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Abstract—Data-rate flexible optical code-division multiple ac-
cess (OCDMA) system with 511-chip superstructured fiber Bragg
grating encoder/decoders is investigated from 622 Mb/s to 0 Gb/s.
A compound data-rate OCDMA system is experimentally demon-
strated for the future multiple service provisioning on demand. A
new optical thresholder based on cascaded second harmonic gener-
ation and difference in frequency generation in periodically poled
lithium niobate waveguide is introduced and successfully applied
in the system.

Index Terms—Optical code-division multiple access (OCDMA),
optical thresholder, superstructured fiber Bragg grating (SSFBG).

I. INTRODUCTION

IBER-to-the-home (FTTH) systems are now prevailing
F over digital subscriber loop (DSL) for providing broad-
band access services in Japan. The current FTTH system is
based on time division multiple access (TDMA) passive optical
network (PON) system. As the broadcasting or on-demand
delivery of motion pictures as well as peer-to-peer applications,
in addition to the Internet and IP telephony become main play-
ers in broadband services, demand for abundant bandwidths
both for down- and uplinks is growing. The customer’s needs
are becoming diversified, and hence, a flexible provisioning
of the data rate must be a critical issue. However, current
TDMA-PON system cannot provide flexible data-rate service.
While, wavelength division multiplexing PON (WDM-PON)
has the capability due to the point-to-point architecture, its high
cost remains to be reduced before being commercialized. Thus,
optical code division multiple access (OCDMA) is one attrac-
tive solution, which can multiplex different data-rate signals
on a single wavelength [1]. In time-spreading (TS) OCDMA,
the short optical signal is spread in time by the encoders such
as planar lightwave circuit (PLC) [2] and superstructured fiber
Bragg grating (SSFBG) [3]. Generally, the multiple access
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interference (MAI) and the beat noise are the major noise
sources that limit the capacity of the coherent TS-OCDMA
system [4]. Using ultralong optical code generated by SSFBG
encoders can effectively suppress MAI as well as beat noise in
the TS-OCDMA system [3], [4]. However, the flexible data-rate
OCDMA system will suffer from severe intersymbol inter-
ference (ISI) in a coherent TS-OCDMA system with SSFBG
encoder/decoder because the adjacent bits of the encoded or
decoded signals will overlap each other at high data rate [1].

Another key technique to suppress MAI noise in OCDMA
system is optical thresholding. Various optical thresholding
techniques have been demonstrated using nonlinear effect in
dispersion-shifted fiber [5], supercontinuum generation in dis-
persion flattened fiber (DFF) [6], holey fiber [7], high nonlinear
fiber (HNLF) [8], nonlinear optical loop mirror (NOLM) [9], and
second harmonic generation (SHG) in periodically poled lithium
niobate (PPLN) [10]. The fiber-based techniques have the advan-
tage of polarization-independent performance; however, they
are bulky and normally require high operation power. PPLN is
more compact and can operate with relatively low optical power,
which makes it an attractive device for the OCDMA system.

In this paper, we report two experiments demonstrating the
data-rate that is flexible from 622-Mb/s up to 10-Gb/s OCDMA
and the compound data-rate of 622 Mb/s—2.488 Gb/s OCDMA
[11]. To overcome noises due to MAI and ISI, key enablers
such as an optical thresholder based on cascaded SHG and
difference frequency generation (DFG) in PPLN and a record-
long 511-chip SSFBG are incorporated.

II. KEY COMPONENTS
A. 511-Chip SSFBG

An SSFBG can generate the bipolar optical code, which pro-
vides a good correlation property, due to a refractive index mod-
ulation profile inserting phase shifts (0 or 7) between different
segments. The phase of the chip pulses is determined by the
pattern of the phase shifts. Moreover, the correlation property
gets better with the longer code length. Using a holographic
technique to fabricate SSFBGs enables them to be fabricated
with a long code and variable code pattern [3]. In addition, they
are independent of the polarization state of the input signal, and
compact devices.
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Fig. 1. Measured eye diagrams of encoded signals for different data rates,
and the waveforms of correctly and incorrectly decoded signal in a 511-chip
SSFBG.

In this report, we use a record-long 511-chip SSFBG to ef-
fectively reduce the MAI and beat noise [4]. In encoding a
signal, the pulses are spread over 800 ps. Fig. 1(a) shows the
eye diagrams of encoded signals for different data-rate signals.
Fig. 1(b) shows the waveforms of correctly and incorrectly de-
coded signal in the 511-chip SSFBG. As the temporal waveform
of its autocorrelation (cross-correlation) is spread over the in-
terval of 1600 ps, the intersymbol overlapping occurs in the
encoded signal of more than 1.244 Gb/s. This results the aris-
ing of ISI noise and degradation of the system performance at
high data-rate. Eventually, error-free (BER < 10~?) transmis-
sion could hardly be achieved for 9.953 Gb/s signal [1].

B. Cascaded SHG-DFG-Based PPLN Waveguide Optical
Thresholder

PPLN is a waveguide device of ferroelectric material, poled
periodically by electric-field poling technique with a certain
period, which decides the phase-matching condition [12].

The SHG-based PPLN optical thresholder has been reported
that can operate at optical power as low as ~30 fJ/bit [10].
However, since the generated signal is at the second-harmonic
wavelength of about 750 nm, it is not suitable for further op-
tical processing and detection. Here, we propose a new optical
thresholding scheme by using the cascaded SHG-DCF in PPLN
to suppress the MAI and ISI.

Fig. 2(a) shows the setup of the proposed optical thresholder.
It is composed of erbium-doped fiber amplifiers (EDFAs), tun-
able laser diode (LD), polarization controllers (PCs), PPLN, and
optical bandpass filter (OBPF) with 3-nm bandwidth. Fig. 2(b)
shows the schematic diagram of the operation principle of the
cascaded SHG-DFG optical thresholder. The phase-matching
wavelength of the PPLN is chosen to be the same as the central
wavelength of signal (Agigna1). Therefore, a high-power optical
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Fig.2. (a) Setup of the optical thresholder. (b) Schematic diagram of cascaded
SHG-DFG optical thresholder. (c) Measured spectrum of output from PPLN
waveguide. (d) Spectrum of SHG in PPLN waveguide.

signal will generate SHG at Ag;zna1/2, whose intensity is propor-
tional to the square of the signal o (Isignal)2- With simultaneous
injection of the pump light at A,ump, the DFG signal between
SHG and pump signal will be generated at a wavelength of
2Asignal — Apump- BY adjusting the wavelength of the pump
signal, the DFG wavelength can be flexibly generated at the
wavelength of interest. This flexibility is significantly different
from other schemes. The intensity of DFG signal Ipgg is propor-
tional to [(Isigna1)2lpump]. The output signal from the optical
thresholder is much broader in time domain than the original
signal because the bandwidth of the converted DFG signal is
down to about Inm from 5 nm of the original signal limited by
the width of the PPLN phase-matching window. This can be fur-
ther improved by applying special PPLN waveguide with large
phase-matching window of about 100 nm, which is capable to
convert 160-Gb/s return-to-zero signals [13].

In the experiment, the amplified signal (Agigna1 = 1550 nm)
and a pump light (Apump = 1565 nm) with an average power of
about 25 mW from a tunable laser diode (continuous wave) is
injected into the PPLN, to generate a DFG (A = 1535 nm)
as shown in Fig. 2(c). Then, the SHG is also generated at
A =775 nm as shown in Fig. 2(d). The conversion efficiency
[PSHg/(Pinput)Z] of the PPLN in this experiment is ~450%
where Psag and Ppy¢ are defined as the average power of the
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Fig. 3. (a) Measured eye diagrams of the signal and (b) measured BER with

and without optical thresholder for different data rates.

SHG and the input signal. Fig. 3(a) shows the measured eye
diagrams of signals with and without the optical thresholder
for different data rates. It is observed that dominant noises
are suppressed effectively. Measured BERs corresponding to
these signals are shown in Fig. 3(b). In 10-Gb/s measurement
without optical thresholder, the error-free transmission could
not be measured. A large power penalty was recorded between
the measurements with and without optical thresholder. Fig. 4
shows the measured transfer function of this optical thresholder
(Pi, versus P,y). The average operation power is about 6 mW
for 1.25 Gb/s, which means that the peak power is about 30 W
(60 pJ/bit). With a two-times increasing data rate, the opera-
tion power is increasing with 3 dBm theoretically, while it was
~2.5 dBm in the experimental measurement.

III. DATA-RATE FLEXIBLE OCDMA

We measured the maximum number of active users K that
could be accommodated with BER < 10~ for different data
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Fig. 4. Transfer function of cascaded SHG-DFG optical thresholder.

rates in an OCDMA system with 511-chip, 640-Gchip/s SSFBG
encoder/decoders. Fig. 5(a) shows the experimental setup. A
9.953-GHz optical pulse train with a central wavelength of
1550 nm was modulated by 223 — 1 pseudorandom bit sequence
(PRBS) at each different data rate (622 Mb/s—9.953 Gb/s). The
amplified signal was split into ten branches, and encoded by ten
different 511-chip SSFBG encoders. In the setup, the “phase
adjust” segment, which consisted of a fixed fiber delay line with
different lengths, tunable optical delay line (TODL), tunable op-
tical attenuator (ATT) with switch and PC, was used to balance
the power level from each branch and adjust the K value [5]. In
this experiment, we measured by emulating random access, and
the polarization states of all the signals are aligned.

The multiplexed K encoded signals were amplified by an
EDFA and then decoded by SSFBG decoder. Fig. 5(b) shows
the eye diagrams of the multiuser encoded signals at different
data rates and with different K. Fig. 5(c) shows the eye diagrams
of the signals after the SSFBG decoder while Fig. 5(d) shows
those after the PPLN optical thresholder based on cascaded
SHG-DFG. Finally, the optical signal was detected by the pho-
todetector (PD), and the BER was measured by error detector
(ED). In 10-Gb/s measurement, an error-free transmission was
achieved due to the optical thresholder. Fig. 6(a) shows the mea-
sured maximum K with BER < 10~ versus data rate together
with the theoretical calculation [1], [4]. Fig. 6(b) shows the mea-
sured and calculated power penalty versus K for two different
data rates for 2.448 and 1.244 Gb/s. The deviations between the
experimental and theoretical results shown in Fig. 6 are mainly
due to the slight unevenness in the wings around the autocor-
relation and the nonidea performance of the practical optical
thresholder.

IV. CoMPOUND DATA-RATE OCDMA

In another experiment, we demonstrated a compound data-
rate (622 Mb/s 4 2.488 Gb/s) OCDMA system for the provision
of diversified service applications. Fig. 7 shows the experimen-
tal setup. The 10-GHz optical pulses from MLLD were split
into two arms and modulated by PRBS data at 622 Mb/s and
2.488 Gb/s for different services, respectively. The 622-Mb/s
and 2.488-Gb/s signals were split into eight and two branches,
respectively. Signals in different branches were encoded by dif-
ferent 511-chip SSFBG encoders. We used totally ten differ-
ent encoders in the experiment, i.e., code 1-code 10 [6]. En-
coder code 1 and code 9 were used for the 2.44-Gb/s signal; the
other encoders were for the 622-Mb/s signal. The “user adjust”
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Fig. 5. (a) Experimental setup of flexible data-rate OCDMA. (b) Eye diagrams of the multiuser encoded signals. (c) Signals after 511-chip SSFBG decoder.
(d) Signals after PPLN optical thresholder at different data rates with different K.

(a) 18
e . D multiplexed compound data-rate OCDMA signals were decoded
=2 T i by the SSFBG decoders: code 1 for 2.488 G and code 4 for 622
§ ol M. The PPLN optical thresholder based on cascaded SHG-DFG
2, was used to remove the MAI and ISI noise. The operation power
0 is almost the same as the data-rate flexible OCDMA experiment.
) 0 S Ghp) 10 Finally, the decoded signal is photodetected by PD, followed by
20 —— a 5.2-GHz lowpass filter (LPF) used to perform data-rate de-
g s cal +2;C' 5 ;5" tection for the signal. With 8-channel 622-Mb/s and 2-channel
= ; 2.488-Gb/s OCDMA signal multiplexing, BERs were around
E 10 o /,,'. I:]/IZI 10~3 for both 622-Mb/s and 2.488-Gb/s signals in the worst
5 s ;{ - DDD case. Fig. 8(a) (left column) shows the eye diagrams of the
2 fD od output from LPF. The BER could easily achieve lower than

1079 by adjusting the TODL for the best case, i.e., slot-level
timing coordination—synchronous case (Syn). The BERs are
shown in Fig. 8(b) marked by “Syn,” and the right column in
Fig. 8(a) shows the corresponding eye diagrams. With up to
3-channel 622-Mb/s and 2-channel 2.488-Gb/s compound
OCDMA signals, BER < 10~9 could be achieved in both these
data rates under the worst case scenario for asynchronous op-
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Fig. 6. (a) Maximum K versus the data rate and (b) the power penalty versus
K for 2.488 Gb/s and 1.244 Gb/s.

segments were inserted in all these branches to investigate the
system performance in the worst case scenario withsynchronous
bits and aligned polarization state [6]. At the receiver, the

eration. The BERs are shown in Fig. 8(b) marked by “Asy,”
and the eye diagrams are shown in the middle column of
Fig. 8(a).
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V. CONCLUSION

We have experimentally investigated the data-rate flexibility
of the OCDMA system with a 511-chip SSFBG and optical
thresholder, and demonstrated the compound data-rate OCDMA
system for the future multiple service provisioning on demand.
We have proposed a new optical thresholder by using cascaded
SHG-DFG in PPLN waveguide to reduce MAI and ISI noises.
This new optical thresholder can be flexibly operated in C-band
with reasonable low power, allowing further optical processing
and easy detection.
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