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Abstract—The statistical characteristics of the signal-to-
interference plus noise ratio (SINR) are closely related to many
performance metrics of cellular networks. In this paper, the down-
link average rate and SINR distribution are studied for orthogonal
frequency division multiple access (OFDMA)-based cellular net-
works subject to the distance-dependent path loss and shadow
fading (SF). With the analytical approximate mean and moment
generating function (MGF) of the SINR in the logarithmic domain,
the closed-form approximation for the lower and upper bounds of
the average rate is obtained. Then the distribution of the SINR
in the logarithmic domain is proposed to be approximated as the
normal inverse Gaussian (NIG) distribution whose parameters are
computed explicitly through moment matching. Also, the closed-
form expression for the cumulative distribution function (CDF) of
the SINR based on the NIG approximation is derived. Simulation
results not only verify the tightness of the bounds, but also show
that the NIG approximation is up to one order of magnitude more
accurate than the Pearson type IV approximation and at least one
order of magnitude more accurate than the lognormal approxima-
tion when the SF correlation coefficient is small or the standard
deviations of the SF are large or different.

Index Terms—Cumulative distribution function, normal inverse
Gaussian distribution, orthogonal frequency division multiple
access, signal to interference plus noise ratio, statistical charac-
teristics.

I. INTRODUCTION

T HE statistical characteristics of the signal to interference
plus noise ratio (SINR) are closely related to many impor-

tant performance metrics of cellular networks, such as the
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average rate and outage probability. In orthogonal frequency
division multiple access (OFDMA)-based cellular networks, as
there is no intra-cell interference, the SINR is the ratio of the
signal to the inter-cell interference plus noise. In emerging cel-
lular networks [1]–[3], base stations (BSs) will be more and
more densely deployed, thus the inter-cell interference will be
more and more intense. Investigation of the statistical charac-
teristics of the SINR is critical for the analysis and optimization
of the network performance.

So far, there have been several approaches proposed to
study the statistical characteristics of the SINR in cellular net-
works. In code division multiple access networks, the approx-
imate SINR distribution is investigated in [4] based on the
Gaussian approximation to the multi-user interference plus
noise. Unfortunately, unlike code division multiple access net-
works, the inter-cell interference in OFDMA-based cellular
networks cannot be simply approximated as a Gaussian ran-
dom variable (RV) since the interference is narrowband and
the number of interferers is finite. This makes it more compli-
cated to investigate the statistical characteristics of the SINR
in OFDMA-based cellular networks. Recently, based on the
assumption [5] that BSs are distributed according to the Poisson
point process, the outage probability, SINR distribution, aver-
age rate and rate distribution have been studied. The outage
probability derived in [6], [7] is closed-form only when there is
no noise or the path loss exponent is 4, and there are no closed-
form expressions for the SINR distribution [8], average rate
[6], [7], [9] and rate distribution [10]. Some researchers have
studied the statistical characteristics of the SINR in planned
cellular networks [11]–[14]. For networks without fading, the
rate distribution and average rate are analyzed in [15] based
on the derived closed-form distance distribution between BSs
and user equipments (UEs). There is no closed-form expres-
sion for the average rate. In [16], as the approximation to the
n-th order original moment of the SINR, the ratio of the n-th
order original moment of the signal to that of the interference
plus noise is analyzed. For networks undergoing the lognor-
mal shadow fading (SF), this ratio is given in closed form
based on the Gauss-Hermite approximation [17], [18] to the
moment generating function (MGF) of the interference plus
noise. Nevertheless, simulation results in [16] showed that this
ratio cannot approximate the moments of the SINR well when
the number of the interferers is small.

One of the main challenges for the statistical modeling of the
SINR is the statistical modeling of the inter-cell interference.
For networks undergoing the lognormal SF, the inter-cell inter-
ference is the sum of several lognormal RVs. The modeling of
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the lognormal sum is a long-standing problem and exact closed-
form expressions for the lognormal sum distribution remain
unknown. So far, several approximation approaches have been
proposed to study the statistical characteristics of the lognormal
sum, including lognormal approximations [19]–[21], Pearson
type IV approximations [22]–[25], MGF-based approximations
[17], [26], [27] and other approximation methods [28], [29].
However, none of these methods satisfies the following two
properties simultaneously: 1) accurate in the whole region of
the cumulative distribution function (CDF); and 2) parame-
ters of the approximate distribution can be computed explicitly.
For cellular networks, it is desirable to obtain the closed-form
expressions for the average rate and statistical characteristics of
the SINR for general cases, and there is no accurate approx-
imate SINR distribution whose parameters can be presented
analytically.

In the field of finance, the normal inverse Gaussian
(NIG) distribution has been used in [30] to approximate the dis-
tribution of a stochastic process. Fortunately, the parameters of
the NIG distribution can be explicitly expressed in terms of the
mean, variance, skewness, and kurtosis. In this paper, the lower
and upper bounds of the downlink average rate and distribution
of the downlink SINR are studied for OFDMA-based cellular
networks considering the distance-dependent path loss and SF.
The closed-form approximation for the lower and upper bounds
of the average rate is obtained from the statistical characteristics
of the SINR in the logarithmic domain, and the NIG distribution
is proposed to approximate the distribution of the SINR in the
logarithmic domain. To the best of our knowledge, no published
literature presents a closed-form bound of the average rate
or considers the NIG approximation to the distribution of the
SINR. First, the analytical approximate mean and MGF of the
SINR in the logarithmic domain are given. Further, the lower
bound of the average rate is presented through the mean of the
SINR in the logarithmic domain. The average rate is proved
to be upper bounded by the certain value of the MGF of the
SINR in the logarithmic domain. With the analytical approx-
imate mean and MGF, the closed-form approximation for the
lower and upper bounds of the average rate can be obtained.
Then the NIG approximation to the distribution of the SINR
in the logarithmic domain is elaborated. Using the moment
matching method, the parameters of the NIG approximation are
computed explicitly through the closed-form approximation for
the mean, variance, skewness and kurtosis of the SINR in the
logarithmic domain. The closed-form expression for the CDF
of the SINR based on the NIG approximation is also given in
terms of exponential functions and error functions. Finally, sim-
ulation results verify that the closed-form approximation for the
lower and upper bounds of the average rate is tight. In addi-
tion, it is shown that the NIG approximation outperforms the
lognormal approximation and Pearson type IV approximation
especially when the SF correlation coefficient is small or the
standard deviations of the SF are large or different. Also, it is
verified that the CDF of the SINR based on the NIG approxi-
mation can always get the satisfactory performance. The main
contributions of this paper are as follows.

1) The closed-form approximation for the lower and upper
bounds of the average rate is presented. The lower bound

Fig. 1. Two-dimensional OFDMA-based cellular network model.

is dependent on the approximate mean of the SINR in the
logarithmic domain, and the upper bound is determined
by the certain value of the approximate MGF of the SINR
in the logarithmic domain.

2) The distribution of the SINR in the logarithmic domain
is proposed to be approximated as the NIG distribu-
tion whose parameters are computed explicitly. Also, the
closed-form expression for the CDF of the SINR based on
the NIG approximation is given in terms of exponential
functions and error functions.

The rest of this paper is organized as follows. Section II gives
the system model and problem formulation. In Section III, the
closed-form approximation for the lower and upper bounds of
the average rate is obtained. Section IV elaborates the NIG
approximation to the distribution of the SINR in the logarithmic
domain and presents the closed-form expression for the CDF
of the SINR based on the NIG approximation. In Section V,
numerical experiments are conducted to verify the analysis in
this paper. Finally, the paper is concluded in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In Fig. 1, the two-dimensional layout of an OFDMA-based
cellular network is depicted, where the polar coordinate system
is used to describe node locations. Without loss of generality,
the serving cell and its first-tier interfering cells are shown. The
coverage of each cell is considered as a circle with the radius
D, and the inter-site distance (ISD) is

√
3D. The BS BS0 of the

serving cell locates at the origin, and its connected UE locates
at (r, θ). The location of BSi (i.e., the BS of the i-th interfering
cell) is denoted as (ri , θi ) , i = 1, . . . , L . Each BS is equipped
with an omnidirectional antenna. The UE in the serving cell
receives the useful signal from BS0 and suffers the downlink
inter-cell interference from the L interfering cells. The cor-
responding useful link is denoted as the bold solid line, and
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the corresponding interfering links are represented as the bold
dashed lines.

For the UE located at (r, θ), the distance between the UE and
BSi (i = 0, . . . , L) is

di =
⎧⎨
⎩

r, i = 0,√
r2 + r2

i − 2rri cos (θ − θi ), i = 1, . . . , L .
(1)

The signal power received from BSi can be given by

Yi = Pt Gb Ad−η
i exp (ξ Xi ) = 10(μi +Xi )/10 , (2)

where ξ = ln 10
/

10 , μi = 10 lg
(

Pt Gb Ad−η
i

)
, Pt and Gb are

the transmit power and antenna gain of each BS, respectively,
η is the path loss exponent, A is the path loss constant, and Xi

is the SF of the corresponding communication link. Generally,
Xi is considered as a zero-mean Gaussian RV whose standard
deviation is σi dB. From (2), it can be seen that Yi is a lognormal
RV which can be denoted as L N (ξμi , ξσi ). The distribution of
Yi is defined as

fYi (yi ) = 1√
2π (ξσi ) yi

exp

[
− (ln yi − ξμi )

2

2 (ξσi )
2

]
. (3)

The total downlink inter-cell interference power received by
the UE can be obtained from

YI =
L∑

i=1

Yi =
L∑

i=1

10(μi +Xi )/10 . (4)

This means that YI is the sum of several lognormal RVs. The
background noise [26] at the UE is

Nb = hT Bϕ,

where h is the Boltzmann constant, T is the ambient tempera-
ture in Kelvin, B is the channel bandwidth, and ϕ is the noise
figure of the UE.

Denoting the SINR for the UE as the RV Y

Y = Y0

YI + Nb
= 10(μ0+X0)/10

L∑
i=1

10(μi +Xi )/10 + Nb

, (5)

the SINR in the logarithmic domain for the UE can be given by

Z = ln Y = ln Y0 − ln (YI + Nb) = Z1 − Z2, (6)

where

Z1 = ln Y0 = ξμ0 + ξ X0, (7a)

Z2 = ln (YI + Nb) = ln

[
L∑

i=1

10(μi +Xi )/10 + Nb

]
. (7b)

Z1 is a Gaussian RV with the mean ξμ0 and variance (ξσ0)
2.

When the SF RVs Xi (i = 0, . . . , L) are independent from
each other, the MGF and n-th order cumulant of Z are given in
Lemma 1.

Lemma 1: When Xi is independent from each other, the
MGF of Z can be expressed as

MZ (s) = exp

[
− (ξμ0) s + 1

2
(ξσ0)

2 s2
]

MZ2 (−s) , (7)

where MZ2 (s) = E
[
e−s Z2

]
is the MGF of Z2. The n-th order

cumulant of Z can be obtained from

c(1)
Z = ξμ0 − c(1)

Z2
, (9a)

c(2)
Z = (ξσ0)

2 + c(2)
Z2

, (9b)

c(n)
Z = (−1)n c(n)

Z2
, n > 2, (9c)

where c(n)
Z2

is the n-th order cumulant of Z2.

Proof: The MGF of Z1 is

MZ1 (s) = E
[
e−s Z1

]
= exp

[
− (ξμ0) s + 1

2
(ξσ0)

2 s2
]

.

(10)

As Z1 and Z2 are independent from each other, the MGF of Z
can be expressed as

MZ (s) = E
[
e−s(Z1−Z2)

]
= E

[
e−s Z1

]
E
[
es Z2

]
= MZ1 (s) MZ2 (−s) . (11)

Substituting (10) into (11), (8) can be obtained. According to
[31], the n-th order cumulant of Z can be given by

c(n)
Z = c(n)

Z1
+ (−1)n c(n)

Z2
(12)

For Z1, there are only two non-zero cumulants, i.e., the mean
ξμ0 and variance (ξσ0)

2. This yields (9). �
As the first cumulant is equal to the mean for an RV, (9a) can

be rewritten as

m(1)
Z = ξμ0 − m(1)

Z2
, (13)

where m(1)
Z and m(1)

Z2
are the mean of Z and Z2, respectively.

When the SF RVs are correlated, Xi can be expressed as [32]

Xi = σi

√
1 − ζ Wi + σi

√
ζ S0, (14)

where ζ is the correlation coefficient, Wi and S0 are indepen-
dent Gaussian variables with zero mean and unit variance. For
different BSs, Wi is independent from each other, while S0
keeps the same. The first and second part of the right hand
side of (14) can be considered as the independent and cor-
related component of Xi , respectively. In interference-limited
networks, when the SF RVs are correlated and the standard
deviations of the SF of interfering links are the same, the MGF
and n-th order cumulant of Z are given in Lemma 2.

Lemma 2: In interference-limited networks, when the SF
RVs are correlated and Xi (i = 1, . . . , L) have the same stan-
dard deviation σI dB, the MGF of Z can be expressed as

MZ (s) = exp

[
ηs ln r + 1

2
ξ2s2

(
σ 2

0 − 2ζσ0σI + ζσ 2
I

)]
· MZ ′

2
(−s) , (15)
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where

Z ′
2 = ln

[
L∑

i=1

d−η
i exp

(
ξσI

√
1 − ζ Wi

)]
, (16)

and MZ ′
2
(s) is the MGF of Z ′

2. The n-th order cumulant of Z
can be obtained from

c(1)
Z = −η ln r − c(1)

Z ′
2
, (17a)

c(2)
Z = ξ2

(
σ 2

0 − 2ζσ0σI + ζσ 2
I

)
+ c(2)

Z ′
2
, (17b)

c(n)
Z = (−1)n c(n)

Z ′
2
, n > 2, (17c)

where c(n)

Z ′
2

is the n-th order cumulant of Z ′
2.

Proof: For interference-limited networks, the background
noise Nb can be neglected, thus the SINR in the logarithmic
domain can be expressed as

Z = ξμ0 + ξ X0 − ln

[
L∑

i=1

10(μi +Xi )/10

]

= −η ln r + ξ X0 − ln

(
L∑

i=1

d−η
i 10Xi /10

)
. (18)

When σi (i = 1, . . . , L) have the same value σI , according to
(14), (18) can be rewritten as

Z = −η ln r + ξ
(
σ0
√

1 − ζ W0 + σ0
√

ζ S0

)

− ln

[
L∑

i=1

d−η
i 10(σI

√
1−ζ Wi +σI

√
ζ S0)/10

]

= −η ln r + ξσ0
√

1 − ζ W0 + ξ
√

ζ (σ0 − σI ) S0

− ln

[
L∑

i=1

d−η
i 10σI

√
1−ζ Wi /10

]

= Z ′
1 − Z ′

2, (19)

where

Z ′
1 = −η ln r + ξσ0

√
1 − ζ W0 + ξ

√
ζ (σ0 − σI ) S0. (20)

It can be seen that Z ′
1 is a Gaussian RV with the mean −η ln r

and variance ξ2
(
σ 2

0 − 2ζσ0σI + ζσ 2
I

)
. The MGF of Z ′

1 is

MZ ′
1
(s) = exp

[
ηs ln r + 1

2
ξ2s2

(
σ 2

0 − 2ζσ0σI + ζσ 2
I

)]
.

(21)

Furthermore, Z ′
1 is independent from Z ′

2. Thus the MGF and
n-th order cumulant of Z can be expressed as (15) and (17),
respectively. �

When σ0 and σI have the same value σ , the correlated com-
ponent in Z can be eliminated. In this case, when the standard
deviation σ of Xi (i = 0, . . . , L) is fixed and the SF correlation
coefficient ζ increases, the standard deviation σ

√
1 − ζ of the

independent component Wi decreases. This means the increase
of the SF correlation coefficient is equivalent to the decrease

of the standard deviation of the SF RVs. Thus the impact of
the SF correlation coefficient on the SINR is opposite to that of
the standard deviation of the SF when all the communication
links have the same standard deviation of the SF. (17a) can be
rewritten as

m(1)
Z = −η ln r − m(1)

Z ′
2
, (22)

where m(1)

Z ′
2

is the mean of Z ′
2.

III. LOWER AND UPPER BOUNDS OF AVERAGE RATE

In this section, the approximate mean and MGF of the SINR
in the logarithmic domain Z are given and utilized to obtain the
lower and upper bounds of the average rate. The computation
of the exact mean and MGF of Z involves the multi-fold inte-
gration. In order to derive the bounds of the average rate, the
Gauss-Hermite Quadrature [17], [23] is exploited to obtain the
approximate expression for the multi-fold integration.

A. Approximate Mean and MGF of SINR in Logarithmic
Domain

When the SF RVs Xi (i = 0, . . . , L) are independent from
each other, the approximate mean and MGF of Z are given in
Theorem 1.

Theorem 1: When Xi (i = 0, . . . , L) are independent from
each other, the approximate mean and MGF of Z can be
respectively expressed as

m̂(1)
Z = ξμ0 −

(
1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

· ln

[
L∑

i=1

κni

(
ani ;μi , σi

)+ Nb

]
, (23a)

M̂Z (s) =
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

· exp

[{
ln

[
L∑

i=1

κni

(
ani ;μi , σi

)+ Nb

]

− (ξμ0)

}
s + 1

2
(ξσ0)

2 s2

]
, (23b)

where ωni and ani are the corresponding weights and abscissas,
Ni (i = 1, . . . , L) is the order of the Hermite integration, and

κni

(
ani ;μi , σi

) = 10

(√
2σi ani +μi

)
/10

. The weights and abscis-
sas are constants that can be found in [18] for N up to 20.

Proof: From [23], the approximate MGF of the total
downlink inter-cell interference YI in the logarithmic domain
can be obtained. With a slight modification to take the back-
ground noise into consideration, the approximate MGF of the
interference plus noise in the logarithmic domain Z2 can be
expressed as
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M̂Z2 (s) =
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

·
[

L∑
i=1

κni

(
ani ;μi , σi

)+ Nb

]−s

. (24)

Based on (24), the approximate mean of Z2 can be obtained
from

m̂(1)
Z2

= − d M̂Z2 (s)

ds

∣∣∣∣∣
s=0

=
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

· ln

[
L∑

i=1

κni

(
ani ;μi , σi

)+ Nb

]
. (25)

Replacing c(1)
Z2

and MZ2 (s) in Lemma 1 with m̂(1)
Z2

and M̂Z2 (s),
respectively, (23) can be obtained. �

In interference-limited networks, when the SF RVs are cor-
related and the standard deviations of the SF of interfering links
are the same, the approximate mean and MGF of Z are given in
Theorem 2.

Theorem 2: In interference-limited networks, when Xi (i =
0, . . . , L) are correlated and Xi (i = 1, . . . , L) have the same
standard deviation σI dB, the approximate mean and MGF of Z
can be respectively expressed as

m̂(1)
Z = −η ln r −

(
1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

· ln

[
L∑

i=1

κni

(
ani ;−10η lg di , σI

√
1 − ζ

)]
, (26a)

M̂Z (s) =
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

· exp

{
1

2
ξ2s2

(
σ 2

0 − 2ζσ0σI + ζσ 2
I

)
+ ηs ln r

+ s ln

[
L∑

i=1

κni

(
ani ;−10η lg di , σI

√
1 − ζ

)]}
.

(26b)

Proof: From (16), Z ′
2 is the sum of several independent

lognormal RVs. For the i (i = 1, . . . , L)-th component log-
normal RV, the logarithmic mean and standard deviation are
−η ln di and ξσI

√
1 − η, respectively. According to [23], the

approximate MGF of Z ′
2 can be expressed as

M̂Z ′
2
(s) =

(
1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

·
[

L∑
i=1

κni

(
ani ;−10η lg di , σI

√
1 − ζ

)]−s

. (27)

Thus the approximate mean of Z ′
2 can be given by

m̂(1)

Z ′
2

=
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

· ln

[
L∑

i=1

κni

(
ani ;−10η lg di , σI

√
1 − ζ

)]
. (28)

Replacing c(1)

Z ′
2

and MZ ′
2
(s) in Lemma 2 with m̂(1)

Z ′
2

and M̂Z ′
2
(s),

respectively, (26) can be obtained. �

B. Lower and Upper Bounds

Since the channel bandwidth is a constant in this paper,
investigating the average rate is equivalent to studying

R = E
[
ln
(

1 + eZ
)]

=
∫ +∞

−∞
ln
(
1 + ez) fZ (z) dz, (29)

where fZ (z) is the distribution of Z .
The approximate lower bound of the average rate is given in

Theorem 3.
Theorem 3: The approximate lower bound of R can be

expressed as

R̂L = ln
[
1 + exp

(
m̂(1)

Z

)]
. (30)

Proof: Let p (z) = ln (1 + ez). As the second derivative
of p (z) is

p′′ (z) = e−z(
1 + e−z

)2 > 0, (31)

p (z) is strictly convex. By the Jensen’s inequality [33], the
lower bound of R can be obtained from

R ≥ RL = ln

[
1 + exp

(∫ +∞

−∞
z fZ (z) dz

)]
. (32)

Replacing the mean of Z with m̂(1)
Z , (30) can be obtained. �

Note that R̂L is only determined by the approximate mean of
Z . When m̂(1)

Z is large, R̂L can be approximated as

R̃L = m̂(1)
Z . (33)

The approximate upper bound of the average rate is given in
Theorem 4.

Theorem 4: The approximate upper bound of R can be
expressed as

R̂U = 9
/

8 M̂Z
(−1

/
3
)
. (34)

Proof: The proof can be found in Appendix A. �

IV. NIG APPROXIMATION TO DISTRIBUTION OF SINR IN

LOGARITHMIC DOMAIN

In this section, a brief description of the NIG distribution
is given, and the distribution of the SINR in the logarith-
mic domain Z is approximated as the NIG distribution whose
parameters are expressed in terms of the approximate mean,
variance, skewness and kurtosis of Z . The expression for the
CDF of the SINR based on the NIG approximation is also
presented.



852 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 2, FEBRUARY 2016

A. NIG Distribution

In the field of finance, the NIG approximation is introduced
in [30], [34] where the four parameters of the NIG distribu-
tion are computed explicitly through the first four cumulants
(mean, variance, skewness and kurtosis) of the target RV. In
[34], numerical results show the NIG approximation performs
better than the Gram-Charlier expansion [35] and Edgeworth
expansion [36]. The expression for the NIG distribution [30],
[34] is given by

f (z) = αδ

π
exp

(
δ

√
α2 − β2 − βμ

)

·
K1

(
α

√
δ2 + (z − μ)2

)
√

δ2 + (z − μ)2
exp (βz) ,

where K1 (·) represents the modified Bessel function of the sec-
ond kind with index 1, α, β, μ and δ are the tail heaviness
parameter, asymmetry parameter, location parameter and scale
parameter, respectively.

B. Computation of NIG Parameters

The approximate first four cumulants of the SINR in the
logarithmic domain Z are given in Theorem 5.

Theorem 5: When the SF RVs Xi (i = 0, . . . , L) are inde-
pendent from each other, the approximate first four cumulants
of Z can be expressed as

ĉ(1)
Z = ξμ0 − m̂(1)

Z2
, (35a)

ĉ(2)
Z = (ξσ0)

2 + m̂(2)
Z2

−
(

m̂(1)
Z2

)2
, (35b)

ĉ(3)
Z = −

[
m̂(3)

Z2
− 3m̂(2)

Z2
m̂(1)

Z2
+ 2

(
m̂(1)

Z2

)3
]

, (35c)

ĉ(4)
Z = m̂(4)

Z2
− 4m̂(3)

Z2
m̂(1)

Z2
− 3

(
m̂(2)

Z2

)2

+ 12m̂(2)
Z2

(
m̂(1)

Z2

)2 − 6
(

m̂(1)
Z2

)4
, (35d)

respectively, where

m̂(n)
Z2

=
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

·
{

ln

[
L∑

i=1

κni

(
ani ;μi , σi

)+ Nb

]}n

. (36)

In interference-limited networks, when Xi (i = 0, . . . , L) are
correlated and Xi (i = 1, . . . , L) have the same standard devi-
ation σI dB, the approximate first four cumulants of Z can be
given by

ĉ(1)
Z = −η ln r − m̂(1)

Z ′
2
, (37a)

ĉ(2)
Z = ξ2

(
σ 2

0 − 2ζσ0σI + ζσ 2
I

)
+ m̂(2)

Z ′
2

−
(

m̂(1)

Z ′
2

)2
, (37b)

ĉ(3)
Z = −

[
m̂(3)

Z ′
2

− 3m̂(2)

Z ′
2
m̂(1)

Z ′
2

+ 2
(

m̂(1)

Z ′
2

)3
]

, (37c)

ĉ(4)
Z = m̂(4)

Z ′
2

− 4m̂(3)

Z ′
2
m̂(1)

Z ′
2

− 3
(

m̂(2)

Z ′
2

)2

+ 12m̂(2)

Z ′
2

(
m̂(1)

Z ′
2

)2 − 6
(

m̂(1)

Z ′
2

)4
, (37d)

respectively, where

m̂(n)

Z ′
2

=
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

·
{

ln

[
L∑

i=1

κni

(
ani ;−10η lg di , σI

√
1 − ζ

)]}n

.

(38)

Proof: When Xi (i = 0, . . . , L) are independent from
each other, with the MGF M̂Z2 (s) of Z2 in Theorem 1, the n-th
order original moment of Z2 can be presented as

m̂(n)
Z2

= (−1)n dn M̂Z2 (s)

dsn
|s=0

=
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

·
{

ln

[
L∑

i=1

κni

(
ani ;μi , σi

)+ Nb

]}n

. (39)

Based on the relationship [31] between original moments and
cumulants, the approximate first four cumulants of Z2 can be
computed through (39). With Lemma 1, the approximate first
four cumulants of Z can be obtained.

In interference-limited networks, when Xi (i = 0, . . . , L)

are correlated and Xi (i = 1, . . . , L) have the same standard
deviation σI dB, with the MGF M̂Z ′

2
(s) of Z ′

2 in Theorem 2,
the n-th order original moment of Z ′

2 can be obtained from

m̂(n)

Z ′
2

= (−1)n
dn M̂Z ′

2
(s)

dsn
|s=0

=
(

1√
π

)L N1∑
n1=1

· · ·
NL∑

nL=1

(
L∏

i=1

ωni

)

·
{

ln

[
L∑

i=1

κni

(
ani ;−10η lg di , σI

√
1 − ζ

)]}n

.

(40)

The approximate first four cumulants of Z ′
2 can be com-

puted through (40). With Lemma 2, the approximate first four
cumulants of Z can be obtained. �

The approximate mean, variance, skewness and kurtosis of Z
can be expressed as

m̂ = ĉ(1)
Z , v̂ = ĉ(2)

Z , ŝ = ĉ(3)
Z(

ĉ(2)
Z

)3/2
, k̂ = ĉ(4)

Z(
ĉ(2)

Z

)2
, (41)

respectively. According to [30], the four estimated parameters
of the NIG distribution can be obtained from
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α̂ = 3ρ1/2 (ρ − 1)−1 v̂−1/2
∣∣ŝ∣∣−1

, (42a)

β̂ = 3 (ρ − 1)−1 v̂−1/2 ŝ−1, (42b)

μ̂ = m̂ − 3ρ−1v̂1/2 ŝ−1, (42c)

δ̂ = 3ρ−1 (ρ − 1)1/2 v̂1/2
∣∣ŝ∣∣−1

, (42d)

where ρ = 3k̂ŝ−2 − 4. To guarantee the feasibility of the NIG
approximation, the following restriction condition [34] should
be satisfied

ρ > 1.

Simulation results in Section V verify that this condition is sat-
isfied in cellular networks with the system parameters defined
in [11], although the rigorous mathematical proof remains an
open problem and deserves a further investigation.

With the approximate distribution of Z , the approximate dis-
tribution of the SINR Y = eZ and rate V = ln

(
1 + eZ

)
can be

expressed as

f̂Y (y) =
C K1

(
α̂

√
δ̂2 + (

ln y − μ̂
)2)

y
√

δ̂2 + (
ln y − μ̂

)2 exp
(
β̂ ln y

)
, (43)

f̂V (v) =
C K1

(
α̂

√
δ̂2 + [

ln (exp (v) − 1) − μ̂
]2)

[
exp (v) − 1

]√
δ̂2 + [

ln (exp (v) − 1) − μ̂
]2

· exp
[
β̂ ln (exp (v) − 1) + v

]
, (44)

respectively, where

C = α̂δ̂

π
exp

(
δ̂

√
α̂2 − β̂2 − β̂μ̂

)
. (45)

C. CDF of SINR Based on NIG Approximation

As P (Y ≤ y) = P (Z = ln Y ≤ ln y = z), the CDF of the
SINR can be derived in the logarithmic domain.

Lemma 3: The CDF of the SINR based on the NIG approxi-
mation can be expressed as

F̂ (t) =
∫ +∞

0
fX (x) �

(
t − μ̂ − β̂x√

x

)
dx, (46)

where �(·) is the CDF of the standard normal distribution.

Proof: According to [30], [34], if Z follows the NIG dis-
tribution with the parameters α̂, β̂, μ̂ and δ̂, there exists a RV X
that has the inverse Gaussian distribution [37] with the parame-

ters δ̂ and γ =
√

α̂2 − β̂2, and Z conditioned on X is normally

distributed with the mean μ̂ + β̂ X and variance X . Thus the
approximate distribution of Z based on the NIG distribution
can be rewritten as

f̂ Z (z) =
∫ +∞

0
fX (x) f Z |X ( z| x) dx, (47)

where

fX (x) = δ̂√
2π

x−3/2 exp

(
δ̂γ − δ̂2

2
x−1 − γ 2

2
x

)
, x > 0,

(48a)

f Z |X ( z| x) = 1√
2πx

exp

⎡
⎢⎣−

(
z − μ̂ − β̂x

)2

2x

⎤
⎥⎦ . (48b)

The CDF of Z can be given by

F̂ (t) =
∫ t

−∞

∫ +∞

0
f Z |X ( z| x) fX (x) dxdz

=
∫ +∞

0
fX (x)

∫ t

−∞
f Z |X ( z| x) dzdx

=
∫ +∞

0
fX (x) �

(
t − μ̂ − β̂x√

x

)
dx . (49)

�
In the remaining part of this subsection, the approximation of

the complementary error function erfc (x) is presented to obtain
the closed-form expression for (46).

The complementary error function erfc (x) can be approxi-
mated as [38]

erfc (x) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M∑
k=1

ake−bk x2
, x ≥ 0,

2 −
M∑

k=1

ake−bk x2
, x < 0,

(50)

where bk = kb, ak and b are the coefficients of the approx-
imation, and M is the order of the approximation. For M =
6, 7, 8, 9, the coefficients are shown in Table I where both the
root mean square error (RMSE) and adjusted R-square [39] are
used to evaluate the performance of the approximation. It can be
seen that when M is no less than 8, the approximation can get
the satisfactory performance. Substituting (50) into the identity

�(x) = 1 − 1

2
erfc

(
x√
2

)
,

the approximation of �(x) can be written as

�(x) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − 1

2

M∑
k=1

ak exp

(
−bk

2
x2
)

, x ≥ 0,

1

2

M∑
k=1

ak exp

(
−bk

2
x2
)

, x < 0.

(51)

Simulation results in Section V verify that the SINR in the log-
arithmic domain Z is negatively skewed in cellular networks
with the system parameters defined in [11], the corresponding
mathematical proof, however, requires a further study. When
the skewness of Z is negative, β̂ is less than 0. In this case, the
closed-form approximation for F̂ (t) is given in Theorem 6.
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TABLE I
APPROXIMATION OF erfc (x)

Theorem 6: F̂ (t) can be approximated as

F̃ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1

2
δ̂ exp

(
δ̂γ
)

·
M∑

k=1

ak

Ak
exp

(
bk β̂

2q − Ak Bk

)
, t ≥ μ̂,

1

2
[1 + erf (V2)] − 1

2
exp

(
2δ̂γ

)
erfc (V1)

+ 1

2
δ̂ exp

(
δ̂γ
) M∑

k=1

ak

Ak
exp

(
qβ̂2bk

)
· [exp (Ak Bk) erfc (Ck)

− exp (−Ak Bk) erf (Dk)
]
, t < μ̂.

where

q = t − μ̂

β̂
, (52a)

Ak =
√

δ̂2 + q2β̂2bk, Bk =
√

γ 2 + β̂2bk, (52b)

V1 = δ̂√
2q

+ γ

√
q

2
, V2 = δ̂√

2q
− γ

√
q

2
, (52c)

Ck = Ak√
2q

+ Bk

√
q

2
, Dk = Ak√

2q
− Bk

√
q

2
. (52d)

Proof: The proof can be found in Appendix B. �

V. NUMERICAL RESULTS

In this section, the performance of the lower and upper
bounds of the average rate, restriction condition of the NIG
approximation, skewness of the SINR in the logarithmic
domain and performance of the NIG approximation are investi-
gated for cellular networks whose system parameters [11] are
given in Table II. Numerical computations and Monte Carlo
simulations are performed to verify the derivation and show
the impacts of the UE location, ISD, path loss exponent, SF
correlation coefficient and standard deviation of the SF.

A. Lower and Upper Bounds of Average Rate

In this subsection, the performance of the lower and upper
bounds of the average rate is investigated for UE1, UE2 and
UE3. The ISD is 1732m, and the Monte Carlo simulation with
5000000 trials is conducted for comparison. The results versus
the standard deviation of the SF are depicted in Fig. 2(a). The
SF RVs Xi (i = 0, . . . , L) are independent and have the same
standard deviation, and the path loss exponent is 3.76. It can
be seen that the lower bound almost coincides with the Monte

TABLE II
SETTING OF SYSTEM PARAMETERS

Carlo simulation for the UEs near to the BS. And the perfor-
mance of the approximate mean of the SINR in the logarithmic
domain Z is similar to that of the lower bound for these UEs.
For the UEs at the cell edge and in the middle of the cell, both
the lower and upper bound are quite tight.

Fig. 2(b) depicts the performance of the lower and upper
bounds versus the path loss exponent. Xi (i = 0, . . . , L) are
independent and the standard deviations of them are 8dB. For
the UEs near to the BS, the lower bound almost coincides with
the Monte Carlo simulation, and the performance of the approx-
imate mean of Z is similar to that of the lower bound. Both the
lower and upper bound are quite tight for the UEs at the cell
edge and in the middle of the cell. With the system parame-
ters in Table II, cellular networks are interference-limited, thus
the background noise can be ignored compared to the inter-cell
interference. As the distance di (i = 1, . . . , L) between the UE
and BS of the i-th interfering cell is larger than the distance r
between the UE and BS of the serving cell, the total inter-cell
interference decreases more quickly than the useful signal when
the path loss exponent increases. Thus the SINR increases with
path loss exponent, makes the average rate also increase with
path loss exponent, as shown in Fig. 2(b).

The performance of the lower and upper bounds versus the
SF correlation coefficient is shown in Fig. 2(c). The standard
deviations of the SF RVs are 8dB and the path loss exponent
is 3.76. It can be found that the lower bound almost coincides
with the Monte Carlo simulation for the UEs near to the BS.
And the performance of the approximate mean of Z is similar
to that of the lower bound for these UEs. The bounds are quite
tight for the UEs at the cell edge and in the middle of the cell.
As is indicated in Lemma 2, when the standard deviation of X0
is the same as that of Xi (i = 1, ..., L), the impact of the SF cor-
relation coefficient on the average rate and its lower and upper
bounds is opposite to that of the standard deviation of the SF.
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Fig. 2. Lower and upper bounds of the average rate. Solid lines without marks denote the Monte simulation. Solid lines marked with diamonds and circles
represent the lower and upper bound, respectively. Dashed lines stand for the approximate mean of the SINR in the logarithmic domain.

Fig. 3. Variation of ρmin .

Fig. 4. Variation of
(

ĉ(3)
Z2

)
min

.

B. Restriction Condition of NIG Approximation

The restriction condition ρ > 1 of the NIG approximation is
verified in this subsection. The calculations of ρ are conducted
for 10000 UEs uniformly distributed within the serving cell,
and the minimum of them ρmin is shown in Fig. 3(a), Fig. 3(b),
and Fig. 3(c) in terms of the standard deviation of the SF, path
loss exponent and SF correlation coefficient, respectively. In
Fig. 3(a), the SF RVs are independent and have the same stan-
dard deviation, and the path loss exponent is 3.76. It can be seen
that ρmin is larger than 1 for different ISDs, and ρmin changes
little with ISD. In Fig. 3(b), the SF RVs are independent and
the standard deviations of them are 8dB. It is shown that the
restriction condition of the NIG distribution is satisfied for dif-
ferent ISDs, and the ISD also has little impact on ρmin . The
standard deviations of the SF RVs are 8dB and the path loss
exponent is 3.76 in Fig. 3(c). It can be observed that ρmin is

more than 1 for different ISDs, and ρmin does not change much
with ISD. Therefore, the distribution of the SINR in the loga-
rithmic domain for any UE in the serving cell is allowable to
be approximated as the NIG distribution, and the ISD has little
impact on ρmin .

C. Skewness of SINR in Logarithmic Domain

In this subsection, it is verified that the skewness of the SINR
in the logarithmic domain Z is negative in cellular networks.
The computations of the approximate third cumulant ĉ(3)

Z2
of

the interference plus noise in the logarithmic domain Z2 are
conducted for 10000 UEs uniformly distributed in the serv-

ing cell, and the minimum of them
(

ĉ(3)
Z2

)
min

is depicted in

Fig. 4(a), Fig. 4(b) and Fig. 4(c) versus the standard deviation
of the SF, path loss exponent and SF correlation coefficient,
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Fig. 5. CDFs of the Monte Carlo simulation, lognormal approximation and NIG approximation for cases I∼III. The data in the horizontal axis denote the values
of Z.

respectively. In Fig. 4(a), the SF RVs are independent and
have the same standard deviation, and the path loss exponent

is 3.76. It can be found that
(

ĉ(3)
Z2

)
min

is positive for different

ISDs. Moreover,
(

ĉ(3)
Z2

)
min

increases with standard deviation

of the SF. Considering the fact that the third cumulant of the
Gaussian RV is zero, the distribution of Z2 deviates more from
the Gaussian distribution with the increase of standard devia-
tion of the SF. Therefore it is not feasible to assume Z to be a
Gaussian RV when the standard deviations of the SF are large.
In Fig. 4(b),the SF RVs are independent and the standard devia-

tions of them are 8dB. It can be observed that
(

ĉ(3)
Z2

)
min

is larger

than zero for different ISDs. The standard deviations of the SF
RVs are 8dB and the path loss exponent is 3.76 in Fig. 4(c). It

is shown that
(

ĉ(3)
Z2

)
min

is more than zero for different ISDs.

Moreover,
(

ĉ(3)
Z2

)
min

decrease with SF correlation coefficient.

Thus Z is more likely to be a Gaussian RV when the SF corre-
lation coefficient is large. In summary, the third cumulant of Z2
is positive for any UE in the cell range. As the third cumulant
of Z is the opposite of that of Z2, the skewness of Z is negative.

D. Performance of NIG Approximation

The performances of the lognormal approximation, Pearson
type IV approximation [23] and NIG approximation are com-
pared in this subsection. The ISD is 1732m, and the Monte
Carlo simulation with 5000000 trials is conducted for com-
parison. The start point of computing the parameters of the
MGF-based lognormal approximation [17], [26] to the inter-
cell interference plus noise is specified by the Wilkinson’s
method [40]. The RMSE performances of the CDF F̂ (t) of the
SINR based on the NIG approximation and approximate CDF
F̃ (t) derived in this paper are also presented. When the SF RVs
are independent, the following seven cases are examined.

• Case I, η = 2, σ0 = σ1 = . . . = σL = 8dB.
• Case II, η = 3, σ0 = σ1 = . . . = σL = 8dB.
• Case III, η = 4, σ0 = σ1 = . . . = σL = 8dB.
• Case IV, σ0 = σ1 = . . . = σL = 4dB, η = 3.76.
• Case V, σ0 = σ1 = . . . = σL = 8dB, η = 3.76.
• Case VI, σ0 = σ1 = . . . = σL = 12dB, η = 3.76.
• Case VII, σ0 = σ1 = 8dB, σ2 = 4dB, σ3 = 6dB, σ4 =

7dB and σ5 = σ6 = 10dB, η = 3.76.

Cases I∼III take the variation of the path loss exponent
into account, while cases IV∼VII consider the variation of the
standard deviation of the SF.

The results for cases I∼III are shown in Fig. 5. The log-
normal approximation does not work well for different UE
locations, while the Pearson type IV approximation and NIG
approximation can always get the satisfactory performance.
Fig. 6 depicts the results for cases IV∼VII. The Pearson type
IV approximation and NIG approximation can always get the
satisfactory performance. The performance of the lognormal
approximation is similar to that of the Pearson type IV approx-
imation and NIG approximation when the standard deviations
of the SF are small. When the standard deviations of the SF
are large, the lognormal approximation significantly deviates
from the Monte Carlo simulation. This is in accordance with the
results in Fig. 4(a). The performance of the lognormal approxi-
mation is also poor when the standard deviations of the SF are
different.

To illustrate the impact of the SF correlation coefficient, the
following two cases are investigated:

• Case VIII, σ0 = σ1 = . . . = σ6 = 8dB, η = 3.76, ζ =
0.2.

• Case IX, σ0 = σ1 = . . . = σ6 = 8dB, η = 3.76, ζ = 0.6.
The results are depicted in Fig. 7. The Pearson type IV approx-
imation and NIG approximation can get the better performance
than the lognormal approximation when the SF correlation
coefficient is small. When the SF correlation coefficient is large,
the performance of the lognormal approximation becomes
better. This is in accordance with the results in Fig. 4(c).

The Kullback–Leibler divergence [41] of the lognormal
approximation, Pearson type IV approximation and NIG
approximation from the Monte Carlo simulation for UE1, UE2
and UE3 is presented in Table III, IV and V, respectively. The
performance of the lognormal approximation is sensitive to the
standard deviation of the SF, while the performances of the
Pearson type IV approximation and NIG approximation are
robust to the UE location, path loss exponent, SF correlation
coefficient and standard deviation of the SF. The superiority
of the NIG approximation over the Pearson type IV approx-
imation can be found from the Kullback–Leibler divergence
performance. The NIG approximation is more accurate than
the Pearson type IV approximation, and the performance of
the NIG approximation is more robust to the UE location,
path loss exponent, SF correlation coefficient and standard
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Fig. 6. CDFs of the Monte Carlo simulation, lognormal approximation and NIG approximation for cases IV∼VII. The data in the horizontal axis represent the
values of Z .

Fig. 7. CDFs of the Monte Carlo simulation, lognormal approximation and NIG approximation for cases VII∼IX. The data in the horizontal axis denote the
values of Z.

deviation of the SF. When the SF correlation coefficient is
small or the standard deviations of the SF are large or differ-
ent, the NIG approximation is up to one order of magnitude
more accurate than the Pearson type IV approximation and at
least one order of magnitude more accurate than the lognormal
approximation.

Table VI and VII present the RMSE between F̂ (t) which is
computed through numerical integration and the Monte Carlo

simulation and RMSE between F̃ (t) and the Monte Carlo
simulation, respectively. Numerical results show that the perfor-
mance of F̃ (t) is robust to the UE location, path loss exponent,
SF correlation coefficient and standard deviation of the SF. If
the approximation is considered to be accurate when the RMSE
is in the order of 0.001, the CDF of the SINR can be well
approximated as (52) that is more tractable than the numerical
computation and Monte Carlo simulation.
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TABLE III
KULLBACK–LEIBLER DIVERGENCE OF THE LOGNORMAL

APPROXIMATION, PEARSON TYPE IV APPROXIMATION AND NIG
APPROXIMATION FOR UE1

TABLE IV
KULLBACK–LEIBLER DIVERGENCE OF THE LOGNORMAL

APPROXIMATION, PEARSON TYPE IV APPROXIMATION AND NIG
APPROXIMATION FOR UE2

TABLE V
KULLBACK–LEIBLER DIVERGENCE OF THE LOGNORMAL

APPROXIMATION, PEARSON TYPE IV APPROXIMATION AND NIG
APPROXIMATION FOR UE3

TABLE VI
RMSE BETWEEN F̂ (t) AND THE MONTE CARLO SIMULATION

TABLE VII
RMSE BETWEEN F̃ (t) AND THE MONTE CARLO SIMULATION

VI. CONCLUSIONS

For OFDMA-based cellular networks where the distance-
dependent path loss and SF are considered, the closed-form
approximation for the lower and upper bounds of the down-
link average rate has been presented, and the distribution of
the downlink SINR in the logarithmic domain has been pro-
posed to be approximated as the NIG distribution. The lower
bound of the average rate has been expressed in terms of the
analytical approximate mean of the SINR in the logarithmic
domain, and the upper bound of the average rate has been pre-
sented through the value of the analytical approximate MGF
M̂Z (s) of the SINR in the logarithmic domain Z at s = −1

/
3 .

The parameters of the NIG approximation have been com-
puted explicitly through the closed-form approximation for the
mean, variance, skewness and kurtosis of the SINR in the
logarithmic domain. The closed-form expression for the CDF
of the SINR based on the NIG approximation has also been
obtained in terms of exponential functions and error functions.
Simulation results have verified the tightness of the lower and
upper bounds of the average rate. For the UEs near to the
BS, the lower bound almost coincides with the Monte Carlo
simulation, and the performance of the approximate mean of
the SINR in the logarithmic domain is similar to that of the
lower bound. For the UEs at the cell edge and in the middle
of cell, both the lower and upper bound are quite tight. The
feasibility and accuracy of the NIG approximation have also
been verified through simulation results. Compared to the per-
formances of the lognormal approximation and Pearson type
IV approximation, the performance of the NIG approxima-
tion is more robust to the UE location, path loss exponent,
SF correlation coefficient and standard deviation of the SF.
When the SF correlation coefficient is large or the standard
deviations of the SF are small, the lognormal approximation,
Pearson type IV approximation and NIG approximation have
the similar performance. When the SF correlation coefficient
is small or the standard deviations of the SF are large or dif-
ferent, the NIG approximation is up to one order of magnitude
more accurate than the Pearson type IV approximation and at
least one order of magnitude more accurate than the lognormal
approximation. Besides, it has been verified through simulation
results that the closed-form expression for the CDF of the SINR
based on the NIG approximation can always get the satisfactory
performance.
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APPENDIX A
PROOF OF THEOREM 4

To obtain the approximate upper bound of the average rate,
the following inequality is proved at first:

ln (1 + x) ≤ 9
/

8 x1/3 , x ≥ 0. (53)

For x = 0, (53) is obvious. For x > 0, (53) is equivalent to

g (x) = ln (1 + x) − 9
/

8 x1/3 ≤ 0, x > 0. (54)

Next, the sign of the first derivative of g (x) is analyzed to
present the monotonicity of g (x). Then the maximum value
of g (x) is solved to prove that g (x) is negative in the range of
(0,+∞).

The first derivative of g (x) is

h (x) = 1

1 + x
− 3

/
8 x−2/3 = 8x2/3 − 3 (1 + x)

8 (1 + x) x2/3
. (55)

It can be seen that the denominator of h (x) is positive. Let the
numerator of h (x) represented as r (x) = 8x2/3 − 3 (1 + x).
The first derivative of r (x) is u (x) = 16

/
3 x−1/3 − 3. As

u (x) > 0, x ∈
(

0,

(
16

9

)3
)

, (56a)

u (x) = 0, x =
(

16

9

)3

, (56b)

u (x) < 0, x ∈
((

16

9

)3

,+∞
)

, (56c)

r (x) monotonically increases when x <
(

16
9

)3
, and monoton-

ically decreases when x >
(

16
9

)3
. Note that

r (x) |x→0+0 = −3 < 0, (57a)

r

((
16

9

)3
)

≈ 5.43 > 0, (57b)

r (x) |x→+∞ = lim
x→+∞

8 − 3
(
x−2/3 + x1/3

)
x−2/3

= −∞, (57c)

thus there exist two zero points of r (x) in the range of (0,+∞).
Denote the smaller and larger zero point as e1 and e2, respec-

tively. e1 is in the range of

(
0,
(

16
9

)3
)

, and e2 locates in the

range of

((
16
9

)3
,+∞

)
. Furthermore,

r (x) < 0, x ∈ (0, e1) or x ∈ (e2,+∞) , (58a)

r (x) > 0, e1 < x < e2. (58b)

From the above analysis, the curve of r (x) can be intuitively
plotted in Fig. 8. The sign of h (x) is the same with that of
r (x), therefore

g (x) < g (0) = 0, x ∈ (0, e1) , (59a)

g (x) ≤ g (e2) , x ∈ [e1, e2] , (59b)

g (x) < g (e2) , x ∈ (e2,+∞) . (59c)

Fig. 8. Intuitive curve of r(x).

The zeros of r (x) can be obtained by solving the equation

8x2/3 − 3 (1 + x) = 0. (60)

Taking the substitution t = x
1
3 > 0, (60) can be rewritten as

3t3 − 8t2 + 3 = 0. (61)

Using the Shengjin’s formula [42], the two positive solutions of
(61) can be given by

t1 =
8 + 8

[
cos arccos(−295/1024 )

3 − √
3 sin arccos(−295/1024 )

3

]
9

,

(62a)

t2 =
8 + 8

[
cos arccos(−295/1024 )

3 + √
3 sin arccos(−295/1024 )

3

]
9

.

(62b)

Then

e1 = t3
1 ≈ 0.367048, e2 = t3

2 ≈ 15.768691. (63)

With the value of e2 in (63), the value of g (x) at e2 can be
presented as g (e2) ≈ −0.001582 < 0. Thus g (x) is negative
in the range of (0,+∞).

With the inequality (53), the upper bound of the average rate
can be given by

R ≤ RU = E
[
9
/

8 e1/3 Z
]

= 9
/

8 MZ (s)|s=−1/3 . (64)

Replacing the MGF MZ (s) of Z with its approximation
M̂Z (s), (34) can be obtained.

APPENDIX B
PROOF OF THEOREM 6

Based on (51), (46) can be approximated as

F̃ (t) =
∫

x∈A
fX (x)

{
1 − 1

2

M∑
k=1

ak exp

[
−bkt2

x

2x

]}
dx

+
∫

x∈B
fX (x)

{
1

2

M∑
k=1

ak exp

[
−bkt2

x

2x

]}
dx, (65)
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where

tx = t − μ̂ − β̂x (66a)

A = {x : tx ≥ 0} ∩ (0,+∞) , B = {x : tx < 0} ∩ (0,+∞) .

(66b)

When t is no less than μ̂, tx is positive for any x ∈ (0,+∞),
thus F̃ (t) can be rewritten as

F̃ (t) =
∫ +∞

0
fX (x)

[
1 − 1

2

M∑
k=1

ak exp

(
−bkt2

x

2x

)]
dx

= 1 − E2, (67)

where

E2 = 1

2

δ̂√
2π

exp
(
δ̂γ
) M∑

k=1

ak exp
(

bk β̂
2q
)

E2,k, (68a)

E2,k =
∫ +∞

0
x−3/2 exp

(
− A2

k

2
x−1 − B2

k

2
x

)
dx . (68b)

Take the substitution u = x−1/2 , then E2,k can be rewrit-
ten as

E2,k = 2
∫ +∞

0
exp

(
− A2

k

2
u2 − B2

k

2
u−2

)
du

=
√

2π

Ak
exp (−Ak Bk) . (69)

The last equality follows from the formula [18]∫ +∞

0
exp

(
−ax2 − bx−2

)
dx = 1

2

√
π

a
exp

(
−2

√
ab
)

.

Thus

E2 = 1

2
δ̂ exp

(
δ̂γ
) M∑

k=1

ak

Ak
exp

(
qβ̂2bk − Ak Bk

)
. (70)

When t is less than μ̂, tx is positive for x > q, and negative for
x < q, thus F̃ (t) can be rewritten as

F̃ (t) =
∫ +∞

q

δ̂√
2π

x−3/2 exp

(
δ̂γ − δ̂2

2
x−1 − γ 2

2
x

)

·
[

1 − 1

2

M∑
k=1

ak exp

(
−bkt2

x

2x

)]
dx

+
∫ q

0

δ̂√
2π

x−3/2 exp

(
δ̂γ − δ̂2

2
x−1 − γ 2

2
x

)

·
[

1

2

M∑
k=1

ak exp

(
−bkt2

x

2x

)]
dx = E3 − E4 + E5,

(71)

where

E3 =
∫ +∞

q

δ̂√
2π

x−3/2 exp

(
δ̂γ − δ̂2

2
x−1 − γ 2

2
x

)
dx,

(72a)

E4 = 1

2

δ̂√
2π

exp
(
δ̂γ
) M∑

k=1

ak exp
(

bk β̂
2q
)

E4,k, (72b)

E4,k =
∫ +∞

q
x−3/2 exp

(
− A2

k

2
x−1 − B2

k

2
x

)
dx, (72c)

E5 = 1

2

δ̂√
2π

exp
(
δ̂γ
) M∑

k=1

ak exp
(

bk β̂
2q
)

E5,k, (72d)

E5,k =
∫ q

0
x−3/2 exp

(
− A2

k

2
x−1 − B2

k

2
x

)
dx . (72e)

Using the substitution u = x−1/2 , E3 can be rewritten as

E3 = 2
δ̂√
2π

exp
(
δ̂γ
) ∫ 1√

q

0
exp

(
− δ̂2

2
u2 − γ 2

2
u−2

)
du

= 1

2
exp

(
δ̂γ
) [

exp
(
δ̂γ
)

erf (V1) + exp
(
−δ̂γ

)
erf (V2)

− exp
(
δ̂γ
)

+ exp
(
−δ̂γ

)]
= 1

2
[1 + erf (V2)] − 1

2
exp

(
2δ̂γ

)
erfc (V1) . (73)

The second equality results from the formula [18]∫
exp

(
−a2x2 − b2x−2

)
dx

=
√

π

4a

[
exp (2ab) erf

(
ax + bx−1

)
+ exp (−2ab) erf

(
ax − bx−1

)]
+ c, a �= 0,

where c is a constant. Similarly, E4,k and E5,k can be
expressed as

E4,k = 2
∫ 1√

q

0
exp

(
− A2

k

2
u2 − B2

k

2
u−2

)
du

=
√

2π

2Ak

[
exp (Ak Bk) erf (Ck) + exp (−Ak Bk) erf (Dk)

− exp (Ak Bk) + exp (−Ak Bk)
]

=
√

2π

2Ak
exp (−Ak Bk) [1 + erf (Dk)]

−
√

2π

2Ak
exp (Ak Bk) erfc (Ck) , (74a)

E5,k = 2
∫ +∞

1√
q

exp

(
− A2

k

2
u2 − B2

k

2
u−2

)
du

=
√

2π

2Ak

[
exp (Ak Bk) erfc (Ck)

+ exp (−Ak Bk) erfc (Dk)
]
, (74b)

respectively. Thus

−E4+E5=1

2

δ̂√
2π

exp
(
δ̂γ
) M∑

k=1

ak exp
(

bk β̂
2q
) (

E5,k−E4,k
)
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=1

2
δ̂ exp

(
δ̂γ
) M∑

k=1

ak

Ak
exp

(
qβ̂2bk

)
· [exp (Ak Bk) erfc (Ck) − exp (−Ak Bk) erf (Dk)

]
.

(75)
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