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ABSTRACT The orbital angular momentum (OAM) technology is able to provide a new degree of
freedom for wireless communication systems. The energy of OAM waves is focused within a circle region
surrounding the beam axis, which makes the propagation gains inside and outside the circle region different.
However, in the existing literature, the propagation gains inside and outside the circle region are assumed
to be the same. Therefore, the impact of OAM waves’ spatial energy distribution on the capacity of OAM
wireless communication systems has not been fully investigated. Considering the spatial energy distribution
characteristics of OAM waves, in this paper, an OAM wireless channel model is proposed. Based on the
proposed OAMwireless channel model, the capacity of OAM-basedmultiple-input multiple-output (MIMO)
communication system is analytically derived. Simulation results indicate that the capacity of
OAM-based MIMO system outperforms the capacity of conventional MIMO system when the transmission
distance is larger than a specific threshold. Our results provide a basic capacity model for OAM-based
MIMO communication systems.

INDEX TERMS Orbital angular momentum (OAM), wireless channel model, multiple-input multiple-
output (MIMO), capacity.

I. INTRODUCTION
With the explosive growth of wireless throughput, improving
wireless capacity has become one of the main goals in the
future fifth generation (5G) communication systems [1]–[6].
Different multiplexing schemes, such as time division mul-
tiplexing, frequency division multiplexing and spatial divi-
sion multiplexing have been widely employed to improve
the wireless capacity in current wireless communication
systems [7]. In addition to these conventional multiplexing
schemes which utilize degrees of freedom in time, frequency
and space domains, the orbital angular momentum (OAM)
technology is able to provide a new degree of freedom, i.e.,
the OAM state for wireless communications. There exists a
potentially revolutionary improvement in wireless capacity
when the OAM technology is used for 5G wireless com-
munication systems. Different from the propagation pat-
terns of conventional electromagnetic waves, the energy of

OAMwaves is focused within a circle region surrounding the
beam axis, which leads to different propagation gains inside
and outside the circle region. Precisely modeling the capacity
of OAM wireless communication systems considering prop-
agation gain features is one of the key issues to apply the
OAM technology for the 5G wireless communication
systems.

It is well known that electromagnetic waves carry both lin-
ear momentum and angular momentum. The angular momen-
tum is divided into the spin angular momentum (SAM)
and the OAM. The SAM, which is associated with the polar-
ization of electromagnetic waves, has only two orthogonal
states [8]. Compared with the SAM, the OAM is associ-
ated with the spatial distribution of electromagnetic waves
and has unbounded eigenstates, i.e., OAM states [9]. Since
Allen et al. recognized the light beams with the trans-
verse azimuthal phase distribution carry the OAM [10], the
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application of OAM waves has become an attrac-
tive solution for improving the communication systems’
capacity [11]–[15]. In optical communications, it was demon-
strated that OAM waves with different OAM states can
be multiplexed to achieve the capacity of Tbps and high
spectral efficiency [16]. In [17] the trench-assisted multi-
OAMmulti-ring fiber was designed to enable Pbps (1015bps)
total transmission capacity and hundreds bit/s/Hz spectral
efficiency. Besides the OAM technology used for optical
communications, the OAM technology has been explored
to improve the capacity of wireless communications in
microwave andmillimeter wave frequencies [18]–[23]. It was
shown that OAMwaves can be generated by uniform circular
array (UCA) and used in wireless communications [18]. The
experiments in Venice demonstrated that two radio signals
with different OAM states can be transmitted and received
simultaneously on the same frequency [19]. Since then, the
comparison between OAM wireless communication systems
and other conventional wireless communication systems have
been extensively studied. Considering the configuration of
UCA in free space environments, Ove et al., indicated that
the capacity over sub-channels given by OAM states is a
subset of solutions offered by the conventional multi-input
multi-output (MIMO) method [20]. Cagliero indicated that
OAM systems and MIMO systems offer the same perfor-
mance when the transmitting UCA and receiving UCA are
on-axis, but small misalignments between the OAM trans-
mitting and receiving arrays severely degrade the system
performance [21]. The results in [22] showed that the capacity
of line of sight (LoS) MIMO systems is enhanced by OAM
waves when the number of receiving antennas of receiving
UCA is larger than the number of transmitting antennas
of transmitting UCA. In [23] an OAM-based MIMO com-
munication system was proposed to achieve an adequate
capacity when uniform linear array (ULA) with traveling-
wave antennas is equipped at the transmitter.

However, in the above studies on OAM wireless com-
munication systems, the OAM wireless channels have been
assumed as the free space channels with equal gains in
different propagation directions, i.e., the propagation gains
inside and outside the circle region have been assumed to
be the same [23]. This assumption is against with the spa-
tial energy distribution of OAM waves where the energy of
OAM waves is focused within a circle region surrounding
the beam axis [24]–[26]. Therefore, it is an important issue
to evaluate the capacity of OAM wireless communication
systems considering the spatial energy distribution character-
istics of OAM waves.

Based on the spatial energy distribution characteristics
of OAM waves, in this paper the OAM wireless channel
is first modeled. Furthermore, the capacity of OAM-based
MIMO communication system is analytically derived based
on the proposed OAM channel model. Simulation results
indicate that the capacity of OAM-based MIMO system out-
performs the capacity of conventional MIMO system when
the propagation distance is larger than a specific threshold.

FIGURE 1. System model.

The rest of this paper is organized as follows. In Section II,
the OAM-based MIMO communication system model is
introduced, the OAM wireless channel is modeled, and the
capacity of OAM-based MIMO communication systems is
derived based on the proposed OAMwireless channel model.
In Section III, simulation results are analyzed. In the end,
conclusions are drawn in Section IV.

II. SYSTEM MODEL
In this section, based on the spatial energy distribution char-
acteristics of OAM waves, an OAM-based MIMO com-
munication system is illustrated and the OAM wireless
channel is modeled. Then, the capacity of the OAM-based
MIMO communication system is derived based on the pro-
posed OAM wireless channel model.

A. OAM-BASED MIMO SCHEME
The system model is illustrated in Fig. 1. The transmitter
is equipped with a ULA consisting of N transmitting anten-
nas. The receiver is also equipped with a ULA consist-
ing of M receiving antennas. The transmitting antennas are
traveling-wave antennas equipped with carefully designed
reflectors [27]–[29]. Traveling-wave antennas can generate
OAM waves and sophisticated reflector can help to focus
OAM waves with different OAM states and improve the
directivity of radiated waves [28]. The OAM waves gen-
erated by different antennas have different OAM states,
which makes OAM waves orthogonal to each other. Besides,
OAM waves with different OAM states generated by
traveling-wave antennas with reflectors in [28] have much
higher directivity and much closer divergence angels than
OAM waves generated by transmitter without reflectors
in [18]. Thus, different OAM waves can have approximate
sizes of the circle regions due to their approximate divergence
angles. In this case, circle regions of different OAM waves
are assumed to have the same size in this paper. As shown
in Fig. 1, the nth (1 ≤ n ≤ N ) transmitting antenna is denoted
as Txn and the mth (1 ≤ m ≤ M) receiving antenna is
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denoted as Rxm. The transmitting antenna array and receiving
antenna array are assumed to be parallel with each other.
Meanwhile, the receiving antenna Rxm is configured at the
circle region of theOAMwave transmitted by the correspond-
ing transmitting antenna Txn when m = n. Thus the distance
between Txn and Rxm with m = n is the same as the distance
between Txj (1 ≤ j ≤ N ) and Rxk (1 ≤ k ≤ M) with k = j
considering the same radii of OAM waves’ circle regions
between all the transmitting and receiving antennas.

The cylindrical coordinate system (r, φ, z) is utilized to
indicate locations of antennas in Fig. 1. The distance among
adjacent transmitting or receiving antennas is configured as
the same. Assuming Txn as the origin of the cylindrical
coordinate system, the coordinate of Txj is expressed as
((j− n) ξ, 0, 0), where ξ is the distance between two adjacent
transmitting antennas or receiving antennas. The location
of Rxm with m = n is expressed by

(
rmax (z) , π2 , z

)
, where

rmax (z) is the radius of the circle region at the position of z.
Furthermore, the azimuth between Rxm and Txn is written as

φmn =


arctan

rmax (z)
|m− n| ξ

, n < m

π − arctan
rmax (z)
|m− n| ξ

, n > m

π/2, n = m.

(1)

Therefore, the coordinate of Rxm is expressed as
(rmn, φmn, z) with rmn denoted by

rmn =
√
(|m− n| ξ)2 + r2max (z). (2)

With the obtained coordinates, the transmission distance
between Rxm and Txn is derived as

dmn =
√
z2 + (m− n)2ξ2 + r2max (z). (3)

B. OAM WIRELESS CHANNEL MODELS
In Fig. 1, the signal received by the receiving ULA is
expressed as

Y = HX+W, (4)

where Y = [y1, . . . , ym, . . . , yM ]T ∈ CM×1 is the received
signal vector and ym (1 ≤ m ≤ M) is the signal received by
the receiving antenna Rxm. X = [x1, . . . , xn, . . . , xN ]T ∈
CN×1 is the transmitted signal vector and xn (1 ≤ n ≤ N )
is the signal transmitted by the transmitting antenna Txn.
W = [w1, . . . ,wm, . . . ,wM ]T ∈ CM×1 is the additive
white Gaussian noise (AWGN) vector. The entries of W are
assumed to be independent and identically distributed (i.i.d)
complexGaussian randomvariableswith zero-mean and vari-
ance σ 2

n . The channel matrix H =
[
Hl

1, . . . ,H
l
n, . . . ,H

l
N

]
∈

CM×N represents the channel response between the receiv-
ing antennas and transmitting antennas with the OAM
state l, where Hl

n =
[
hl1n, . . . , h

l
mn, . . . , h

l
Mn

]T
∈ CM×1

is the channel response between all the receiving anten-
nas and the transmitting antenna Txn. hlmn is the channel
response between Rxm and Txn. Considering the location

of the receiving antenna Rxm, the channel response between
Rxm and Txn is modeled in following two cases:
Case 1: when m = n, the receiving antenna Rxm is located

within the circle region of the OAM wave generated by
the transmitting antenna Txn. The channel response between
Rxn and Txn is expressed as

hlnn = B
λ

4πdnn
e−ikdnne−i

π
2 l, (5)

where B is the channel gain coefficient which represents
the variation of attenuation and phase during the wireless
propagation, λ is the wavelength, k = 2π/λ is the wave num-
ber, dnn is the distance between Rxn and Txn and calculated
based on (3), e−i

π
2 l is the OAM wave helical phase term with

l being the OAM state [30]. Based on (5), the OAM signal
propagates within a circle region. Moreover, the OAM signal
propagation within the circle region follows the Friis Formula
and the OAM signal attenuates with the inverse square of
the transmission distance [24]. Hence, B is configured as a
constant in this paper.
Case 2: when m 6= n, the receiving antenna Rxm is located

outside the circle region of the OAM wave generated by
the transmitting antenna Txn. The channel response between
Rxm and Txn is expressed as

hlmn = Bmn
λ

4πdmn
e−ikdmne−ilφmn , (6)

where Bmn is the channel gain coefficient between Rxm
and Txn. Because the receiving antenna Rxm locates outside
the circle region of the OAM wave transmitted by Txn, the
attenuation of the OAM signal between Rxm and Txn does not
follow the inverse square of the transmission distance. There-
fore, the channel gain coefficient Bmn should be modeled by
the spatial energy distribution characteristics of OAMwaves.

The intensity of the OAMwave generated by the traveling-
wave antenna is focused within the circle region [27]. Along
with the helical phase front, the OAM wave is described by
the Laguerre-Gaussian beams [11], [24]. In cylindrical coor-
dinate system, the Laguerre-Gaussian beams are expressed
by

u (r, φ, z) = α

√
p!

π (p+ |l|)!
1

w (z)

(
r
√
2

w (z)

)|l|
e
−

(
r

w(z)

)2

×L |l|p

(
2r2

w2 (z)

)
e−i

πr2
λR(z) ei(|l|+2p+1)ψ(z)e−ilφ,

(7a)

with

R (z) = z

1+ (πw2
l

λz

)2
, (7b)

w (z) = wl

√
1+

(
z
zR

)2

, (7c)

where the term α

√
p!

π(p+|l|)! is a normalized constant, p is the

radial index which represents the number of radial nodes
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in the intensity distribution. In generally, p is configured
as 0 for OAM-based MIMO communication systems [19].
w (z) is the radius where the amplitude falls into the 1

e of the

axial value at the position of z. zR =
πw2

l
λ

is the Rayleigh
distance and wl is the beam waist radius with the OAM
state l at z = 0. L |l|p

(
2r2

w2(z)

)
is the generalized Laguerre

polynomial. e−jlφ represents the helical phase distribution.
ψ (z) = arctan

(
z
zR

)
is the Gouy phase. The energy of the

OAM wave is focused in the circle region, which is charac-
terized by the Laguerre-Gaussian beam in (7). The radius of
the OAM circle region with the maximum energy strength is
denoted by

rmax (z) =

√
|l|
2
w (z) = wl

√√√√ |l|
2

(
1+

(
z
zR

)2
)
. (8)

As described in the system model, the radii of the
OAM waves’ circle regions corresponding to different trans-
mitting antennas are configured the same [23]. Assuming that
the beam waist wl1 with the OAM state l1 is constant, for
other OAM waves with OAM state ln (n 6= 1), the following
equation should be satisfied:

wl1

√√√√ |l1|
2

(
1+

(
z
zR

)2
)
= wln

√√√√ |ln|
2

(
1+

(
z
zR

)2
)
.

(9)

Substituting the Rayleigh distance zR =
πw2

l
λ

into (9),
(9) is transformed into

Aw4
ln − Bw

2
ln + C = 0, (10a)

with

A = w2
l1 |ln|π

2, (10b)

B = |l1| (π2w4
l1 + z

2λ2), (10c)

C = w2
l1 |ln| z

2λ2. (10d)

The beam waist wln with OAM state ln can be solved
by (10). Substituting wln into (7), the strength distribution
of OAM waves with OAM state ln is obtained. Meanwhile,
u (r, φ, z) in (7) can be regarded as the response of the OAM
electromagnetic wave in the cylindrical coordinate system
with the input of a unit pulse. When the OAM wave with
OAM state l is transmitted by the transmitting antenna Txn,
the response unn at the receiving antenna Rxm with m = n is
expressed as unn = hłnnx̂, where x̂ denotes the unit pulse input.
The response umn at the receiving antenna Rxm with m 6= n
is expressed as umn = hlmnx̂. Thus, the following proportion
relationship is derived as

umn
unn
=
hlmn
hlnn

. (11)

Based on channel response functions in (5) and (6), the
right side of (11) is written as

hlmn
hlnn
=

Bmn λ
4πdmn

e−ikdmne−ilnφmn

B λ
4πdnn

e−ikdnne−ilnφnn

=
Bmndnn
Bdmn

e−ik(dmn−dnn)e−iln(φmn−φnn). (12)

Based on the Laguerre-Gaussian beam in (7), the left side
of (11) is transformed into

umn
unn
=

α

√
1

π |ln|!
1

wn(z)
( rmn
√
2

wn(z)
)
|ln|
e−(

rmn
wn(z)

)2

α

√
1

π |ln|!
1

wn(z)
( rnn
√
2

wn(z)
)
|ln|
e−(

rnn
wn(z)

)2

×
e−i

πr2mn
λRn(z) ei(|ln|+1)ψn(z)e−ilnφmn

e−i
πr2nn
λRn(z) ei(|ln|+1)ψn(z)e−ilnφnn

=
(rmn)|ln|e

−( rmn
wn(z)

)2e−i
πr2mn
λRn(z) e−ilnφmn

(rnn)|ln|e
−( rnn

wn(z)
)2e−i

πr2nn
λRn(z) e−ilnφnn

=

(
rmn
rnn

)|ln|
e
−
r2mn−r

2
nn

w2n(z) e−i
π(r2mn−r

2
nn)

λRn(z)

× e−iln(φmn−φnn). (13)

Based on (12) and (13), the channel gain coefficient Bmn is
derived as

Bmn =
umn
unn

hlnn
4πdmn
λ

eikdmneilφmn

= B
dmn
dnn

(
rmn
rnn

)|ln|
e
−
r2mn−r

2
nn

w2n(z) e−i
π (r2mn−r

2
nn)

λRn(z)

× eik(dmn−dnn). (14)

Substituting (14) into (6), the channel response between
Rxm and Txn is expressed as

hlmn = B
λ

4πdnn

(
rmn
rnn

)|ln|
e
−
r2mn−r

2
nn

w2n(z) e−i
π(r2mn−r

2
nn)

λRn(z)

× e−ikdnne−ilnφmn . (15)

Considering the spatial distribution characteristics of OAM
waves, the OAM wireless channel model is modeled as (5)
and (15) for OAM-based MIMO communication systems.

C. CAPACITY OF OAM-BASED MIMO COMMUNICATION
SYSTEMS
To derive the capacity of the OAM-based MIMO communi-
cation system, as the first step, the singular value decompo-
sition (SVD) of the OAM channel matrix is expressed by

HOAM
MN = U6VH , (16)

where U ∈ CM×M and V ∈ CN×N are unitary matrixes and
U contains the left singular vectors of HOAM

MN , V contains the
right singular vectors of HOAM

MN , H is the conjugate transition
operation. 6 ∈ CM×N is a diagonal matrix with positive
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singular values δoam1 , δoam2 , δoam3 · · · δoamγ in decreasing order,
where γ is the rank of HOAM

MN .
For an OAM-based MIMO communication system, the

transmitted signal vector X can be expressed as the product
from of the unitary matrix V and a new vector X̃. Similarly,
we obtained another new vector Ỹ by multiplying received
vector Y with the unitary matrix UH . X and Ỹ are expressed
as

X = VX̃, (17)

Ỹ = UHY. (18)

Furthermore, we perform these operations on the
OAM-based MIMO communication system and these opera-
tions change nothing from a capacity point of view [31]. For
the OAM-based MIMO communication system, an equiva-
lent system is obtained and denoted by

Ỹ = UHY

= UH
(
HOAM

MN VX̃+W
)

= UHHOAM
MN VX̃+ UHW

= 6X̃+ W̃. (19)

When the new channel noise is calculated by W̃ = UHW,
the new channel noise vector has the same distribution as W
sinceU is unitary matrix. Based on the SVD of OAM channel
matrix, the capacity COAM of OAM-based MIMO communi-
cation system at the transmitter is expressed as

COAM (P) =
γ∑
i=1

log2

(
1+

Pi

σ 2
n /
(
δmimoi

)2
)
, (20)

where σ 2
n is the receiver noise variance and the sum of all

the available power P is assumed to be distributed across the
channels based on the water-filling principle, such that

P =
γ∑
i=1

Pi. (21)

Besides, the condition number of OAM channel matrix
HOAM

MN is defined as

kOAM = cond
(
HOAM

MN

)
=

max
(
δoami

)
min

(
δoami

) . (22)

In generally, the wireless channel is the better when the value
of kOAM is nearer to 1 [22], [32].

For the conventional MIMO communication systems, the
channel response between Rxm and Txn is expressed as

hMIMO
mn = B

λ

4πdmn
e−ikdmn . (23)

Without loss of generality, in this paper the transmitting
antennas are configured as omnidirectional antennas for
conventional MIMO communication systems. The channel
gain coefficient is configured as a constant in conventional
MIMO communication systems. It is easy to be found that
OAM-basedMIMO communication system and conventional

MIMO communication system only differ in the type of trans-
mitting antennas in this paper. The OAM wave is transmitted
by traveling-wave antennas in OAM-based MIMO commu-
nication systems. The plane wave is transmitted by ordinary
antennas in conventional MIMO communication systems.
Hence, the process of calculating the capacity of MIMO
communication systems is the same with that of OAM-based
MIMO communication systems. Therefore, the capacity of
MIMO communication system is obtained by replacing the
OAM-based MIMO channel matrix HOAM

MN with the MIMO
channel matrix HMIMO

MN when the SVD method is adopted.
The corresponding capacity CMIMO of MIMO communica-
tion systems at the transmitter is expressed as

CMIMO (P) =
γ∑
i=1

log2

(
1+

Pi

σ 2
n /
(
δoami

)2
)
, (24)

where δmimoi denotes the ith positive singular values of
δmimo1 , δmimo2 , δmimo3 · ··, δmimoγ in decreasing order, γ is the
rank of HMIMO

MN .
For MIMO communication systems, the condition num-

ber [22], [32] of channel matrix HMIMO
MN is expressed as

kMIMO
= cond

(
HMIMO

MN

)
=

max
(
δmimoi

)
min

(
δmimoi

) . (25)

III. SIMULATION RESULTS AND DISCUSSIONS
In this section, the propagation gains inside and outside the
circle region of OAM waves are considered and compared
for both the proposed OAM wireless channel model and
the conventional OAM wireless channel model. Besides,
based on the proposed capacity model of OAM-based
MIMO communication system, the system performance of
OAM-based MIMO, conventional OAM and conventional
MIMO communication systems is compared and analyzed.
To simplify simulations, the number of transmitting anten-
nas is configured to be equal to the number of receiving
antennas. The default simulation parameters are configured
as follows: the carrier frequency is 70 GHz and λ is the
corresponding carrier wavelength. The transmission signal-
to-noise ratio (SNR) is configured as 20 dB. The distance
between adjacent antennas, i.e., the antenna spacing ξ is
configured as 10λ. The beam waist of the first transmitting
antenna is 2λ. TheOAMstates of transmittedOAMwaves are
evenly distributed with an OAM state interval1L configured
as 20. When the antenna array is configured as 4 × 4, the
OAM states of OAMwaves radiated from transmitting anten-
nas are l1 = −30, l2 = −10, l3 = 10, l4 = 30.
Fig. 2 illustrates the propagation gains inside and outside

the circle region for both the proposedOAMand conventional
OAM wireless channel models. In Fig. 2(a), |h11|2 is used
as the propagation gain inside the circle region. In Fig. 2(b),
|hm5|2 is used as the propagation gain. In this case, m denotes
the mth receiving antenna and |hm5|2 denotes the propagation
gain between the 5th transmitting antenna and all the receiv-
ing antennas. Therefore, |h55|2 is the propagation gain inside
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FIGURE 2. Propagation gains inside and outside the circle region for the
OAM-based MIMO and the conventional OAM wireless channel models.
(a) Propagation gain inside the circle region; (b) Propagation gain
outside the circle region.

the circle region and |hm5|2 is the propagation gain outside
the circle region when m 6= 5. When m is closer to 5, the
mth receiving antenna is closer to the circle region of
OAM wave generated by the 5th transmitting antenna. From
Fig. 2(a), it can be seen that the propagation gains inside
the circle region remain the same for the proposed and con-
ventional OAM channel models with the increase of the
transmission distance. From Fig. 2(b), it can be seen that
the propagation gains outside the circle region are different
for the proposed and conventional OAM channel models.
Besides, the curve in Fig. 2(b) is a concave curve and the
propagation gain is maximized at m = 5, namely, the propa-
gation gain increases when m is closer to 5. Thus, because
the mth receiving antenna is closer to the circle region of
OAM wave generated by the 5th transmitting antenna when
m is closer to 5, Fig. 2(b) illustrates that the propagation gain
increases with the decrease of the distance from the circle
region.

Fig. 3 illustrates the capacity with respect to the trans-
mission distance considering OAM-based MIMO, con-
ventional OAM and conventional MIMO communication
systems. When the antenna array is fixed, the capacity of

FIGURE 3. Capacity with respect to the transmission distance considering
different antenna array configurations.

OAM-based MIMO, conventional OAM and conventional
MIMO communication systems always decrease with the
increase of the transmission distance. Moreover, the capacity
of OAM-based MIMO, conventional OAM and conventional
MIMO communication systems with 8 × 8 antenna array is
larger than the capacity of OAM-based MIMO, conventional
OAM and conventional MIMO communication systems with
4 × 4 antenna array. When the antenna array is configured
as 4 × 4 and the transmission distance is fixed, the capacity
of OAM-based MIMO communication systems is larger than
the capacity of both conventional OAM and conventional
MIMO communication systems. When the antenna array is
configured as 8 × 8 and the transmission distance is less
than 15 meters, the capacity of OAM-based MIMO com-
munication systems is less than the capacity of conventional
OAM communication systems. When the antenna array is
configured as 8 × 8 and the transmission distance is larger
than or equal to 15 meters, the capacity of OAM-based
MIMO communication systems is larger than or equal to
the capacity of conventional OAM communication systems.
When the antenna array is configured as 8 × 8 and the
transmission distance is less than 8 meters, the capacity of
OAM-based MIMO communication systems is less than the
capacity of conventional MIMO communication systems.
When the antenna array is configured as 8 × 8 and the
transmission distance is larger than or equal to 8 meters,
the capacity of OAM-based MIMO communication sys-
tems is larger than or equal to the capacity of conventional
MIMO communication systems.

Fig. 4 shows the capacity of OAM-based MIMO commu-
nication systems with respect to the transmission distance
considering different OAM state intervals. Without loss of
generality, the antenna array is configured as 4 × 4. When
the transmission distance is fixed, the capacity of OAM-based
MIMO communication systems increase with the increase
of OAM state intervals. Moreover, the impact of OAM state
intervals on the capacity becomes weaker as the transmission
distance increases.

When the transmission distance is configured as 50 meters,
Fig. 5 describes the capacity of OAM-based MIMO,
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FIGURE 4. Capacity of OAM-based MIMO communication systems with
respect to the transmission distance considering different OAM state
intervals.

FIGURE 5. Capacity with respect to the transmission SNR considering
different antenna array configurations.

conventional OAM and conventional MIMO communication
systems with respect to the transmission SNR considering
different antenna array configurations. When the antenna
array is fixed, the capacity increases with the increase of
transmission SNR. When the transmission SNR is fixed,
the capacity of OAM-based MIMO communication systems
is larger than the capacity of conventional OAM and con-
ventional MIMO communication systems. When the trans-
mission SNR is fixed, the capacity of OAM-based MIMO,
conventional OAM and conventional MIMO communication
systems with 8 × 8 antenna array is larger than the capacity
of OAM-based MIMO, conventional OAM and conventional
MIMO communication systems with 4× 4 antenna array.
Fig. 6 illustrates the capacity of OAM-based MIMO and

conventional MIMO communication systems with respect
to the transmission distance considering different antenna
spacings ξ . Without loss of generality, the antenna array is
configured as 4× 4. When the transmission distance is fixed,
the capacity of both OAM-based MIMO and conventional
MIMO communication systems increases with the increase
of the antenna spacing. When the antenna spacing is fixed,
the capacity of OAM-based MIMO communication systems

FIGURE 6. Capacity with respect to the transmission distance considering
different antenna spacings.

FIGURE 7. Capacity with respect to the number of transmitting antennas
considering different transmission distances.

is larger than the capacity of conventional MIMO communi-
cation systems.

Fig. 7 illustrates the capacity of OAM-based MIMO and
conventional MIMO communication systems with respect to
the number of transmitting antennas considering different
transmission distances. The number of receiving antennas
is configured to be equal to the number of transmitting
antennas in numerical simulations. When the transmission
distance is fixed, the capacity of OAM-based MIMO and
conventional MIMO communication systems increases with
the increase of the number of transmitting antennas. When
the number of transmitting antennas is fixed, the capacity of
OAM-basedMIMOand conventionalMIMOcommunication
systems decreases with the increase of the transmission dis-
tances. Besides, the capacity of OAM-basedMIMO system is
larger than the capacity of conventional MIMO system when
the transmission distance is larger than a specific threshold.
These thresholds in Fig. 7 increase with the increase of the
number of transmitting antennas in OAM-based MIMO and
conventional MIMO communication systems.

In Fig. 8, the average condition numbers of wireless chan-
nels with respect to the transmission distance is compared for
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FIGURE 8. Average condition number of wireless channels with respect
to the transmission distance.

OAM-basedMIMOand conventionalMIMOcommunication
systems. The antenna array is configured as 4 × 4 and the
transmission distance is an integral multiple of λ. When the
transmission distance is less than 300λ or larger than 505λ,
the average condition number of wireless channels in
OAM-based MIMO communication systems is less than the
average condition number of wireless channels in conven-
tional MIMO communication systems. Based on the result
in [32], wireless channels are more conducive to wireless
transmissions when the condition number of wireless channel
is close to 1, i.e., the wireless channel is well-conditioned.
Moreover, the channel becomes more sensitive to changes,
such as noise, when the condition number is bigger
than 1 [22]. Thus, when the transmission distance is less
than 300λ or larger than 505λ, OAM wireless channels are
more conducive to wireless transmissions than conventional
MIMO channels. When the transmission distance is between
305λ and 500λ, the average condition number of wireless
channels in OAM-based MIMO communication systems is
larger than the average condition number of wireless channels
in conventional MIMO communication systems. In this case,
conventional MIMO channels are more conducive to wireless
transmissions than OAM wireless channels.

IV. CONCLUSIONS
In this paper, an OAM wireless channel model has been
proposed based on the spatial energy distribution character-
istics of OAM waves. Moreover, the capacity of OAM-based
MIMO communication system has been derived based on the
proposed OAM wireless channel model. Simulation results
have shown that the channel capacity of OAM-based MIMO
communication system is larger than the channel capacity of
conventional OAM and conventional MIMO communication
systems when the transmission distance is larger than a spe-
cific threshold. In addition, the effects of some system param-
eters, such as OAM state interval and antenna spacing, on the
capacity of OAM-based MIMO communication system have
been investigated. Simulation results have shown that larger
OAM state intervals and larger antenna spacings can increase
the channel capacity for OAM-based MIMO communication

systems. Our results provide some guidelines to evaluate the
capacity of OAM-based MIMO communication systems.
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