Influence of Post-treatment on the Tribo-mechanical properties of Cermet Coatings

R. Ahmed, S. Stewart, V. Stoica *Heriot-Watt University, UK*

> **Y. Itsukaichi** Fujimi Inc., Japan

HIPing Post-treatment — Previous Investigations

 Kuribayashi, H., Suganuma, K., Miyamoto, Y., & Koizumi, M., "Effect of HIP treatment on plasma sprayed coating onto stainless steel", American ceramic society bulletin, 65(9), 1306-1310, (1986).

Al₂O₃, ZrO₂ and TiC plasma spray coatings HIPed (Capsulated) at 1100 to 1300°C for 1hour at 100MPa - *Remarkable improvements in hardness and tensile strength*.

- H. Ito, Nakamura, R., Shiroyoma, M., & Sasaki, T., "Post-treatment of plasma sprayed WC-Co coatings by hot isostatic pressing", NTSC, CA, 233-238, (1990).
- WC-Co plasma spray coatings HIPed (Capsulated) at 500 to 1000 °C for 30 minutes at about 5MPa *Remarkable improvements in hardness and abrasive wear resistance. Lamellar to granular transformation.*
- 3) Khor, K.A. & Loh, N. L., "Hot isostatic pressing of plasma sprayed Ni-base alloys", JTST, 3(1), 57-62, (1994).

Numerous studies on Capsulated and uncapsulated HIPing of plasma sprayed NiCrAl and ZrO₂-Y₂O₃ coatings – *Improvement in hardness and modulus, reduction in porosity.*

Project Background

S. Tobe, Y. Ando, R. Ahmed and *V. Stoica,* "Enhancement of wear and mechanical properties of thermally sprayed WC-Co coatings by HIPing post-treatment", Tribology in Environmental Design, Second International conference, Bournemouth, UK, ISBN 1 860584152, 119-127, 2003.

HIP Code	HC-1	HC-2	HC-3	HC-4	HC-5	AS
Capsulation	Yes	No	Yes	Yes	Yes	As- Spray
Temperature (°C)	850	850	900	900	1000	ed (Not
Pressure (MPa)	150	150	150	150	150	d)
Holding Time (minutes)	60	60	60	120	60	
	HIP Code Capsulation Temperature (°C) Pressure (MPa) Holding Time (minutes)	HIP CodeHC-1CapsulationYesTemperature (°C)850Pressure (MPa)150Holding Time (minutes)60	HIP CodeHC-1HC-2CapsulationYesNoTemperature (°C)850850Pressure (MPa)150150Holding Time (minutes)6060	HIP CodeHC-1HC-2HC-3CapsulationYesNoYesTemperature (°C)850850900Pressure (MPa)150150150Holding Time (minutes)606060	HIP CodeHC-1HC-2HC-3HC-4CapsulationYesNoYesYesTemperature (°C)850850900900Pressure (MPa)150150150150Holding Time (minutes)606060120	HIP CodeHC-1HC-2HC-3HC-4HC-5CapsulationYesNoYesYesYesTemperature (°C)8508509009001000Pressure (MPa)150150150150150Holding Time (minutes)60606012060

Project Background (WC-Co coatings)

Aims of Current Investigation

- Consider Economical and Design Factors
- Higher Temperatures?
- Influence of pressure? (HIPing vs. VHT)
- Develop structure property relationship for tribo-mechanical applications

RCF Test	Conditions	
Planetary Balls	Steel / Ceramic	
Temperature	25 °C	
Hertzian Contact Stress	2.7 GPa	
Lubricant Boundary Regime	Full Film	

RCF Failure Modes

HIPed@1200°C <u>Progressive and Predictable</u> <u>Failure</u>

Vacuum heated@1200°C Catastrophic Failure

Conclusions

- Microstructural changes associated with the post-treatment of WC-Co coatings can significantly improve tribo-mechanical performance of components by improving the hardness (phase changes), cohesive strength (interlamellar bonding) and adhesive strength (diffusion zone) of coatings.
- 2. Improvement in RCF performance was attributed to the diffusion at the coating substrate interface resulting in metallurgical bonding.
- 3. Sliding wear test results indicate that the overall wear resistance improves with the post-treatment, and best results were obtained for coatings HIPed at 850°C for ceramic and at 1200°C for steel counterbody.
- Residual stress investigations confirmed that not only the post-treated coatings have lower and more uniform compressive strain, but also the strain gradient at the coating substrate interface is minimised after the post-treatment.

Acknowledgements

•S. Davies at Bodycote HIP, UK (HIPing)

•Prof. S. Tobe at Ashikaga Institute, Japan for EPMA analysis

- •ISIS (Rutherford Lab, UK) for use of neutron diffraction facilities
- •EPSRC, UK for financial contribution