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Abstract - learnt prior context of the regions for a given scene and

temporal context from regions extracted in previous frames

This paper presents a new method for improving region  The principal contribution of this work is the use of prior
segmentation in sequences of images when temporal anénd temporal contextual knowledge for the improved clas-
spatial prior context is available. The proposed technique sification of regions. This is a general technique and we
uses elementary classifiers on infra-red, polarimetic and demonstrate its efficacy via the combination of infra-red,
video data to obtain a coarse segmentation per-pixel. Con- polarimetric and electro-optical sensor data. The acgurac
textual information is exploited in a Bayesian formulation  of classification of image regions is improved compared to
smooth the segmentation between frames. This is a generalvhen the classifiers are used without a contextual frame-
framework and significantly enhances segmentation fromwork by using a probabilistic formulation which fuses tem-
the classifiers alone. The method is demonstrated by clasporal and spatial information.
sifying images of a rural scene into 3 positive classes: sky,
vegetation and road, and one class of all other unlabelled 1.1. Related work
data. Priors for the probabilistic smoothing in this scene
are learned from ground-truth images. It is shown that an
overall improvement of around 10% is achieved. Individual
classes are improved by up to 30%.

Earlier work investigating how humans recognise objects
and scenes has been presentdd This found that objects
were more easily recognised in a scene when in proper spa-
tial relation i.e. when in the correct context. These princi
ples of human vision can be applied to computer vision as
shown by Torralba&t al.[13] using scene recognition to im-
prove object detection. Context of the scene has been used

In a dynamically changing environment it is often dif- elsewhere to improve object recognitiort]. Regions are
ficult to detect objects due to occlusion, shade and clut-learnt that are spatially associated with an object. Thatea
ter. It is our ultimate aim to be able to detect objects that regions that surround an object are then used to help iden-
can be at times hard to find and in variable environments.tify it. Although this only found marginal improvements
This will be achieved with multiple sensors on a mov- compared to when the detector was used with no contex-
ing platform. Context is being used increasingly in com- tual knowledge, context came in useful in scenes where the
puter vision techniques to help perform scene recognition object was difficult to find.

[10], region categorisationl| 5, 7, 17] and object detection A more successful approach by Heitz and Koller uses
[6, 11, 13, 15, 16]. We believe that context can be used to regions in an image to serve as context for the detection
aid the accuracy of our objectives and, generally, make theof objects p]. This is a similar concept to what we want

deployment of image processing operations more effective.to eventually build. There has been much work into using

Context will be used in a variety of different ways to context to improve automated annotation of image regions.
achieve our goal. By extracting the general regions of anLi, Socher and Fei-Fei use a top down approach to improve
image, we can use this spatial context to assist object de-annotation of segmented regions of an image [In the
tection by applying image processing to regions where onework of Barnardet al. image regions are learnt in order to
would expect to find the object. (Or, conversely, to regions associate text with segmented regions of an imagjeRa-
where the object would not be expected to be found.) In binovich et al. use context at a semantic level to improve
this paper, methods for extracting informative image re- region labelling of an imagel}]. They take the technique
gions are described. These methods themselves use two diffurther by adding another type of context to their process
ferent types of contextual information to achieve the rssul [5]; semantic context is used along with spatial context to

1. Introduction



further improve the labelling of a segmented image.

We build on the concepts of using learnt priors for a
given environment and using more than one type of con-
text in order to improve region classification. In particula
we are extending on work done of Matzké al. where a
Bayesian probability framework to improve vehicle detec-
tion on different road types is introduced [ Matzka uses
prior learnt knowledge of what type of vehicles are likely
to be on a certain road type and temporal contextual knowl-
edge of previous detections. We are inspired by this frame-
work and extending it to region classification by using prior
context of regions and previous classified regions.

The work we have done thus far has laid the ground for
a final, complete contextual framework with many more
classes. In doing so, we make a new contribution in at least
two ways: (a) using two different forms of context, prior
and temporal, to improve the accuracy of region classifica-
tion; (b) fusing multiple sensor data via contextual smeoth
ing after classification.

In Section2, the classifiers used to extract image regions
are described. The contextual framework that we use is ex-
plained in Sectior8. And finally, the results of the experi-

ments are shown in Sectignwhere it is demonstrated that *@% ‘
context improves classification. (e)

Figure 1. (a) and (b) show a colour image and a graph-based seg-
2. Classifiers mented image respectively. The sky is classified as the largest seg-

mented region in the top of the image. (c) is the vegetation index of
The data used in this paper was collected by an array ofthe same scene. A threshold and median filter are then applied to
visible and thermal cameras mounted on a moving vehicleclassify bush tree and grass as is shown in (d). The thermal image
in a rural environment. Example images taken from our ©f the scene is shown in (e) and the corresponding polarised data
different data sources are shown in FigareClassification in (f). The image in (f) is thresholded using an adaptive threshold
methods are illustrated too and then a median filter is applied to classify the road.
Since our data is collected from an array of individual

sensors - infra-red (in the thermal wavebapah to 12.m), mac road; foliage is defined as bush, tree or cut grass (BTG

polarimetric and electro-opticald§0nm,550nm,650nm from now) in the image; and the other class is any pixels
andss0nm), itis necessary to register the gathered images ¢ 4o not fall into these regions. Described below is the

in order to fuse the information at data level. The long-wave j4t4 and methods used to classify the regions. It is impor-

|rrlfra—|red camera Ihas a resr?luuon @6 T 5_13 pixels and tant to stress that we have not expended enormous effort to
the eloctro-optical camera have a resolutionl@4 768 1 5y0 these classifiers very robust or accurate. Rather the

pixels. ”Rebglsff[rz:ljt_lon of the wsu;l camerasl IS gchmvgd-at;to purpose of this paper is to show that classification accuracy
matically by finding corresponding control points using the 5, e improved by using context, regardless of classifier.

Speeded Up Robust Features (SURR) Thermaltovisual - g (jassifiers are binary detectors, classifying a pixel as
camera registration is perfc_)rmed by sele.ctlng co_ntrolipom either a region or not a region via a predefined threshold.
manually. As well as needing to be spatially registered, the(It will be seen that the Bayesian formulation presented in

visual and thermal data had to be temporally registered asgg 153 can take full probabilistic distributions and this is
the thermal camera runs at a faster frame rate (3.1 times, topic of current work.)

faster). All experiments were carried out at the visual fgam

rate and the exact corresponding thermal frames are used. Sky. Graph-based image segmentation is used to seg-

ment a RGB image/]]. The sky is then classified by taking
the largest top region of the segmented image. This is a
heuristic assumption valid only for this dataset.

We extract four regions from the images: sky, road, fo-  Road. The thermal camera is designed to be sensitive
liage and the “other” class. The sky is defined as the regionto polarised radiation. Connat al. explain the operation
above the horizon including clouds; road is any visible tar- and benefit of a long wave infra red polarimetric imag#r [

2.1. Region areas and classification methods



The phenomenon of polarisation causes man-made objects,
such as metal, glass, tarmac, to have a different polaisati
signature to that of natural vegetation. Therefore, polari
sation has the potential to discriminate man-made objects
from background clutter. Polarimetric information, com-
bined with conventional thermal imaging, provides a pow-
erful means of detecting objects in applications such as sit

uational awareness. Many factors affect an object’s polari colour images

sation signature such as texture and orientation. Stokes im ?

ages p] are used to quantify the polarisation signature. The === Zan e

@ Stokes image, defined as the amount of linear polarisa- = -

tion in the horizontal direction, is useful in segmenting ou

roads.( is computed using the following equation, /‘\
Q =g — 190 1)

ground truth

whereig andigy are the intensity images at and90°
polarisation, respectively. An adaptive threshold therea m
dian filter are applied to th€@ data in order to finally clas-
sify the road.

BTG. Live green plants have evolved to absorb solar
radiation in the photosynthetically active radiation (BAR
spectral region which includes the red waveband. They have
also evolved to scatter light in the near infra-red (NIR) re-
glon. Therefo.re, NIR a.”d red Wave.bar_lds can be (.:ombmedFigure 2. Classification results of the detectors showing the vary-
in the Vegetation '”qex in order to hlghllghtlvegetatldld][ ing results of the classifiers when used in isolation. In the ground
We use the Vegetation Index to help classify bush, tree andyin and classification images, blue is sky, red is road, green is

" e

classification results

cut grass. Itis defined as: BTG and yellow is other. The left column is an example where the
classifiers work well. The right column is an example where the
NDVI = w ) system has performed poorly mainly due to the large false positive
NIR+ RED rate of the road classifier.

where NI R is the 880nm waveband of light (for these
experiments),RED is the red band (650nm) and DV I
is the normalised vegetation index. NDVI highlights veg-

etation and is used to discriminate bush, tree and cut grass Classifier| TPR FPR Acc
from the rest of the scene in our experiments. Sky 0.97 0.0 0.99
Other. As there is no classifier built for the other class, Road 098 035 0.71
it is identified simply by all the pixels that have not been BTG 0.81 0.07 0.90
detected by the three active classifiers for a particulanéra Other 054 053 0.76
Table 1. Median true positive rate, false positive rate and accuracy
2.2. Classifier results of the individual classifiers.

Images are ground-truthed by hand so that the accuracy
of the classifiers can be calculated. Fifteen frames were
ground-truthed stretching over the entire driving seqeenc
The classifiers were tested on a set of images and the true high true positive rate and low false positive rate. The
positive rates, false positive rates and accuracies oféhe d road classifier has a very good true positive rate but poor
tectors were computed over each image. Accuracy is calcufalse positive rate which makes the accuracy of this detecto
lated as the total number of true detections divided by the poor. This is due to movement affecting the polarisation cal
total number of pixels. The medians of the results are shownculation in the thermal camera. The BTG detector performs
in Tablel. Some classification results are shown in Figure reasonably well. Finally, the other classifier has poor true
2. These show the colour image, the ground truth and theand false positive rates mainly due to the false detectiéns o
detection results for two frames. the road classifier. We aim to improve these accuracies by
As can be seen from the results, the classifiers have vary-using context (which is, after all, the purpose of this work)
ing accuracies. The sky classifier performs very well with and this is shown in the following section.



3. Contextual Smoothing maximum posterior probability out of the four regions is

Now having the bi lassifiers for th - f taken to be the class.
_Yowhaving e binary ciassilers for te regions ot OUl - yegyq \ere carried out on the data gathered from a mov-
images, we aim to improve their accuracy using context. We .

i : . X ing vehicle on a rural road. The number of visual frames in
compute the probability that a region exists given a detec- . .
: . , : the sequence was 2035. The priors were built on 12 ground
tion of a region from prior and temporal knowledge via the .
truthed images for each class. The contextual framework

following: was tested forw = 0,0.25,0.5,0.75, 1 of Equation5.
Receiver operator characteristic (ROC) plots for our re-
P(R,)|Dy) = P(Dl]fD)};(Rl) (3)  sults are shown in Figurg. Median results are shown for
! different values ofv and the classifier ROC with no context
where, for a given region type and classifieP(R;| D;) used is also shown for comparison. The percentage increase
is the probability of a regiom to exist given a detectiof, in accuracy for the detectors is shown in the individualplot
P(D;|R,) is the true positive rate of the classifig?(R;) in Figure4. We now discuss these results, briefly.
the prior probability and”(D;) a normalising constant. If Sky. The sky classifier is a good classifier before con-
the region is not detected at a pixel, the probability for the textual smoothing is applied (accuracy of 0.99). It can be
region to exist is given conversely by: seen from Figuré that there is little effect on the TPR of
this classifier with a less than 1% difference between the
P(R|~Dy) = P(=Di|Ri)P(R1) (4)  bestand worst TPR. The detector accuracy levels remain
P(=Dy) high apart from whem = 0. At this weight no learnt pri-

ors are used and the system relies only on temporal context.
summation of the prior probability dependent on the current The lack of priors for this weight cause errors made by sky

sceneP(R,;|S) and the posterior probability of the previous cIaSS|f|er to prppagatg and grow frame-by-framg. This is re-
frame Py, (Ri| D) sponsible for increasing the FPR and decreasing accuracy.

For all the other weights, the accuracy remains as high as
when the classifier was used outwith the framework.
P(R)) = (1 —w)Py_1(Ry|D;) + wP(Ry]|S)  (5) Road. The context significantly improves the road clas-
sifier. There is a small decrease in TPR for any but
wherew € R|0 < w < 1. This factor controls the this is more than compensated for by the huge decrease in
degree of adaptiveness of the contextual knowledge. ForFPR.This means that there is at least an increase in accu-
w = 0, the prior knowledge derived from the scene tyie racy of 30% for allw. Interestingly, the lowest FPR rate
only used for the first calculation and the previous posterio 0ccurs whenw = 0 - the weight at which the sky classi-
probability is used for all future calculations. Fer= 1, fier performs worst. The large FPR of the road classifier is
only the learnt prior probabilities for a region to exist are dué to miscalulation of) caused by large movements of the
considered for the prior probabilitf(?;) and any previous ~ camera. These false detections of polarised materials occu
calculations are disregarded. The weighting factor cémtro Sporadically while the true detections of the polarisediroa
the amount of temporal or prior contextual knowledge that N@ppen continuously. The temporal framework only builds

The prior probability P(R;) is defined as a weighted

is used. on the true detections of the road as these occur constantly
For these tests, only one scene is considered so only ond/hich creates the lower FPR. _
set of Spatia| prior probab|||t|e§(Rl|S) are learnt. The BTG. The BTG classifier pel’formS worst in the contex-

consideration of different scenes (e.g. urban, rural,@atd ~ tual smoothing. However, FPR improves for all weights
indoor etc.) is easily incorporated provided the classifier apart fromw = 0. As for sky, the poor FPR rate at
adapt to the Changing region types (eg bu||d|ngs appea_rthis Welght is caused by the propagation of initial errors in
constantly in an urban location). Prior probabilities can b the BTG detector. Theses are intensified by the temporal
learned for each scene and a change of scene can be detecté@ntext being used without any constraining spatial priors
by a Global Positioning System (GPS). Learnt priors for BTG are not as strong as the other classes
leading to a decrease in TPR. Where the sky, road and other
classes are likely to be in certain parts of the image, bush

4, Results and Discussion ) )
and tree tree locations are far more varied. These weaker

To calculate the region priors for our sceRéR,|S), the learnt priors lead to lower posterior probabilities of BTG i
ground truth is used. The prior is the average of the groundEquation3. Thus at classification some BTG regions are
truth for a given region. For the true positive r&éD, | R;), neglected.
the median true positive rates calculated in Secfidhare Other. The “other” classifier is improved by contextual

used (see Tablg). In the final classification of a pixel, the smoothing. There is an increase of about 80% in TPR for all
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Figure 4. The percentage increase in accuracy for each class for

different values ofw. The average increase in accuracy is also

shown.

image segmentation in video from various sensor modali-
ties. This approach is a novel way of combining contex-
tual information to improve region labelling. Our method
is especially effective for those regions which have strong
spatial priors. The method serves as a very useful tool in
decreasing the FPR of our classifiers.
In the future we aim to build priors for differing scenes
P(R|S) so that the contextual framework can be tested be-
contextual smoothing results for = 0 twee_n differgnt envirpnments. In such a scheme GPS will
Figure 3. Context improves the segmentation vs. ground truth. As provide f[he information _abOUt a Change of scene and the
in Figure 2 we choose an example where the classifier performs €@t priors can be applied according to the scene type. We
poorly (eft col) and well ¢ight). In both cases context plays an Wil develop classifiers that are not binary but return a prob
important role in improving the result. ability of class per pixel. The framework does not need to
be adapted to adopt this extension. Our grand aim is to use
the regions extracted in the images to enhance object detec-
w exceptw = 0. This is a result of the huge improvement tion. The regions will provide the context of the scene and
in the road classifier. There is a slight decrease in accuracythis information will be used to make our object detection
atw = 0 caused by the poorer performances of the sky andmore accurate and targeted (thus making more efficient use
BTG classifiers. The other class has strong priors in areasof computing resources in real-time) by applying specific
where the BTG priors are weaker leading to false detectionalgorithms to the regions where objects are more likely to
of other class in BTG regions. However, this small increase appear.
in FPR is outweighed by the large increase in TPR meaning
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