Discriminative Feature Co-Occurrence Selection for Object Detection — Mita et al, 2008

Posted on May 16th, 2008 by Tom

Mita et al Discriminative Feature Co-Occurrence Selection for Object Detection IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), July 2008  |  article pdf

  • Article discussed at 12:15pm on Fri 30 May 08, in Room G19/20, EMB.
  • Presenter: Stephan Matzka.

N.B. It is advisable that attendees familiarise themselves with the work of Viola & Jones, 2004 , as the paper by Mita et al is an extension of this work.

Abstract

This paper describes an object detection framework that learns the discriminative co-occurrence of multiple features. Feature co-occurrences are automatically found by Sequential Forward Selection at each stage of the boosting process. The selected feature co-occurrences are capable of extracting structural similarities of target objects leading to better performance. The proposed method is a generalization of the framework proposed by Viola and Jones, where each weak classifier depends only on a single feature. Experimental results obtained using four object detectors, for finding faces and three different hand gestures, respectively, show that detectors trained with the proposed algorithm yield consistently higher detection rates than those based on their framework while using the same number of features.

Tags: about