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Abstract

This paper presents a new method for improving region
segmentation in sequences of images when temporal and
spatial prior context is available. The proposed technique
uses elementary classifiers on infra-red, polarimetic and
video data to obtain a coarse segmentation per-pixel. Con-
textual information is exploited in a Bayesian formulationto
smooth the segmentation between frames. This is a general
framework and significantly enhances segmentation from
the classifiers alone. The method is demonstrated by clas-
sifying images of a rural scene into 3 positive classes: sky,
vegetation and road, and one class of all other unlabelled
data. Priors for the probabilistic smoothing in this scene
are learned from ground-truth images. It is shown that an
overall improvement of around 10% is achieved. Individual
classes are improved by up to 30%.

1. Introduction

In a dynamically changing environment it is often dif-
ficult to detect objects due to occlusion, shade and clut-
ter. It is our ultimate aim to be able to detect objects that
can be at times hard to find and in variable environments.
This will be achieved with multiple sensors on a mov-
ing platform. Context is being used increasingly in com-
puter vision techniques to help perform scene recognition
[10], region categorisation [1, 5, 7, 12] and object detection
[6, 11, 13, 15, 16]. We believe that context can be used to
aid the accuracy of our objectives and, generally, make the
deployment of image processing operations more effective.

Context will be used in a variety of different ways to
achieve our goal. By extracting the general regions of an
image, we can use this spatial context to assist object de-
tection by applying image processing to regions where one
would expect to find the object. (Or, conversely, to regions
where the object would not be expected to be found.) In
this paper, methods for extracting informative image re-
gions are described. These methods themselves use two dif-
ferent types of contextual information to achieve the results

- learnt prior context of the regions for a given scene and
temporal context from regions extracted in previous frames.

The principal contribution of this work is the use of prior
and temporal contextual knowledge for the improved clas-
sification of regions. This is a general technique and we
demonstrate its efficacy via the combination of infra-red,
polarimetric and electro-optical sensor data. The accuracy
of classification of image regions is improved compared to
when the classifiers are used without a contextual frame-
work by using a probabilistic formulation which fuses tem-
poral and spatial information.

1.1. Related work

Earlier work investigating how humans recognise objects
and scenes has been presented [9]. This found that objects
were more easily recognised in a scene when in proper spa-
tial relation i.e. when in the correct context. These princi-
ples of human vision can be applied to computer vision as
shown by Torralbaet al.[13] using scene recognition to im-
prove object detection. Context of the scene has been used
elsewhere to improve object recognition [15]. Regions are
learnt that are spatially associated with an object. The learnt
regions that surround an object are then used to help iden-
tify it. Although this only found marginal improvements
compared to when the detector was used with no contex-
tual knowledge, context came in useful in scenes where the
object was difficult to find.

A more successful approach by Heitz and Koller uses
regions in an image to serve as context for the detection
of objects [6]. This is a similar concept to what we want
to eventually build. There has been much work into using
context to improve automated annotation of image regions.
Li, Socher and Fei-Fei use a top down approach to improve
annotation of segmented regions of an image [7]. In the
work of Barnardet al. image regions are learnt in order to
associate text with segmented regions of an image [1]. Ra-
binovich et al. use context at a semantic level to improve
region labelling of an image [12]. They take the technique
further by adding another type of context to their process
[5]; semantic context is used along with spatial context to
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further improve the labelling of a segmented image.
We build on the concepts of using learnt priors for a

given environment and using more than one type of con-
text in order to improve region classification. In particular,
we are extending on work done of Matzkaet al. where a
Bayesian probability framework to improve vehicle detec-
tion on different road types is introduced [8] . Matzka uses
prior learnt knowledge of what type of vehicles are likely
to be on a certain road type and temporal contextual knowl-
edge of previous detections. We are inspired by this frame-
work and extending it to region classification by using prior
context of regions and previous classified regions.

The work we have done thus far has laid the ground for
a final, complete contextual framework with many more
classes. In doing so, we make a new contribution in at least
two ways: (a) using two different forms of context, prior
and temporal, to improve the accuracy of region classifica-
tion; (b) fusing multiple sensor data via contextual smooth-
ing after classification.

In Section2, the classifiers used to extract image regions
are described. The contextual framework that we use is ex-
plained in Section3. And finally, the results of the experi-
ments are shown in Section4 where it is demonstrated that
context improves classification.

2. Classifiers

The data used in this paper was collected by an array of
visible and thermal cameras mounted on a moving vehicle
in a rural environment. Example images taken from our
different data sources are shown in Figure1. Classification
methods are illustrated too.

Since our data is collected from an array of individual
sensors - infra-red (in the thermal waveband8µm to12µm),
polarimetric and electro-optical (450nm,550nm,650nm
and880nm), it is necessary to register the gathered images
in order to fuse the information at data level. The long-wave
infra-red camera has a resolution of636 ∗ 513 pixels and
the eloctro-optical camera have a resolution of1024 ∗ 768
pixels. Registration of the visual cameras is achieved auto-
matically by finding corresponding control points using the
Speeded Up Robust Features (SURF) [2]. Thermal to visual
camera registration is performed by selecting control points
manually. As well as needing to be spatially registered, the
visual and thermal data had to be temporally registered as
the thermal camera runs at a faster frame rate (3.1 times
faster). All experiments were carried out at the visual frame
rate and the exact corresponding thermal frames are used.

2.1. Region areas and classification methods

We extract four regions from the images: sky, road, fo-
liage and the “other” class. The sky is defined as the region
above the horizon including clouds; road is any visible tar-

(a) (b)

(c) (d)

(e) (f)
Figure 1. (a) and (b) show a colour image and a graph-based seg-
mented image respectively. The sky is classified as the largest seg-
mented region in the top of the image. (c) is the vegetation index of
the same scene. A threshold and median filter are then applied to
classify bush tree and grass as is shown in (d). The thermal image
of the scene is shown in (e) and the corresponding polarised data
in (f). The image in (f) is thresholded using an adaptive threshold
and then a median filter is applied to classify the road.

mac road; foliage is defined as bush, tree or cut grass (BTG
from now) in the image; and the other class is any pixels
that do not fall into these regions. Described below is the
data and methods used to classify the regions. It is impor-
tant to stress that we have not expended enormous effort to
make these classifiers very robust or accurate. Rather the
purpose of this paper is to show that classification accuracy
can be improved by using context, regardless of classifier.
The classifiers are binary detectors, classifying a pixel as
either a region or not a region via a predefined threshold.
(It will be seen that the Bayesian formulation presented in
Section3 can take full probabilistic distributions and this is
a topic of current work.)

Sky. Graph-based image segmentation is used to seg-
ment a RGB image [4]. The sky is then classified by taking
the largest top region of the segmented image. This is a
heuristic assumption valid only for this dataset.

Road. The thermal camera is designed to be sensitive
to polarised radiation. Connoret al. explain the operation
and benefit of a long wave infra red polarimetric imager [3].



The phenomenon of polarisation causes man-made objects,
such as metal, glass, tarmac, to have a different polarisation
signature to that of natural vegetation. Therefore, polari-
sation has the potential to discriminate man-made objects
from background clutter. Polarimetric information, com-
bined with conventional thermal imaging, provides a pow-
erful means of detecting objects in applications such as sit-
uational awareness. Many factors affect an object’s polari-
sation signature such as texture and orientation. Stokes im-
ages [3] are used to quantify the polarisation signature. The
Q Stokes image, defined as the amount of linear polarisa-
tion in the horizontal direction, is useful in segmenting out
roads.Q is computed using the following equation,

Q = i0 − i90 (1)

wherei0 andi90 are the intensity images at0o and90o

polarisation, respectively. An adaptive threshold then a me-
dian filter are applied to theQ data in order to finally clas-
sify the road.

BTG. Live green plants have evolved to absorb solar
radiation in the photosynthetically active radiation (PAR)
spectral region which includes the red waveband. They have
also evolved to scatter light in the near infra-red (NIR) re-
gion. Therefore, NIR and red wavebands can be combined
in the Vegetation Index in order to highlight vegetation [14].
We use the Vegetation Index to help classify bush, tree and
cut grass. It is defined as:

NDV I =
NIR−RED

NIR+RED
(2)

whereNIR is the 880nm waveband of light (for these
experiments),RED is the red band (650nm) andNDV I

is the normalised vegetation index. NDVI highlights veg-
etation and is used to discriminate bush, tree and cut grass
from the rest of the scene in our experiments.

Other. As there is no classifier built for the other class,
it is identified simply by all the pixels that have not been
detected by the three active classifiers for a particular frame.

2.2. Classifier results

Images are ground-truthed by hand so that the accuracy
of the classifiers can be calculated. Fifteen frames were
ground-truthed stretching over the entire driving sequence.
The classifiers were tested on a set of images and the true
positive rates, false positive rates and accuracies of the de-
tectors were computed over each image. Accuracy is calcu-
lated as the total number of true detections divided by the
total number of pixels. The medians of the results are shown
in Table1. Some classification results are shown in Figure
2. These show the colour image, the ground truth and the
detection results for two frames.

As can be seen from the results, the classifiers have vary-
ing accuracies. The sky classifier performs very well with

colour images

ground truth

classification results
Figure 2. Classification results of the detectors showing the vary-
ing results of the classifiers when used in isolation. In the ground
truth and classification images, blue is sky, red is road, green is
BTG and yellow is other. The left column is an example where the
classifiers work well. The right column is an example where the
system has performed poorly mainly due to the large false positive
rate of the road classifier.

Classifier TPR FPR Acc
Sky 0.97 0.0 0.99
Road 0.98 0.35 0.71
BTG 0.81 0.07 0.90
Other 0.54 0.53 0.76

Table 1. Median true positive rate, false positive rate and accuracy
of the individual classifiers.

a high true positive rate and low false positive rate. The
road classifier has a very good true positive rate but poor
false positive rate which makes the accuracy of this detector
poor. This is due to movement affecting the polarisation cal-
culation in the thermal camera. The BTG detector performs
reasonably well. Finally, the other classifier has poor true
and false positive rates mainly due to the false detections of
the road classifier. We aim to improve these accuracies by
using context (which is, after all, the purpose of this work)
and this is shown in the following section.



3. Contextual Smoothing

Now having the binary classifiers for the regions of our
images, we aim to improve their accuracy using context. We
compute the probability that a region exists given a detec-
tion of a region from prior and temporal knowledge via the
following:

P (Rl|Dl) =
P (Dl|Rl)P (Rl)

P (Dl)
(3)

where, for a given region type and classifierl, P (Rl|Dl)
is the probability of a regionR to exist given a detectionD,
P (Dl|Rl) is the true positive rate of the classifier,P (Rl)
the prior probability andP (Dl) a normalising constant. If
the region is not detected at a pixel, the probability for the
region to exist is given conversely by:

P (Rl|¬Dl) =
P (¬Dl|Rl)P (Rl)

P (¬Dl)
(4)

The prior probabilityP (Rl) is defined as a weighted
summation of the prior probability dependent on the current
sceneP (Rl|S) and the posterior probability of the previous
framePk−1(Rl|Dl)

P (Rl) = (1− w)Pk−1(Rl|Dl) + wP (Rl|S) (5)

wherew ∈ R|0 ≤ w ≤ 1. This factor controls the
degree of adaptiveness of the contextual knowledge. For
w = 0, the prior knowledge derived from the scene typeS is
only used for the first calculation and the previous posterior
probability is used for all future calculations. Forw = 1,
only the learnt prior probabilities for a region to exist are
considered for the prior probabilityP (Rl) and any previous
calculations are disregarded. The weighting factor controls
the amount of temporal or prior contextual knowledge that
is used.

For these tests, only one scene is considered so only one
set of spatial prior probabilitiesP (Rl|S) are learnt. The
consideration of different scenes (e.g. urban, rural, outdoor,
indoor etc.) is easily incorporated provided the classifiers
adapt to the changing region types (e.g. buildings appear
constantly in an urban location). Prior probabilities can be
learned for each scene and a change of scene can be detected
by a Global Positioning System (GPS).

4. Results and Discussion

To calculate the region priors for our sceneP (Rl|S), the
ground truth is used. The prior is the average of the ground
truth for a given region. For the true positive rateP (Dl|Rl),
the median true positive rates calculated in Section2.2 are
used (see Table1). In the final classification of a pixel, the

maximum posterior probability out of the four regions is
taken to be the class.

Tests were carried out on the data gathered from a mov-
ing vehicle on a rural road. The number of visual frames in
the sequence was 2035. The priors were built on 12 ground
truthed images for each class. The contextual framework
was tested forw = 0, 0.25, 0.5, 0.75, 1 of Equation5.

Receiver operator characteristic (ROC) plots for our re-
sults are shown in Figure5. Median results are shown for
different values ofw and the classifier ROC with no context
used is also shown for comparison. The percentage increase
in accuracy for the detectors is shown in the individual plots
in Figure4. We now discuss these results, briefly.

Sky. The sky classifier is a good classifier before con-
textual smoothing is applied (accuracy of 0.99). It can be
seen from Figure5 that there is little effect on the TPR of
this classifier with a less than 1% difference between the
best and worst TPR. The detector accuracy levels remain
high apart from whenw = 0. At this weight no learnt pri-
ors are used and the system relies only on temporal context.
The lack of priors for this weight cause errors made by sky
classifier to propagate and grow frame-by-frame. This is re-
sponsible for increasing the FPR and decreasing accuracy.
For all the other weights, the accuracy remains as high as
when the classifier was used outwith the framework.

Road. The context significantly improves the road clas-
sifier. There is a small decrease in TPR for anyw, but
this is more than compensated for by the huge decrease in
FPR.This means that there is at least an increase in accu-
racy of 30% for allw. Interestingly, the lowest FPR rate
occurs whenw = 0 - the weight at which the sky classi-
fier performs worst. The large FPR of the road classifier is
due to miscalulation ofQ caused by large movements of the
camera. These false detections of polarised materials occur
sporadically while the true detections of the polarised road
happen continuously. The temporal framework only builds
on the true detections of the road as these occur constantly
which creates the lower FPR.

BTG. The BTG classifier performs worst in the contex-
tual smoothing. However, FPR improves for all weights
apart fromw = 0. As for sky, the poor FPR rate at
this weight is caused by the propagation of initial errors in
the BTG detector. Theses are intensified by the temporal
context being used without any constraining spatial priors.
Learnt priors for BTG are not as strong as the other classes
leading to a decrease in TPR. Where the sky, road and other
classes are likely to be in certain parts of the image, bush
and tree tree locations are far more varied. These weaker
learnt priors lead to lower posterior probabilities of BTG in
Equation3. Thus at classification some BTG regions are
neglected.

Other. The “other” classifier is improved by contextual
smoothing. There is an increase of about 80% in TPR for all



ground truth

classification results with no context

contextual smoothing results forw = 0
Figure 3. Context improves the segmentation vs. ground truth. As
in Figure2 we choose an example where the classifier performs
poorly (left col.) and well (right). In both cases context plays an
important role in improving the result.

w exceptw = 0. This is a result of the huge improvement
in the road classifier. There is a slight decrease in accuracy
atw = 0 caused by the poorer performances of the sky and
BTG classifiers. The other class has strong priors in areas
where the BTG priors are weaker leading to false detection
of other class in BTG regions. However, this small increase
in FPR is outweighed by the large increase in TPR meaning
the accuracy is enormously improved forw 6= 0.

As can be seen from the graph in Figure4, the optimum
value ofw is 0.25. The performance of the whole system is
improved by about 10% when at least a proportion of prior
contextual information is included. Further investigation is
required into whether varyingw for the different classifiers
shows a more optimum performance. These results indicate
that contextual smoothing improves the classification of this
data set. There is the potential for this method to be applied
to diverse data sets with different classes. In that case, priors
have to be learnt for the classes of the data and the optimum
w can be found from testing as we have done here.

5. Conclusion and Future Work

We have shown in this paper that using a combination
of temporal and prior context does improve the accuracy of
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Figure 4. The percentage increase in accuracy for each class for
different values ofw. The average increase in accuracy is also
shown.

image segmentation in video from various sensor modali-
ties. This approach is a novel way of combining contex-
tual information to improve region labelling. Our method
is especially effective for those regions which have strong
spatial priors. The method serves as a very useful tool in
decreasing the FPR of our classifiers.

In the future we aim to build priors for differing scenes
P (R|S) so that the contextual framework can be tested be-
tween different environments. In such a scheme GPS will
provide the information about a change of scene and the
learnt priors can be applied according to the scene type. We
will develop classifiers that are not binary but return a prob-
ability of class per pixel. The framework does not need to
be adapted to adopt this extension. Our grand aim is to use
the regions extracted in the images to enhance object detec-
tion. The regions will provide the context of the scene and
this information will be used to make our object detection
more accurate and targeted (thus making more efficient use
of computing resources in real-time) by applying specific
algorithms to the regions where objects are more likely to
appear.
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