates
(the average sampling rate is 448.68 MHz).

Fig. 4. Performance of MS3 for combining Rayleigh-faded signals with
v = 22 and (M/N) = 0.0219 when the received SNR at CRs and the number
of subbands change.

To investigate the influence of s and SNR, we use Fig. 4 to
show the performance of MS3 when the received signals are
faded according to Rayleigh distribution with different values
of s (proportional to the number of subbands). We see that, as
the number of subbands decreases, the detection performance
improves for the same SNR. The performance improvement
of MS3 stems from that, for a fixed number of sampling
channels, decreasing s makes it easier to distinguish the occu-
pied frequencies from the aliased frequencies, as discussed in
Section III-C.

In Fig. 5, we compare the performance of MS3 against
that of Nyquist systems when all systems have similar prob-
abilities of false alarm. In the Nyquist system type I, each
CR is given an orthogonal subband (wideband spectrum is
divided into several equal-length subbands) to sense at Nyquist
rate, whereas their decisions are sent back to the FC. In the
Nyquist system type II, we assume that each CR must measure
the whole wideband spectrum independently, thus requiring
multiple standard ADCs in each node to cover all wideband
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Fig. 5. Probability of detection (Pd) and the probability of false alarm (Pf )

of the proposed MS3 system and Nyquist systems over lognormal shadowing
channels when the standard deviation σ = 5 dB and the average subband SNR
varies. In the proposed MS3 system, the wideband signal is sampled at different
sampling rates by 22 ADCs with the average sampling rate of 448.68 MHz, and
the compression rate is (M/N) = 0.0219.

spectrum. After signal sampling, all measurements are sent
back to the FC, where the EGC approach is adopted to fuse
data and then energy detection is used for spectrum sensing.
Fig. 5 shows that the proposed system has superior performance
to the Nyquist system type I. On the other hand, it can also be
seen that the Nyquist system type II has performance gain over
the proposed system; however, at the expense of much higher
implementation complexity as discussed in the following.

In Table I, we compare the implementation complexity of
MS3 with that of the Nyquist systems, when the received signals
at different CRs are faded according to Rayleigh distribution.
Here, we consider the following comparison metric: the number
of same-sampling-rate ADCs for achieving Pd ≥ 90% and
Pf ≤ 10% since practical CRs often have requirements on
the probabilities of detection and false alarm to secure the
performance of both CRs and PUs. We see that, when there
exist tem CRs, MS3 requires each CR to be equipped with a
single ADC with an average sampling rate of 957.54 MHz;
thus, the whole CR network only requires ten low-rate ADCs.
In contrast, the Nyquist system type I requires 21 ADCs in total
because of 21 × 957.54 MHz ≈ 20 GHz for covering 10-GHz
spectrum based on Nyquist sampling theorem. In the Nyquist
system type II, 210 ADCs (with the average sampling rate
957.54 MHz) will be required since each CR requires 21 ADCs,
and there are ten CRs. Thus, the system complexity of MS3

is approximately half of that of the Nyquist system type I and
much less than that of the Nyquist system type II.

In Fig. 6, we choose the CS-based system in [15] as a
benchmark system due to its high impact and outstanding per-
formance. In [15], the wideband spectrum was first modeled as
a train of subband that are smooth but exhibit discontinuities or
singularities at the subband boundaries or edges. The wideband
spectrum sensing was formulated as a standard CS problem.
Basis pursuit-based optimization algorithms were then applied
to estimate the average frequency response amplitude of each
subband, by which each subband can be coarsely detected. In
Fig. 6, it is seen that, compared with the benchmark system,

TABLE I
IMPLEMENTATION COMPLEXITY COMPARISON OF MS3 AND THE

NYQUIST SYSTEMS WHEN THE RECEIVED SIGNALS ARE

FADED ACCORDING TO RAYLEIGH DISTRIBUTION WITH

TEN DECIBEL RECEIVED SNR AT CRS

Fig. 6. Comparison between MS3 and CS-based system [15]. The probability
of successful sensing that is defined as the probability of achieving both
Pd ≥ 90% and Pf ≤ 10%. In simulations, the average SNR as received at
CRs is 10 dB, and the number of CRs is v = 22.

MS3 has better compression capability. Using MS3, the prob-
ability of successful sensing becomes larger than 90% when
the compression rate (M/N) ≥ 0.023. In contrast, the bench-
mark system can achieve the probability of successful sensing
at 90%, only when the compression rate satisfies (M/N) ≥
0.045.

Furthermore, as shown in Table II, we find that the com-
putational complexity of MS3 is O(N logN) due to energy
detection with FFT operations, rather than O(N(M + logN))
in the CS-based system, where M is usually much larger than
logN . The complexity of the CS-based system is hurt by both
the matrix multiplication operations and the FFT operations
for spectral recovery. To summarize, with the same computa-
tional resources, MS3 has a relatively smaller spectrum sensing
overhead than the CS-based system, due to not only the better
compression capability (less data transmissions result in shorter
transmission time) but lower computational complexity as well.
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TABLE II
COMPARISONS OF WIDEBAND SPECTRUM SENSING TECHNIQUES

VI. CONCLUSION

In this paper, we have presented a novel system, i.e., MS3,
for cooperative wideband spectrum sensing in CR networks.
MS3 can relax the wideband spectrum sensing requirements
of CRs due to its capability of sub-Nyquist sampling. It has
been shown that, using sub-Nyquist samples, the wideband
spectrum can be sensed in a cooperative manner without the
need of spectral recovery, leading to a low spectrum sensing
overhead. Moreover, we have derived closed-form bounds for
the performance of MS3 when combining faded or shadowed
signals.

Simulation results have verified the derived bounds on the
probabilities of false alarm and detection. It has also been
shown that using partial measurements, MS3 has superior per-
formance even under low SNRs. The performance of MS3

improves as the number of CRs or the average sampling rate
increases. Compared with the existing wideband spectrum sens-
ing methods, MS3 not only provides computation and memory
savings but also reduces the hardware acquisition requirements
and the energy costs at CRs.

APPENDIX A
RELATIONSHIP BETWEEN NYQUIST DISCRETE FOURIER

TRANSFORM SPECTRUM AND SUB-NYQUIST DISCRETE

FOURIER TRANSFORM SPECTRUM

Using the Poisson summation formula [24], (9), and (10), we
obtain

fi
∑
l∈Z

Xc,i(w + fil) =
∑
n∈Z

yi[n]e
−j2πwn

=

Mi−1∑
n=0

yi[n]e
−j2πwn = Yi(w) (47)

where Xc,i(w) =
∫∞
−∞ xc,i(t)e

−j2πwtdt. Similar to (47), by
using (1) and (2), we can obtain

f
∑
l∈Z

Xc,i(w + fl) =
∑
n∈Z

xi[n]e
−j2πwn

=
N−1∑
n=0

xi[n]e
−j2πwn = Xi(w). (48)

As the received signal is bandlimited and f ≥ 2W , Xi(w) =
fXc,i(w) holds for w ∈ [−(W/2), (W/2)]. Substituting it to
(47), we obtain Yi(w) = (fi/f)

∑∞
l=−∞ Xi(w + fil). In a dis-

crete form, we end up with

Yi[m] =
Mi

N

∞∑
l=−∞

Xi[m+ lMi], m = 0, 1, . . . ,Mi − 1.

(49)

APPENDIX B
PROBABILITY OF SIGNAL OVERLAP AT

SUB-NYQUIST SAMPLING

As s spectral components are distributed over the frequency
bins of 0, 1, . . . , N − 1, the probability of the frequency bin
k belonging to the spectral support Ω is P = Pr(k ∈ Ω) =
(s/N). Let q denote the number of spectral components over-
lapped on the frequency bin m. Using (11), the probability of
no signal overlap is given by

Pr(q < 2) = Pr(q = 0) + Pr(q = 1)

= (1 − P )

⌈
N
Mi

⌉
+

(⌈
N

Mi

⌉)
1P (1 − P )

⌈
N
Mi

⌉
−1

(50)

where �N/Mi� denotes the number of summations in (11).
Substituting P = (s/N) into (50) while choosing sub-Nyquist
sampling rate in MS3 such that Mi =

√
N , we obtain

Pr(q < 2) =

(
N − s

N

) N
Mi

+
s

Mi

(
N − s

N

)N−Mi
Mi

=

(
N−s
N

)√N
(N − s+ s

√
N)

N − s
. (51)

It can be tested that Pr(q < 2) approaches to 1 when choosing
N such that N � s. Thus, the probability of signal overlap
approaches to zero under the condition that we choose.

APPENDIX C
PROOF OF LEMMA 1

Let Mi and Mj denote the number of samples at CRs i
and j, respectively. Using (19), we can represent the aliased
frequencies projected from k1 ∈ Ω by

gi = |k1|mod (Mi)
+ lMi = k1 − hMi + lMi, h �= l (52)

gj = |k1|mod (Mj)
+ ľMj = k1 − ȟMj + ľMj, ȟ �= ľ (53)

where integers h and ȟ are quotients from modulo op-
erations, and l − h ∈ [−�N/Mi�+ 1, �N/Mi� − 1], ľ − ȟ ∈
[−�N/Mj�+ 1, �N/Mj� − 1], in which �N/Mi� gives the
smallest integer not less than N/Mi.



1392 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 3, MARCH 2016

Avoiding gi = gj is equivalent to avoiding (l − h)Mi =
(ľ − ȟ)Mj . If Mi and Mj are different primes, the condition
max(|l − h|) < Mj (i.e., �N/Mi� − 1 < Mj) will satisfy this.
After simplification, the condition MiMj > N is obtained.
Moreover, if it holds for any two CRs, the case for more than
two CRs will also hold.

APPENDIX D
PROOF OF THEOREM 2

If the received signals at CRs are Rayleigh faded, the lower
bound on the average probability of false alarm will remain as
it is independent of the SNR. Using (25), (29), and (30), the
upper bound on the average probability of false alarm can be
calculated by

Pf,k
up

=

∞∫
0

QJv(
√
ψγs,

√
λk)

γs−1
s

γsΓ(s)
e−

γs
γ dγs. (54)

Rewriting the Marcum Q-function by using [30, (4.74)] and
[31, (8.352-2)], we obtain

QJv(
√
ψγs,

√
λk) =

∞∑
n=0

(
ψγs

2

)n
e−

ψγs
2

n!

Γ
(
n+ Jv, λk

2

)
Γ(n+ Jv)

.

(55)
Substituting (55) into (54), we can rewrite (54) as

Pf,k
up

=
1
γs

∞∑
n=0

(
ψ
2

)n
Γ
(
n+ Jv, λk

2

)
n!(s− 1)!Γ(n+ Jv)

×
∞∫
0

γn+s−1
s e−

ψγs
2 − γs

γ dγs. (56)

Calculating the integral by using [31, (3.351-3)], we end up with

Pf,k
up

=

(
1 +

ψγ

2

)−s ∞∑
n=0

Cn
n+s−1

×
(

ψγ

ψγ + 2

)n Γ
(
n+ Jv, λk

2

)
Γ(n+ Jv)

. (57)

Similarly, we can obtain the lower bound on the average proba-
bility of detection.

APPENDIX E
PROOF OF THEOREM 3

If the received signals are shadowed according to lognormal
distribution, the lower bound on P̃f,k in (42) will remain. By
(40), the upper bound on the probability of false alarm can be
given by

P̃f,k

u
=

∞∫
0

QJv

(√
ψγs,

√
λk

)√ sη

2π
γ−3/2
s

× exp

(
−η(γs − sθ)2

2sθ2γs

)
dγs. (58)

Substituting (55) into (58), we calculate P̃f,k

u
as

P̃f,k

u
=

√
sη

2π

∞∑
n=0

(
ψ
2

)n
Γ
(
n+ Jv, λk

2

)
n!Γ(n+ Jv)
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0

γ
n− 3

2
s

× exp

(
−sψθ2 + η

2sθ2
γs −

sη

2γs
+

η

θ

)
dγs. (59)

Using [31, (3.471-9)] for calculating the integral in (59), we
obtain

P̃f,k

u
=

√
2sη
π

e
η
θ
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n=0

(
ψ
2

)n
Γ
(
n+ Jv, λk

2

)
n!Γ(n+ Jv)

×
(√

s2ηθ2

sψθ2 + η

)n− 1
2

Kn− 1
2

(√
η(sψθ2 + η)

θ2

)
.

(60)

Likewise, the lower bound on the average probability of detec-
tion can be approximated.
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