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Appendix A 
 

A.1 Model Description of ACPPVC-50 

 

A photovoltaic system is basically a large p-n junction i.e. its current shunting behaviour can be 

approximated with a diode. Therefore the PV element acts as a photo generator along with a diode in 

parallel. In addition, a resistor (called series resistance i.e. Rs) is added into series to account for the ohmic 

losses in the PV. Another resistor (called shunt resistance i.e. Rsh) can be added in order to measure the 

voltage drop across the PV. The equivalent circuit of a single PV generator is shown in figure A.1.1.  
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The basic current voltage relationship of figure A.1.1 can be expressed as; 
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where a shunt resistance has been introduced in parallel to the diode resistance.  

Differentiating equation (A.1) with respect to voltage  
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The simulated parameters are defined as shown in figure A.1.2. 

Figure A.1.1 Circuit diagram for determining I-V 
characteristics of a photovoltaic system. 
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Setting V=0 and I=Isc,ref the above equation becomes 
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simplifying the above equations and replacing m by 
0=VdV

dI   
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The shunt resistance can be approximated as (Rauchenbach, 1980) 
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Figure A.1.2 I-V curve for the electrical simulation of a photovoltaic system. 
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Applying the open circuit voltage (i.e. Isc=0), short circuit current (i.e. Voc=0) and maximum power point 

conditions equation (A.1.1) becomes 
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at maximum power point the maximum power becomes 
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At maximum power point the following condition can be implemented into the equation (A.1.10) 
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Applying equation (A.1.11)) into equation (A.1.9) becomes 
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Simplying equation (A.1.2), the coefficient of 
dV

dI
 becomes 
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i.e. 
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therefore from equation (A.1.12) and (A.1.13) the maximum power point equation becomes 
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therefore final four equation for solving I-V equation are 
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A.2 Numerical Solution of the Model 

 

The set of non-linear equations in the PV model were solved using the Newton-Raphson method. Initial 

Rs value was considered as 0.1Ω and Rsh was considered as 100Ω, the subsequent parameters were 

calculated by using the equation below 
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A new set of values ( )newAVI ,, maxmax  were calculated from the established value of Rs and Rsh, the new 

values of Rs and Rsh were calculated from:  
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The equations (A.2.1) and (A.2.2) were solved iteratively until a converged solution was achieved. 

 

 


