LEVERHULME TRUST_____

INVESTIGATING THE ENHANCED MASS FLOW RATES IN PRESSURE-DRIVEN LIQUID FLOW THROUGH NANOPORES

Alexandros V.A. Stamatiou and S. Kokou Dadzie

School of Engineering and Physical Sciences Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK.

Introduction

Experiments have shown that mass flow rates in pressure-driven liquid flow through nano-tubes hugely exceed those predicted by the Navier-Stokes equations.

The current work investigates a possible explanation of this phenomenon based on a new continuum model: the **Recasted Navier-Stokes equations**

MATHEMATICAL PHYSICS

Famous Fluid Equations Are Incomplete

By NATALIE WOLCHOVER — 🔲 8 | 📕

A 115-year effort to bridge the particle and fluid

Analysis of Nanotube Flow

to cylindrical polars (r, θ, z)

Dimensionless parameters:

Tube symmetry implies independence of θ

 $\tilde{r} = \frac{r}{R}, \ \tilde{z} = \frac{z}{L}, \ \tilde{u}_{p_r} = \frac{u_{p_r}}{U_n}, \ \tilde{u}_{p_z} = \frac{u_{p_z}}{U_n}, \ \tilde{p} = \frac{pU_p\mu L}{R^2}$

 $\varepsilon = \frac{R}{L}$, $\operatorname{Re}_p = \frac{\rho U_p R}{\mu}$, $\kappa_p = \frac{\kappa_p}{U_p R} = \frac{\alpha^*}{\operatorname{Re}_p}$

 $\tilde{u}_{p_r} = \tilde{u}_{p_r,0} + \varepsilon \tilde{u}_{p_r,1} + \varepsilon^2 \tilde{u}_{p_r,2} + \dots$

 $\tilde{u}_{p_z} = \tilde{u}_{p_z,0} + \varepsilon \tilde{u}_{p_z,1} + \varepsilon^2 \tilde{u}_{p_z,2} + \dots$

■ Introduce non-dimensional variables:

Regular perturbation expansion in ε :

 $\tilde{p} = \tilde{p}_0 + \varepsilon \tilde{p}_1 + \varepsilon^2 \tilde{p}_2 + \dots$

descriptions of nature has led mathematicians to an unexpected answer.

(1)

(4)

(6)

Mathematicians Find Wrinkle in Famed Fluid Equations

FLUID DYNAMICS

By KEVIN HARTNETT — 🗬 35 | 💻

Two mathematicians prove that under certain extreme conditions, the Navier-Stokes equations output nonsense.

QuantaMagazine (2015) & (2017)

Navier-Stokes Equations

Assume isothermal liquid flow, with constant fluid density ρ and viscosity μ

Mass balance equation:

 $\nabla \cdot \mathbf{u}_m = 0$

Momentum balance equation:

$$\rho \frac{\partial \mathbf{u}_m}{\partial t} + \rho \mathbf{u}_m \cdot \nabla \mathbf{u}_m = -\nabla p + \mu \nabla^2 \mathbf{u}_m \qquad (2$$

■ Transform the Recasted Navier-Stokes equations (6)-(7) ■ For a creeping nano-flow regime, it can be shown that

$$\tilde{p}_0 = \tilde{p}_0(\tilde{z}), \quad \tilde{p}_1 = \tilde{p}_1(\tilde{z}), \quad \tilde{u}_{p_r,0} = 0$$
(11)

HERIOT

WATT

In dimensional form, the lowest-order non-zero terms in the perturbation expansion satisfy

$$\frac{1}{r}\frac{\partial}{r}\left(ru_{p_{r},1}\right) + \frac{\partial u_{p_{z},0}}{\partial z} = \kappa_{p}\frac{d^{2}\ln p_{0}}{dz^{2}} \qquad (12)$$
$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_{p_{z},0}}{\partial r}\right) = \frac{dp_{0}}{dz} \qquad (13)$$

(17)

■ These must be solved subject to suitable boundary con-(10)ditions: e.g. no-slip and no-penetration conditions at wall

Analytical Expression for the Mass Flow Rate

Equation (13) is solved to obtain the zeroth-order stream-wise velocity component

$$u_{p_z,0}(r,z) = \frac{1}{4\mu} \left(r^2 - R^2\right) \frac{dp_0}{dz}$$
(14)

Poiseuille Flow Law

Navier-Stokes-predicted mass flow rate in long ducts at low Reynolds number:

$$\dot{M}_{NS} = \frac{\pi \rho R^4}{8\mu} \frac{\Delta P}{L} , \quad \Delta P = P_{in} - P_{out}$$
(3)

Problem: at the nano-scale, predicted rates are several orders of magnitude lower than measured rates

Conventional explanation: wall-slip flow, leading to very large slip-length parameters

New Continuum Approach

Methodology is based on a technique which is similar in nature to that of a Lorentz transformation.

It involves transforming the fluid velocity field variable u_m within the standard fluid flow hydrodynamic equations

The form of the transformation depends on the main driving-mechanism. For the pressure-driven, isothermal liquid flow we suggest the following transformation:

The pressure distribution is then obtained as a *solubility condition* for the small radial velocity in equation (12)

(8)

(9)

$$-\frac{R^4}{8\mu}\frac{d^2p_0}{dz^2} = R^2 \kappa_p \frac{d^2 \ln p_0}{dz^2} \quad \Rightarrow \quad \frac{dp_0}{dz} + \gamma \frac{d \ln p_0}{dz} = \beta \ , \ \gamma := \frac{8\mu\kappa_p}{R^2}$$
(15)

The integration constant β **is determined using inlet/outlet pressures as**

$$= -\frac{1}{L} \left[\Delta P + \gamma \ln \mathcal{P} \right] , \quad \mathcal{P} := \frac{P_{in}}{P_{out}}$$
(16)

■ The mass flow rate along the tube in the stream-wise direction is

$$\dot{M}_{RNS} = 2\pi\rho \int_0^R r u_{m_z} dr = 2\pi\rho \int_0^R \left(r u_{p_z} - r\kappa_p \frac{d\ln p}{dz} \right) dr = \frac{\pi\rho R^4 \left(\Delta P + \gamma \ln \mathcal{P}\right)}{8\mu L}$$

Comparison with Experimental Data by Majumder et al.(2011)

To compare flow-enhancement data with our theory, we consider the ratio of the newly derived mass flow rate and the **Poiseuille flow rate:**

$$\frac{\dot{M}_{RNS}}{\dot{M}_{NS}} = \frac{(\Delta P + \gamma \ln \mathcal{P})}{\Delta P} \quad \gamma := \alpha^* \frac{8\mu^2}{\rho R^2} \tag{18}$$

The value of α^* is found by equating this ratio with the experimental enhancement factor

liquid	membrane thickness L (μm)	viscosity μ (cP)	Poiseuille flow vel. (cm/s)	observed velocity (cm/s)	enhancement factor	α*
decane	126	0.90	0.000135	0.67	4.96E+03	0.91
water (1)	34	1.00	0.00045	25	5.55E+04	11.33
water (2)	34	1.00	0.00045	4.39	9.75E+04	19.91
water (3)	126	1.00	0.000121	9.5	7.82E+04	15.97
EtOH	126	1.10	0.00011	4.5	4.07E+04	5.42
IPA	126	2.00	0.00006	1.12	1.84E+04	0.45

The pressure diffusivity constant $\kappa_{\mathbf{p}}$ **is thought to be of** the form

 $\kappa_p = \alpha^* - \lambda$ (5)

Recasted Navier-Stokes

Re-casted mass balance equation:

 $\nabla \cdot \mathbf{u}_p - \kappa_p \nabla^2 \ln p = 0$

Re-casted momentum balance equation:

 $\rho \mathbf{u}_p \cdot \nabla \mathbf{u}_p - \rho \kappa_p \nabla \ln p \cdot \nabla \mathbf{u}_p$ $-\rho\kappa_{p}\mathbf{u}_{p}\cdot\nabla\left(\nabla\ln p\right)+\rho\kappa_{p}^{2}\nabla\ln p\cdot\nabla\left(\nabla\ln p\right)$ $+\nabla p - \mu \nabla^2 \mathbf{u}_p + \kappa_p \mu \nabla^2 \left(\nabla \ln p\right) = 0$ (7)

Acknowledgements and References

Authors would like to gratefully acknowledge the funding from Leverhulme Trust, UK

S. K. Dadzie and H. Brenner, Physical Review E 86, 036318 (2012) M. Majumder and N. Chopra and R. Andrews and B. J. Hinds, Nature Vol. 438 (2005)

[3] M. Majumder and N. Chopra and R. Andrews and B. J. Hinds, ACS Nano Vol. 5, 3867 - 3877 (2011).

[4] E. B. Arkilic and M. A. Schmidt and K. S. Breuer, Journal of Microelectromechanical Systems, Vol.6 (1997)

[5] I. A. Graur and J. G. Meolans and D. E. Zeitoun, Microfluid Nanofluid, 2, 64 - 77 (2006)